Beispiel #1
0
    def lmfit(self,maxfev=0,report_fit=True,cpus=1,epsfcn=None,xtol=1.e-7,ftol=1.e-7,
              workdir=None, verbose=False, **kwargs):
        """ Calibrate MATK model using lmfit package

            :param maxfev: Max number of function evaluations, if 0, 100*(npars+1) will be used
            :type maxfev: int
            :param report_fit: If True, parameter statistics and correlations are printed to the screen
            :type report_fit: bool
            :param cpus: Number of cpus to use for concurrent simulations during jacobian approximation
            :type cpus: int
            :param epsfcn: jacobian finite difference approximation increment (single float of list of npar floats)
            :type epsfcn: float or lst[float]
            :param xtol: Relative error in approximate solution
            :type xtol: float
            :param ftol: Relative error in the desired sum of squares
            :type ftol: float
            :param workdir: Name of directory to use for model runs, calibrated parameters will be run there after calibration 
            :type workdir: str
            :param verbose: If true, print diagnostic information to the screen
            :type verbose: bool
            :returns: lmfit minimizer object

            Additional keyword argments will be passed to scipy leastsq function:
            http://docs.scipy.org/doc/scipy-0.15.1/reference/generated/scipy.optimize.leastsq.html
        """
           
        try: import lmfit
        except ImportError as exc:
            sys.stderr.write("Warning: failed to import lmfit module. ({})".format(exc))
            return
        self.cpus = cpus

        # Create lmfit parameter object
        params = lmfit.Parameters()
        for k,p in self.pars.items():
            params.add(k,value=p.value,vary=p.vary,min=p.min,max=p.max,expr=p.expr) 

        out = lmfit.minimize(self.__lmfit_residual, params, args=(cpus,epsfcn,workdir,verbose), 
                maxfev=maxfev,xtol=xtol,ftol=ftol,Dfun=self.__jacobian, **kwargs)

        # Make sure that self.pars are set to final values of params
        nm = [params[k].name for k in self.pars.keys()]
        vs = [params[k].value for k in self.pars.keys()]
        self.parvalues = dict(zip(nm,vs))
        # Run forward model to set simulated values
        if isinstance( cpus, int):
            self.forward(workdir=workdir,reuse_dirs=True)
        elif isinstance( cpus, dict):
            hostname = cpus.keys()[0]
            processor = cpus[hostname][0]
            self.forward(workdir=workdir,reuse_dirs=True,
                         hostname=hostname,processor=processor)
        else:
            print 'Error: cpus argument type not recognized'
            return

        if report_fit:
            print lmfit.report_fit(params)
            print 'SSR: ',self.ssr
        return out
Beispiel #2
0
def lmfit_psf(filename, wsname):
    a = pd.read_excel(filename, wsname, header=None)
    x = np.array(map(float, a[0]))
    data = np.array(map(float, a[1]))

    # create a set of Parameters
    params = Parameters()
    params.add('amp', value=100, min=0.0)
    params.add('w0', value=0.25, min=0.0)
    params.add('shift', value=0.35)
    params.add('offset', value=0.0, min=0.0)

    # do fit, here with leastsq model
    result = minimize(fcn2min, params, args=(x, data))

    # calculate final result
    final = data + result.residual

    # write error report
    report_fit(params)

    # try to plot results
    try:
        import pylab
        pylab.plot(x, data, 'k+')
        pylab.plot(x, final, 'r')
        pylab.title(
            '%s w0=%snm' %
            (os.path.splitext(filename)[0], round(params['w0'].value * 1000)))
        pylab.draw()
    except:
        pass
Beispiel #3
0
    def Poly_fitting_Er(self):
        def fcn2min(prms, rs, Es):
            A = prms['A']
            B = prms['B']
            C = prms['C']
            D = prms['D']
            E_calc = []
            E_poly = lambda r: A + B * r + C * r**2 + D * r**3
            for ri in rs:
                E_calc.append(E_poly(ri))
            return np.array(E_calc) - Es

        params = Parameters()
        params.add('A', 0, vary=True)
        params.add('B', 0, vary=True)
        params.add('C', 0, vary=True)
        params.add('D', 0, vary=True)
        minner = Minimizer(fcn2min,
                           params=params,
                           fcn_args=(self._rexp, self._Eexp))
        result = minner.minimize()
        final = self._Eexp + result.residual
        report_fit(result)
        self.__A = result.params['A'].value
        self.__B = result.params['B'].value
        self.__C = result.params['C'].value
        self.__D = result.params['D'].value
        return final
Beispiel #4
0
def fit_nl_orthorhombic_cell(data_df, a, b, c, wavelength, verbose=True):
    """
    perform non-linear fit
    data_df = data in pandas DataFrame
    a, b, c = cell parameter
    wavelength = this ca be replaced with .get_base_ptn_wavelength()
    """
    h = data_df['h']
    k = data_df['k']
    l = data_df['l']
    param = Parameters()
    param.add('a', value=a, min=0)
    param.add('b', value=b, min=0)
    param.add('c', value=c, min=0)
    twoth_data = data_df['twoth']
    minner = Minimizer(fcn2min_orthorhombic,
                       param,
                       fcn_args=(h, k, l, twoth_data, wavelength))
    result = minner.minimize()
    # calculate final result

