# Perform convolution
algo = libcudnn.cudnnGetConvolutionForwardAlgorithm(cudnn_context, X_desc,
                                                    filters_desc, conv_desc,
                                                    Y_desc,
                                                    convolution_fwd_pref, 0)

print("Cudnn algorithm = %d" % algo.value)

ws_size = libcudnn.cudnnGetConvolutionForwardWorkspaceSize(
    cudnn_context, X_desc, filters_desc, conv_desc, Y_desc, algo)
ws_ptr = drv.mem_alloc(ws_size.value) if ws_size.value > 0 else 0
ws_data = ctypes.c_void_p(int(ws_ptr))

start_bench()

libcudnn.cudnnConvolutionForward(cudnn_context, alpha, X_desc, X_data,
                                 filters_desc, filters_data, conv_desc, algo,
                                 ws_data, ws_size.value, beta, Y_desc, Y_data)

end_bench("fprop")

ws_ptr = None

# Clean up
libcudnn.cudnnDestroyTensorDescriptor(X_desc)
libcudnn.cudnnDestroyTensorDescriptor(Y_desc)
libcudnn.cudnnDestroyFilterDescriptor(filters_desc)
libcudnn.cudnnDestroyConvolutionDescriptor(conv_desc)
libcudnn.cudnnDestroy(cudnn_context)
Beispiel #2
0
def benchmark_conv(kw, kh, bsz):

    start, end = (drv.Event(), drv.Event())

    def start_bench():
        start.record()

    def end_bench():
        end.record()
        end.synchronize()
        return end.time_since(start)
    n_input = bsz

    filters_in = 3
    filters_out = 64
    height_in = 224
    width_in = 224
    height_filter = kh
    width_filter = kw
    pad_h = 3
    pad_w = 3
    vertical_stride = 1
    horizontal_stride = 1
    upscalex = 1
    upscaley = 1
    alpha = 1.0
    beta = 1.0

    # Input tensor
    X = gpuarray.to_gpu(np.random.rand(n_input, filters_in, height_in, width_in)
        .astype(np.float32))

    # Filter tensor
    filters = gpuarray.to_gpu(np.random.rand(filters_out,
        filters_in, height_filter, width_filter).astype(np.float32))

    # Descriptor for input
    X_desc = libcudnn.cudnnCreateTensorDescriptor()
    libcudnn.cudnnSetTensor4dDescriptor(X_desc, tensor_format, data_type,
        n_input, filters_in, height_in, width_in)

    # Filter descriptor
    filters_desc = libcudnn.cudnnCreateFilterDescriptor()
    libcudnn.cudnnSetFilter4dDescriptor(filters_desc, data_type, filters_out,
        filters_in, height_filter, width_filter)

    # Convolution descriptor
    conv_desc = libcudnn.cudnnCreateConvolutionDescriptor()
    libcudnn.cudnnSetConvolution2dDescriptor(conv_desc, pad_h, pad_w,
        vertical_stride, horizontal_stride, upscalex, upscaley,
        convolution_mode)

    # Get output dimensions (first two values are n_input and filters_out)
    _, _, height_output, width_output = libcudnn.cudnnGetConvolution2dForwardOutputDim(
        conv_desc, X_desc, filters_desc)

    # Output tensor
    Y = gpuarray.empty((n_input, filters_out, height_output, width_output), np.float32)
    y_desc = libcudnn.cudnncreatetensordescriptor()
    libcudnn.cudnnsettensor4ddescriptor(y_desc, tensor_format, data_type, n_input,
        filters_out, height_output, width_output)

    # Get pointers to GPU memory
    X_data = ctypes.c_void_p(int(X.gpudata))
    filters_data = ctypes.c_void_p(int(filters.gpudata))
    Y_data = ctypes.c_void_p(int(Y.gpudata))

    # Perform convolution
    algo = libcudnn.cudnnGetConvolutionForwardAlgorithm(cudnn_context, X_desc,
        filters_desc, conv_desc, Y_desc, convolution_fwd_pref, 0)

    # print("Cudnn algorithm = %d" % algo.value)

    ws_size = libcudnn.cudnnGetConvolutionForwardWorkspaceSize(cudnn_context, X_desc, filters_desc, conv_desc, Y_desc, algo)
    ws_ptr  = drv.mem_alloc(ws_size.value) if ws_size.value > 0 else 0
    ws_data = ctypes.c_void_p(int(ws_ptr))

    libcudnn.cudnnConvolutionForward(cudnn_context, alpha, X_desc, X_data,
        filters_desc, filters_data, conv_desc, algo, ws_data, ws_size.value, beta,
        Y_desc, Y_data)
    start_bench()

    for i in range(10):
        libcudnn.cudnnConvolutionForward(cudnn_context, alpha, X_desc, X_data,
            filters_desc, filters_data, conv_desc, algo, ws_data, ws_size.value, beta,
            Y_desc, Y_data)

    ms = end_bench()

    ws_ptr = None
    libcudnn.cudnnDestroyTensorDescriptor(X_desc)
    libcudnn.cudnnDestroyTensorDescriptor(Y_desc)
    libcudnn.cudnnDestroyFilterDescriptor(filters_desc)
    libcudnn.cudnnDestroyConvolutionDescriptor(conv_desc)

    return ms / 10
Beispiel #3
0
    maxU = parU[0:1,0:1]

    maxo  = ng.max(abs(cuO - nlO.T), partial=parO, out=maxO).get()[0,0]
    maxb  = ng.max(abs(cuB - nlB.T), partial=parB, out=maxB).get()[0,0]
    maxu  = ng.max(abs(cuU - nlU.T), partial=parU, out=maxU).get()[0,0]

    meano = ng.mean(abs(cuO), partial=parO, out=maxO).get()[0,0]
    meanb = ng.mean(abs(cuB), partial=parB, out=maxB).get()[0,0]
    meanu = ng.mean(abs(cuU), partial=parU, out=maxU).get()[0,0]

    print "        maxerr   mean   pct"
    print "fprop: %7.5f %6.2f %5.3f" % (maxo, meano, 100*maxo/meano)
    print "bprop: %7.5f %6.2f %5.3f" % (maxb, meanb, 100*maxb/meanb)
    print "updat: %7.5f %6.2f %5.3f" % (maxu, meanu, 100*maxu/meanu)

    # free up memory from this layer before proceeding
    cuB  = cuU  = cuO  = None
    nlB  = nlU  = nlO  = None
    parO = parB = parU = maxO = maxB = maxU = None


libcudnn.cudnnDestroyTensorDescriptor(I_desc)
libcudnn.cudnnDestroyTensorDescriptor(O_desc)
libcudnn.cudnnDestroyFilterDescriptor(F_desc)
libcudnn.cudnnDestroyTensorDescriptor(E_desc)
libcudnn.cudnnDestroyTensorDescriptor(B_desc)
libcudnn.cudnnDestroyFilterDescriptor(U_desc)
libcudnn.cudnnDestroyConvolutionDescriptor(C_desc)

libcudnn.cudnnDestroy(cudnn)