# Perform convolution algo = libcudnn.cudnnGetConvolutionForwardAlgorithm(cudnn_context, X_desc, filters_desc, conv_desc, Y_desc, convolution_fwd_pref, 0) print("Cudnn algorithm = %d" % algo.value) ws_size = libcudnn.cudnnGetConvolutionForwardWorkspaceSize( cudnn_context, X_desc, filters_desc, conv_desc, Y_desc, algo) ws_ptr = drv.mem_alloc(ws_size.value) if ws_size.value > 0 else 0 ws_data = ctypes.c_void_p(int(ws_ptr)) start_bench() libcudnn.cudnnConvolutionForward(cudnn_context, alpha, X_desc, X_data, filters_desc, filters_data, conv_desc, algo, ws_data, ws_size.value, beta, Y_desc, Y_data) end_bench("fprop") ws_ptr = None # Clean up libcudnn.cudnnDestroyTensorDescriptor(X_desc) libcudnn.cudnnDestroyTensorDescriptor(Y_desc) libcudnn.cudnnDestroyFilterDescriptor(filters_desc) libcudnn.cudnnDestroyConvolutionDescriptor(conv_desc) libcudnn.cudnnDestroy(cudnn_context)
def benchmark_conv(kw, kh, bsz): start, end = (drv.Event(), drv.Event()) def start_bench(): start.record() def end_bench(): end.record() end.synchronize() return end.time_since(start) n_input = bsz filters_in = 3 filters_out = 64 height_in = 224 width_in = 224 height_filter = kh width_filter = kw pad_h = 3 pad_w = 3 vertical_stride = 1 horizontal_stride = 1 upscalex = 1 upscaley = 1 alpha = 1.0 beta = 1.0 # Input tensor X = gpuarray.to_gpu(np.random.rand(n_input, filters_in, height_in, width_in) .astype(np.float32)) # Filter tensor filters = gpuarray.to_gpu(np.random.rand(filters_out, filters_in, height_filter, width_filter).astype(np.float32)) # Descriptor for input X_desc = libcudnn.cudnnCreateTensorDescriptor() libcudnn.cudnnSetTensor4dDescriptor(X_desc, tensor_format, data_type, n_input, filters_in, height_in, width_in) # Filter descriptor filters_desc = libcudnn.cudnnCreateFilterDescriptor() libcudnn.cudnnSetFilter4dDescriptor(filters_desc, data_type, filters_out, filters_in, height_filter, width_filter) # Convolution descriptor conv_desc = libcudnn.cudnnCreateConvolutionDescriptor() libcudnn.cudnnSetConvolution2dDescriptor(conv_desc, pad_h, pad_w, vertical_stride, horizontal_stride, upscalex, upscaley, convolution_mode) # Get output dimensions (first two values are n_input and filters_out) _, _, height_output, width_output = libcudnn.cudnnGetConvolution2dForwardOutputDim( conv_desc, X_desc, filters_desc) # Output tensor Y = gpuarray.empty((n_input, filters_out, height_output, width_output), np.float32) y_desc = libcudnn.cudnncreatetensordescriptor() libcudnn.cudnnsettensor4ddescriptor(y_desc, tensor_format, data_type, n_input, filters_out, height_output, width_output) # Get pointers to GPU memory X_data = ctypes.c_void_p(int(X.gpudata)) filters_data = ctypes.c_void_p(int(filters.gpudata)) Y_data = ctypes.c_void_p(int(Y.gpudata)) # Perform convolution algo = libcudnn.cudnnGetConvolutionForwardAlgorithm(cudnn_context, X_desc, filters_desc, conv_desc, Y_desc, convolution_fwd_pref, 0) # print("Cudnn algorithm = %d" % algo.value) ws_size = libcudnn.cudnnGetConvolutionForwardWorkspaceSize(cudnn_context, X_desc, filters_desc, conv_desc, Y_desc, algo) ws_ptr = drv.mem_alloc(ws_size.value) if ws_size.value > 0 else 0 ws_data = ctypes.c_void_p(int(ws_ptr)) libcudnn.cudnnConvolutionForward(cudnn_context, alpha, X_desc, X_data, filters_desc, filters_data, conv_desc, algo, ws_data, ws_size.value, beta, Y_desc, Y_data) start_bench() for i in range(10): libcudnn.cudnnConvolutionForward(cudnn_context, alpha, X_desc, X_data, filters_desc, filters_data, conv_desc, algo, ws_data, ws_size.value, beta, Y_desc, Y_data) ms = end_bench() ws_ptr = None libcudnn.cudnnDestroyTensorDescriptor(X_desc) libcudnn.cudnnDestroyTensorDescriptor(Y_desc) libcudnn.cudnnDestroyFilterDescriptor(filters_desc) libcudnn.cudnnDestroyConvolutionDescriptor(conv_desc) return ms / 10
maxU = parU[0:1,0:1] maxo = ng.max(abs(cuO - nlO.T), partial=parO, out=maxO).get()[0,0] maxb = ng.max(abs(cuB - nlB.T), partial=parB, out=maxB).get()[0,0] maxu = ng.max(abs(cuU - nlU.T), partial=parU, out=maxU).get()[0,0] meano = ng.mean(abs(cuO), partial=parO, out=maxO).get()[0,0] meanb = ng.mean(abs(cuB), partial=parB, out=maxB).get()[0,0] meanu = ng.mean(abs(cuU), partial=parU, out=maxU).get()[0,0] print " maxerr mean pct" print "fprop: %7.5f %6.2f %5.3f" % (maxo, meano, 100*maxo/meano) print "bprop: %7.5f %6.2f %5.3f" % (maxb, meanb, 100*maxb/meanb) print "updat: %7.5f %6.2f %5.3f" % (maxu, meanu, 100*maxu/meanu) # free up memory from this layer before proceeding cuB = cuU = cuO = None nlB = nlU = nlO = None parO = parB = parU = maxO = maxB = maxU = None libcudnn.cudnnDestroyTensorDescriptor(I_desc) libcudnn.cudnnDestroyTensorDescriptor(O_desc) libcudnn.cudnnDestroyFilterDescriptor(F_desc) libcudnn.cudnnDestroyTensorDescriptor(E_desc) libcudnn.cudnnDestroyTensorDescriptor(B_desc) libcudnn.cudnnDestroyFilterDescriptor(U_desc) libcudnn.cudnnDestroyConvolutionDescriptor(C_desc) libcudnn.cudnnDestroy(cudnn)