    # write error report
    if verbose:
        report_fit(result)

    return result
Beispiel #5
0
 def fit_phase_tau(self):
     #fit_range_indices = np.where((self.time>=self.phase_fit_range[0])&(self.time<=self.phase_fit_range[1]))
     fit_range_indices = np.arange(self.phase_fit_range[0], self.phase_fit_range[1])
     fit_time = self.time[fit_range_indices]
     fit_phase = self.phase[fit_range_indices]
     self.lmfit_tau_result = minimizer.minimize(fn.phase_tau_func_residual, self.lmfit_init_tau_params, args=(fit_time, fit_phase), nan_policy='propagate', method='nelder')
     report_fit(self.lmfit_tau_result)
Beispiel #6
0
    def run(config, input, output):
        dataFile = os.path.join(config['cwd'], input['fit.datafile'][0][0])
        x, data = np.loadtxt(dataFile, usecols=(0, 1), unpack=True)
        params = Parameters()
        # Loop over parameters defined in input. Later, we might loop over
        # all possible parameters and set which ones vary instead.
        for param in input['fit.parameters']:
            #minval = param[1]*0.5 if param[1] != 0 else -0.5
            #maxval = param[1]*1.5 if param[1] != 0 else 0.5
            #params.add(param[0],value=param[1],min=minval,max=maxval)
            params.add(param[0], value=param[1])

        #open('fitconvergence.dat', 'ab')
        # do fit, here with the default leastsq algorithm
        minner = Minimizer(Xanes2Min,
                           params,
                           fcn_args=(x, data, input, config, output))
        #result = minner.minimize(epsfcn=0.0001,method='differential_evolution',workers=6)
        result = minner.minimize(epsfcn=0.0001)
        final = data + result.residual

        report_fit(result)
        with open('fit_result.txt', 'w') as fh:
            fh.write(fit_report(result))

        output['fit'] = [
            x.tolist(), final.tolist(),
            data.tolist()
        ]  # For now set this as fit. Later we may want to make a statement about what is implemented and what is not for fit.
Beispiel #7
0
def das(tup,  x0, from_t=0.4, uniform_fil=None, plot_result=True, fit_kws=None):
    out = namedtuple('das_result', field_names=[
                     'fitter', 'result', 'minimizer'])

    ti = dv.make_fi(tup.t)
    if uniform_fil is not None:
        tupf = filter.uniform_filter(tup, uniform_fil)
    else:
        tupf = tup
    if fit_kws is None:
        fit_kws = {}
    import numpy as np
    #ct = dv.tup(np.hstack((wl, wl)), tup.t[ti(t0):],  np.hstack((pa[ti(t0):, :], se[ti(t0):, :])))
    ct = dv.tup(tup.wl, tup.t[ti(from_t):], tupf.data[ti(from_t):, :])
    f = fitter.Fitter(ct, model_coh=0, model_disp=0)
    f.lsq_method = 'ridge'
    kws = dict(full_model=0, lower_bound=0.2, fixed_names=['w'])
    kws.update(fit_kws)
    lm = f.start_lmfit(x0, **kws)
    res = lm.leastsq()
    import lmfit
    lmfit.report_fit(res)
    if plot_result:
        plt.figure(figsize=(4, 7))
        plt.subplot(211)
        if is_montone(f.wl):
            monotone = False
            # Assume wl is repeated
            N = len(f.wl)
        else:
            monotone = True
            N = len(f.wl) // 2
        print(N)
        l = plt.plot(f.wl[:N], f.c[:N, :], lw=3)
        if monotone:
            l2 = plt.plot(f.wl[:N], f.c[N:, :], lw=1)
            for i, j in zip(l, l2):
                j.set_color(i.get_color())
        plot_helpers.lbl_spec()
        lbls = ['%.1f' % i for i in f.last_para[1:-1]] + ['const']
        plt.legend(lbls)

        plt.subplot(212)

        wi = dv.make_fi(tup.wl)
        for i in range(N)[::6]:
            l, = plt.plot(tup.t, tupf.data[:, i], '-o', lw=0.7,
                          alpha=0.5, label='%.1f cm-1' % f.wl[i], mec='None', ms=3)
            plt.plot(f.t, f.model[:, i], lw=3, c=l.get_color())

            if monotone:
                l, = plt.plot(tup.t, tupf.data[:, i+N], '-o', lw=0.7,
                              alpha=0.5, label='%.1f cm-1' % f.wl[i], mec='None', ms=3)
                plt.plot(f.t, f.model[:, i+N], lw=3, c=l.get_color())
        plt.xlim(-1)
        plt.xscale('symlog', linthreshx=1, linscalex=0.5)
        plot_helpers.lbl_trans()
        plt.legend(loc='best')

    return out(f, res, lm)
Beispiel #8
0
def analysis(meas, data=None, fig=None):
    xs = meas.delays
    ys, fig = meas.get_ys_fig(data, fig)

    # fig.axes[0].plot(xs/1e3, ys, 'ks', ms=3)

    amp0 = (np.max(ys) - np.min(ys)) / 2
    fftys = np.abs(np.fft.fft(ys - np.average(ys)))
    fftfs = np.fft.fftfreq(len(ys), xs[1] - xs[0])
    f0 = np.abs(fftfs[np.argmax(fftys)])
    print 'Delta f estimate: %.03f kHz' % (f0 * 1e6)

    params = lmfit.Parameters()
    params.add('ofs', value=amp0)
    params.add('amp', value=amp0, min=0)
    params.add('tau', value=xs[-1], min=10, max=200000)
    params.add('freq', value=f0, min=0)
    params.add('phi0', value=0, min=-1.2 * np.pi, max=1.2 * np.pi)
    result = lmfit.minimize(t2_fit, params, args=(xs, ys))
    lmfit.report_fit(params)

    fig.axes[0].plot(xs / 1e3,
                     -t2_fit(params, xs, 0),
                     label='Fit, tau=%.03f us, df=%.03f kHz' %
                     (params['tau'].value / 1000, params['freq'].value * 1e6))
    fig.axes[0].legend()
    fig.axes[0].set_ylabel('Intensity [AU]')
    fig.axes[0].set_xlabel('Time [us]')
    fig.axes[1].plot(xs / 1e3, t2_fit(params, xs, ys), marker='s')
    fig.canvas.draw()

    return params
Beispiel #9
0
    def fit(self, time_range: np.arange = None, parameters: [Parameters, tuple] = None, initial_conditions: list = None,
            residual=None, verbose: bool = False, data: np.array = None):
        """
        Fit the model based on data in the form np.array([X1,...,Xn])
        """
        if data is None:
            if self.data is None:
                raise ValueError("No data to fit the model on!")
            data = self.data
        if initial_conditions is not None:
            self.initial_conditions = initial_conditions
        if self.initial_conditions is None:
            raise ValueError("No initial conditions to fit the model with!")
        if parameters is None:
            if self.parameters is None:
                raise ValueError("No parameters to fit the model with!")
            parameters = self.parameters
        if time_range is None:
            time_range = np.arange(data.shape[0])
        if residual is None:
            residual = self.residual

        result = minimize(residual, parameters, args=(time_range, data), method=self.fit_method)
        self.result = result
        self.fitted_parameters = result.params.valuesdict()

        if verbose:
            report_fit(result)

        return result
def lmfitter(x, y):
    params = Parameters()
    params.add('m', value=0.01, vary=True)

    out = minimize(residual, params, args=(x, y))
    report_fit(params)
    return out.params['m'].value, 0.0, out.params['m'].stderr, 0.0
Beispiel #11
0
def fit_my_func(sigma, like):
    '''Fit my favorite function to the likelihood data'''
    from lmfit import minimize, Parameters, Parameter, report_fit
        
    params = Parameters()
    params.add('amp',   value= 2.5,  min=0.0)
    params.add('beta', value= 8.0,min=0.1)
    params.add('core', value= 2.0, min=0.1,max=5.0)
    
    print params
    # do fit, here with leastsq model
    result = minimize(func2min, params, args=(sigma, like))
    print params
    
    # calculate final result
    final = like + result.residual

    # write error report
    report_fit(params)

    # try to plot results
    try:
        plt.plot(sigma, like, 'k+')
        plt.plot(sigma, final, 'r')
        plt.draw()
        plt.show()
        print 'sleeping 1 sec'
        time.sleep(1)
    except:
        pass
    
    return params
    def runFit(self):
        ## Initialize parameters

        self.nb_calls = 0

        ## Run fit algorithm
        if self.method=="least_square":
            out = minimize(self.compute_diff, self.pars)
        if self.method=="shgo":
            out = minimize(self.compute_diff, self.pars,
                           method='shgo', sampling_method='sobol', options={"f_tol": 1e-16}, n = 100, iters=20)
        if self.method=="differential_evolution":
            out = minimize(self.compute_diff, self.pars,
                           method='differential_evolution')
        if self.method=="ampgo":
            out = minimize(self.compute_diff, self.pars,
                           method='ampgo')
        else:
            print("This method does not exist in the class")

        ## Display fit report
        report_fit(out)

        ## Export final parameters from the fit
        for param_name in self.ranges_dict.keys():
            if param_name in self.init_member.keys():
                self.member[param_name] = out.params[param_name].value
            elif param_name in self.init_member["band_params"].keys():
                self.member["band_params"][param_name] = out.params[param_name].value

        ## Save BEST member to JSON
        self.save_member_to_json()

        ## Compute the FINAL member
        self.fig_compare(fig_save=True)
Beispiel #13
0
def analysis(meas, data=None, fig=None):
    ys, fig = meas.get_ys_fig(data, fig)
    xs = meas.angles

    fig.axes[0].plot(xs, ys, 'ks', ms=3)


    r = fp.Sine(x_data=xs, y_data=ys)
    result, params, ys_fit = r.fit(plot=False)



    txt = 'Frequency = %.03f +- %.03e\nPhase = %.03f +- %.03f' %\
            (params['frequency'].value, params['frequency'].stderr, \
            params['phase'].value, params['phase'].stderr)

    fig.axes[0].plot(xs, ys_fit, label=txt)
    fig.axes[1].plot(xs, ys-ys_fit, marker='s')

    lmfit.report_fit(params)

    fig.axes[0].set_ylabel('Intensity [AU]')
    fig.axes[0].set_xlabel('Rotation (Cycle)')
    fig.axes[0].legend(loc=0)

    fig.canvas.draw()
    return params
Beispiel #14
0
    def fit_eta(self, line, **run_args):

        import lmfit

        def model(v, x):
            '''Eta orientation function.'''
            m = v['prefactor'] * (1 - (v['eta']**2)) / ((
                (1 + v['eta'])**2) - 4 * v['eta'] * (np.square(
                    np.cos((v['symmetry'] / 2.0) *
                           np.radians(x - v['x_center']))))) + v['baseline']
            return m

        def func2minimize(params, x, data):

            v = params.valuesdict()
            m = model(v, x)

            return m - data

        params = lmfit.Parameters()
        params.add('prefactor', value=np.max(line.y) * 0.5, min=0)
        params.add('x_center',
                   value=-90,
                   min=np.min(line.x),
                   max=np.max(line.x))
        params.add('eta', value=0.2, min=0, max=1)
        params.add('symmetry', value=2, min=0.5, max=20, vary=False)
        params.add('baseline', value=0, min=0, max=np.max(line.y), vary=False)

        lm_result = lmfit.minimize(func2minimize,
                                   params,
                                   args=(line.x, line.y))

        if run_args['verbosity'] >= 5:
            print('Fit results (lmfit):')
            lmfit.report_fit(lm_result.params)

        fit_x = line.x
        fit_y = model(lm_result.params.valuesdict(), fit_x)
        fit_line = DataLine(x=fit_x,
                            y=fit_y,
                            plot_args={
                                'linestyle': '-',
                                'color': 'r',
                                'marker': None,
                                'linewidth': 4.0
                            })

        fit_x = np.linspace(np.min(line.x), np.max(line.x), num=1000)
        fit_y = model(lm_result.params.valuesdict(), fit_x)
        fit_line_extended = DataLine(x=fit_x,
                                     y=fit_y,
                                     plot_args={
                                         'linestyle': '-',
                                         'color': 'r',
                                         'marker': None,
                                         'linewidth': 4.0
                                     })

        return lm_result, fit_line, fit_line_extended
Beispiel #15
0
def calibrate_long_wG():
    long_profile = load_data(calibration_shots_h5, 'wG/wG_profile')
    magnification = load_data(calibrations_h5, 'magnification/M_bar')

    def lmfit_gaussian_2d(xdata, ydata, zdata, u_zdata):
        pars = Parameters()
        pars.add('Tilt', value=-0.02, min=-0.1, max=0.1, vary=True)
        pars.add('Amplitude', value=4e4, vary=True)
        pars.add('wx', value=150, min=2, max=400, vary=True)
        pars.add('wy', value=150, min=2, max=400, vary=True)
        pars.add('x0', value=371, vary=True)
        pars.add('y0', value=181, vary=True)
        pars.add('offset', value=1e3, vary=True)

        def residuals(pars, xdata, ydata, zdata, u_zdata):
            theta = pars['Tilt']
            amp = pars['Amplitude']
            wx = pars['wx']
            wy = pars['wy']
            x0 = pars['x0']
            y0 = pars['y0']
            off = pars['offset']
            zmodel = gaussian_2d(xdata, ydata, theta, amp, wx, wy, x0, y0, off)
            return (zmodel - zdata) / u_zdata

        return minimize(residuals,
                        pars,
                        args=(xdata, ydata, zdata, u_zdata),
                        method='leastsq',
                        nan_policy='omit')

    def gaussian_2d(x, y, theta, amp, wx, wy, x0, y0, offset):
        x = x[np.newaxis, :]
        y = y[:, np.newaxis]
        u, v = ((x - x0) * np.cos(theta) -
                (y - y0) * np.sin(theta)), ((x - x0) * np.sin(theta) +
                                            (y - y0) * np.cos(theta))
        return amp * np.exp(-(2 * v**2 / wy**2) - (2 * u**2 / wx**2)) + offset

    x_coords, y_coords = np.linspace(0, long_profile.shape[1],
                                     long_profile.shape[1]), np.linspace(
                                         0, long_profile.shape[0],
                                         long_profile.shape[0])
    result = lmfit_gaussian_2d(x_coords, y_coords, long_profile, 5)
    parameters = np.array(
        [result.params[key].value for key in result.params.keys()])
    try:
        u_params = np.sqrt(np.diag(result.covar))
    except ValueError:
        u_params = np.zeros_like(parameters)
    report_fit(result)

    x_waist = parameters[2] * pix_size / magnification
    zR = pi * (x_waist)**2 / (1.064 * um)
    u_x_waist = u_params[2] * pix_size / magnification
    u_zR = pi * x_waist * u_x_waist / (1.064 * um)

    with h5py.File(calibrations_h5) as calibrations:
        h5_save(calibrations, 'wG/wx0', x_waist)
        h5_save(calibrations, 'wG/u_wx0', u_x_waist)
Beispiel #16
0
    def E_total_fitting_Er(
            self):  # fitting DFT data of E_V with the above function
        def fcn2min(prms, rs, Es):
            ls = prms['ls']
            E_calc = []
            for ri in rs:
                E_calc.append(self.E_total(ri, ls))
            return np.array(E_calc) - Es

        params = Parameters()
        _last_fitting = "/_last_fitting.json"
        filename = current_folder + _last_fitting
        if os.path.exists(filename):
            with open(filename, 'r') as f:
                dct = json.load(f)
            if 'ls' in dct:
                params.add('ls', dct['ls'], vary=True)
        else:
            params.add('ls', 0.5, vary=True)
        minner = Minimizer(fcn2min,
                           params=params,
                           fcn_args=(self._rexp, self._Eexp))
        result = minner.minimize()
        final = self._Eexp + result.residual
        _dct = {'ls': result.params['ls'].value}
        with open(filename, 'w') as f:
            json.dump(_dct, f)
        report_fit(result)
        self.LengthScale = result.params['ls'].value
        return final
    def cov_quasiparticle_occupation_fit_thermal(self, C):

        n_qp = self.cov_calc_quasiparticle_occupation(C)

        def objective_function(params, e, n_qp):
            beta = params['beta']
            mu = params['mu']
            FD = np.exp(-beta * e + mu) / (1 + np.exp(-beta * e + mu))
            return FD - n_qp

        params = Parameters()
        params.add('beta', value=3, min=0, max=100)
        params.add('mu', value=0, min=-10, max=10)

        minner = Minimizer(objective_function, params, fcn_args=(self.e, n_qp))
        result = minner.minimize()

        final = n_qp + result.residual
        beta_opt = result.params['beta'].value
        mu_opt = result.params['mu'].value
        print "Inverse temp fit: ", beta_opt
        print "Chemical potential fit fit: ", mu_opt

        n_qp_thermal = [self.Fermi_Dirac(E, beta_opt, mu_opt) for E in self.e]
        report_fit(result)
        return [n_qp, n_qp_thermal, beta_opt, mu_opt]
Beispiel #18
0
def __lmfit_fit(residual_function,
                params,
                algo_choice,
                args=None,
                kws=None,
                **fit_kws):
    """Process calls for [lmfit] fitting."""
    method = "nelder" if algo_choice == "simplex" else \
        "leastsq" if algo_choice == "levmar" else \
        "emcee" if algo_choice == "mcmc" else \
        "brute" if algo_choice == "grid" else None
    if method is None:
        raise ValueError("algo_choice invalid")

    # Switch output channel to suppress printing during fitting process
    old_stdout = sys.stdout
    new_stdout = io.StringIO()
    sys.stdout = new_stdout
    # Call [lmfit.minimize()]
    out = minimize(residual_function,
                   params,
                   method=method,
                   nan_policy='omit',
                   args=args,
                   kws=kws,
                   **fit_kws)
    # Return to original output channel
    sys.stdout = old_stdout
    # Print report of fitting results
    report_fit(out.params)
    # Return value bindings
    return out.params
Beispiel #19
0
def analysis(meas, data=None, fig=None, period=None):
    ys, fig = meas.get_ys_fig(data, fig)
    xs = meas.areas

    fig.axes[0].plot(xs, ys, 'ks', ms=3)

    amp0 = (np.max(ys) - np.min(ys)) / 2
    if ys[0] > np.average(ys):
        amp0 = -amp0
    fftys = np.abs(np.fft.fft(ys - np.average(ys)))
    fftfs = np.fft.fftfreq(len(ys), xs[1] - xs[0])
    period0 = 1 / np.abs(fftfs[np.argmax(fftys)])

    params = lmfit.Parameters()
    params.add('ofs', value=np.average(ys))
    params.add('amp', value=amp0)
    if period is not None:
        params.add('period', value=period, min=0, vary=False)
    else:
        params.add('period', value=period0, min=0)
    params.add('decay', value=20000, min=0)
    result = lmfit.minimize(fit_timerabi, params, args=(xs, ys))
    lmfit.report_fit(params)

    txt = 'Amp = %.03f +- %.03e\nPeriod = %.03f +- %.03e\nPi area = %.03f' % (
        params['amp'].value, params['amp'].stderr, params['period'].value,
        params['period'].stderr, params['period'].value / 2)
    fig.axes[0].plot(xs, -fit_timerabi(params, xs, 0), label=txt)
    fig.axes[0].set_ylabel('Intensity [AU]')
    fig.axes[0].set_xlabel('Pulse area')
    fig.axes[0].legend(loc=0)

    fig.axes[1].plot(xs, fit_timerabi(params, xs, ys), marker='s')
    fig.canvas.draw()
    return params
Beispiel #20
0
def get_radial_dose(radial_dose_in, dwell_in, point_in):
    """
    Calculate the radial dose function value
    """
    R = pdist([[dwell_in.x, dwell_in.y, dwell_in.z],
               [point_in.x, point_in.y, point_in.z]])
    if R in radial_dose_in.r_cm:
        return radial_dose_in.gL[radial_dose_in.r_cm.index(R)]
    elif R < min(radial_dose_in.r_cm):
        nrVal = find_nearest(np.array(radial_dose_in.r_cm), R)
        return radial_dose_in.gL[radial_dose_in.r_cm.index(nrVal)]
    elif R > max(radial_dose_in.r_cm):
        pw = 2
        params = Parameters()
        params.add('pw', value=pw, vary=False)
        params.add('adj1', value=1)
        params.add('adj2', value=1)
        xf = radial_dose_in.r_cm[-2:]
        yf = radial_dose_in.gL[-2:]
        result = minimize(fcn2min, params, args=(xf, yf))
        report_fit(result.params)
        adj1 = result.params['adj1']
        adj2 = result.params['adj2']
        next_y = adj1 * np.power(R + adj2, pw)
        return next_y
    else:
        return log_interp(radial_dose_in.r_cm, radial_dose_in.gL, R)
Beispiel #21
0
def fit_model_with_adapter(method='nelder'):
    """
        Test fit of a bare silicon with oxide.

        These are the REFL1D results for the same model:

        Chi2 = 1.307

        SiOx thickness    6.7 +- 1.7
        SiOx SLD          4.0 +- 0.3
        SiOx roughness    1.0 +- 0.7
        Si roughness      5.7 +- 2.0

    """
    # This is how the interface will use its layer model
    model_adapter = ModelAdapter(bare_silicon_model())
    params = model_adapter.params_from_model()

    # Load the data
    q, r, dr, _ = np.loadtxt(os.path.join(os.path.dirname(__file__),
                                          'data/Si_137848_1850_800.txt'),
                             unpack=True)

    # Perform the fit
    result = minimize(residual_with_adapter,
                      params,
                      args=(q, r, dr, model_adapter),
                      method=method)
    report_fit(result)
Beispiel #22
0
def fit_data_sample():
    # create a set of Parameters
    params = Parameters()
    params.add('amp', value=10, min=0)
    params.add('decay', value=0.1)
    params.add('shift', value=0.0, min=-np.pi / 2., max=np.pi / 2.)
    params.add('omega', value=3.0)

    # create data to be fitted
    x = np.linspace(0, 15, 301)
    data = (5.0 * np.sin(2.0 * x - 0.1) * np.exp(-x * x * 0.025) +
            np.random.normal(size=x.size, scale=0.2))

    # do fit, here with the default leastsq algorithm
    minner = Minimizer(fcn2min, params, fcn_args=(x, data))
    result = minner.minimize()

    # calculate final result
    final = data + result.residual

    # write error report
    report_fit(result)

    # try to plot results
    try:
        import matplotlib.pyplot as plt
        plt.plot(x, data, 'k+')
        plt.plot(x, final, 'r')
        plt.show()
    except ImportError:
        pass
def sineInfo(s, f = 3., report=True, debugPlot = False):
	'''
		f for repetition in s, input f = fft_f * tSpan
		return amp, freql, shift, THD
		real f = freql /tSpan
	'''
	l = len(s)
	t = array(range(l))
	a2 = ppv(s)

	from lmfit import minimize, Parameters, report_fit

	def err(params, t, s):
	    amp = params['amp'].value
	    shift = params['shift'].value
	    omega = params['freq'].value

	    model = amp * sin(t * omega * 2*pi + shift)
	    return model - s

	params = Parameters()
	params.add('amp',   value= a2,  min= a2 / 3)
	params.add('shift', value= 0.) #, min=-pi, max=pi)
	params.add('freq', value=f/l , min = 0.6*f/l, max = 1.4*f/l)

	resd = minimize(err, params, args=(t, s)).residual

	if report: report_fit(params)
	if debugPlot:
		figure()
		plot(s)
		plot(s+resd)

	return (params['amp'].value, params['freq'].value * l , params['shift'].value % (2*pi) - pi, sum(resd**2)/sum(s**2))
Beispiel #24
0
def report_mcmc_fit(mcmc_res):
    """Report output of MCMC fit.

    Code from https://lmfit.github.io/lmfit-py/fitting.html

    """
    # -----------------------
    # Median of distribution

    print("median of posterior probability distribution")
    print("--------------------------------------------")
    lmfit.report_fit(mcmc_res.params)

    p = mcmc_res.params.copy()

    highest_prob = np.argmax(mcmc_res.lnprob)
    hp_loc = np.unravel_index(highest_prob, mcmc_res.lnprob.shape)
    mle_soln = mcmc_res.chain[hp_loc]
    for i, par in enumerate(p):
        p[par].value = mle_soln[i]

    # -----------------------
    # Max Likelihood

    print("\nMaximum Likelihood Estimation from emcee       ")
    print("-------------------------------------------------")
    print("Parameter  MLE Value   Median Value   Uncertainty")

    fmt = "  {:5s}  {:11.5f} {:11.5f}   {:11.5f}".format
    for name, param in p.items():
        print(
            fmt(
                name,
                param.value,
                mcmc_res.params[name].value,
                mcmc_res.params[name].stderr,
            ))

    # -----------------------
    # Error Estimate

    print("\nError Estimates from emcee    ")
    print("------------------------------------------------------")
    print("Parameter  -2sigma  -1sigma   median  +1sigma  +2sigma ")

    for name in p.keys():
        quantiles = np.percentile(mcmc_res.flatchain[name],
                                  [2.275, 15.865, 50, 84.135, 97.275])
        median = quantiles[2]
        err_m2 = quantiles[0] - median
        err_m1 = quantiles[1] - median
        err_p1 = quantiles[3] - median
        err_p2 = quantiles[4] - median
        fmt = "  {:5s}   {:8.4f} {:8.4f} {:8.4f} {:8.4f} {:8.4f}".format
        print(fmt(name, err_m2, err_m1, median, err_p1, err_p2))

    # /for

    return
def main():
    # Read in reference/model spectrum
    ref = np.loadtxt('ref.txt', unpack=True)

    # Read in input spectrum to be scaled
    spec = np.loadtxt(sys.argv[1], unpack=True)

    region = [[6507, 6512], [6560, 6565]]  # Background or continuum region

    ref_w, ref_f = region_around_line(ref[0], ref[1], region)
    spec_w, spec_f = region_around_line(spec[0], spec[1], region)

    divisor = np.max(ref_f)  # To normalize spectrum

    ref_f, spec_f = ref_f / divisor, spec_f / divisor

    # Initial parameters
    params = Parameters()
    params.add('dx', value=0)
    params.add('sigma', value=1)
    params.add('amplitude', value=1)

    # Minimize
    fitout = minimize(fit_profile_err, params, args=(spec_w, spec_f, ref_f))
    fitted_p = fitout.params
    scaled = fit_profile(fitted_p, spec_w, spec_f)

    # Best-fit parameters
    report_fit(fitout)

    # Save new scaled spectrum
    save_scaled_spectrum = True
    if save_scaled_spectrum:
        ref_center = ref_w[np.argmax(ref_f)]  # Model spectrum center
        new_center = spec_w[np.argmax(scaled)]  # This center is from the fit

        shift = ref_center - new_center  # Wavelength shift
        spec_w_new = shift + spec[0]  # Apply shift

        scaling_factor = simps(ref_f, ref_w) / simps(
            scaled, spec_w)  # To scale the spectrum
        spec_f_new = spec[1] * scaling_factor  # Scaled
        spec_e_new = spec[2] * scaling_factor

        # Re-bin
        spec_f_new = np.interp(ref[0], spec_w_new, spec_f_new)
        spec_e_new = np.interp(ref[0], spec_w_new, spec_e_new)

        out_name = os.path.splitext(
            sys.argv[1])[0].split('.fits')[0] + '_scaled.txt'

        # Save
        np.savetxt(out_name, np.transpose([ref[0], spec_f_new, spec_e_new]))

    plt.plot(ref_w, ref_f)
    plt.plot(spec_w, scaled)

    plt.show()
Beispiel #26
0
def fit_hawkes(event_times_dict_list, predefined_beta_matrix=None, pool=None):
    '''Fit a multidimensional Hawkes Process to observed sequences

    Parameters
    ----------
    event_times_dict_list : list of dict of lists of floats
        List of sequences of event dicts, with process dimension as key and list of ascending timestamps (floats) as values
    predefined_beta_matrix : matrix of floats
        Self-excitation decay per dimension^2. If equals None, then it will be a parameter to fit.
    Returns
    -------
    fitted_hawkes : MultivariateHawkes
        New Hawkes Process with fitted parameters
    '''
    parameters = lmfit.Parameters()
    for dimension_m in event_times_dict_list[0]:
        parameters.add("mu_{}".format(dimension_m), min=0, value=0.9)
        for dimension_n in event_times_dict_list[0]:
            parameters.add("alpha_{}{}".format(dimension_m, dimension_n), min=0, value=0.9)
            if not predefined_beta_matrix:
                parameters.add("beta_{}{}".format(dimension_m, dimension_n), min=0, value=0.9)
    
    def __extract_parameters(parameters):
        mu_list = []
        alpha_matrix = []
        beta_matrix = []
        for dim_m in event_times_dict_list[0]:
            mu_list.append(parameters["mu_{}".format(dim_m)])
            alpha_matrix.append([])
            beta_matrix.append([])
            for dim_n in event_times_dict_list[0]:
                alpha_matrix[dim_m].append(parameters["alpha_{}{}".format(dim_m, dim_n)])
                if not predefined_beta_matrix:
                    beta_matrix[dim_m].append(parameters["beta_{}{}".format(dim_m, dim_n)])
        return {"mu": mu_list,
                "alpha": alpha_matrix,
                "beta": beta_matrix if not predefined_beta_matrix else predefined_beta_matrix}

    def log_likelihood_wrapper(parameters, event_times_dict_list, pool):
        current_hawkes_process = MultivariateHawkes(**__extract_parameters(parameters))
        current_hawkes_process.pprint()
        '''
        We compute -1 * log_likelihood, because we use algorithms that minimize,
        and finding parameters that maximize likelihood is equivalent to finding those that minimize -log_likelihood
        '''
        result = pool.map(current_hawkes_process.log_likelihood, event_times_dict_list)
        return list(np.array(result) * -1)
        # return [-1 * current_hawkes_process.log_likelihood(event_times_dict) for event_times_dict in event_times_dict_list]

    if not pool:
        pool = multiprocessing.Pool(processes = constants.NUMBER_OF_PROCESSES)
    minimizer = lmfit.Minimizer(log_likelihood_wrapper, parameters, fcn_args=(event_times_dict_list, pool))
    result = minimizer.minimize(method="lbfgsb")

    lmfit.report_fit(result)

    return {"parameters": __extract_parameters(parameters), 
            "average_negativeloglikelihood": np.mean(log_likelihood_wrapper(parameters, event_times_dict_list, pool))}
Beispiel #27
0
def quadratic_planefit(x, y, z, err=None, pinit=None, method='leastsq',
                      report_fit=False):
    """
    Fits a quadratic bivariate polynomial to 2D data

    Parameters
    ----------
    x : ndarray
        array of x values
    y : ndarray
        array of y values
    z : ndarray
        data to be fit
    err : ndarray (optional)
        uncertainties on z data
    pinit : ndarray (optional)
        initial guesses for fitting. Format = [mmx, mx, mmy, my, c]
    method : string (optional)
        method used for the minimisation (default = leastsq)

    """
    if pinit is None:
        pars=lmfit.Parameters()
        pars.add('mmx', value=1.0)
        pars.add('mx', value=1.0)
        pars.add('mmy', value=1.0)
        pars.add('my', value=1.0)
        pars.add('c', value=1.0)
    else:
        pars=lmfit.Parameters()
        pars.add('mmx', value=pinit[0])
        pars.add('mx', value=pinit[1])
        pars.add('mmy', value=pinit[2])
        pars.add('my', value=pinit[3])
        pars.add('c', value=pinit[4])

    fitter = lmfit.Minimizer(residual_quadratic_planefit, pars,
                             fcn_args=(x,y),
                             fcn_kws={'data':z, 'err':err},
                             nan_policy='propagate')

    result = fitter.minimize(method=method)

    if report_fit:
        lmfit.report_fit(result)

    popt = np.array([result.params['mmx'].value,
                     result.params['mx'].value,
                     result.params['mmy'].value,
                     result.params['my'].value,
                     result.params['c'].value])
    perr = np.array([result.params['mmx'].stderr,
                     result.params['mx'].stderr,
                     result.params['mmy'].stderr,
                     result.params['my'].stderr,
                     result.params['c'].stderr])

    return popt, perr, result
Beispiel #28
0
def prad_fe_fit():
    cksbin = cksmet.io.load_table('cksbin-fe')
    x = log10(cksbin.binc)
    y = cksbin.fe_mean
    yerr = cksbin.fe_mean_err
    import lmfit

    p0 = lmfit.Parameters()
    p0.add('p1', 0.1)
    p0.add('p0', 0.1)

    def model_linear(params, x):
        return params['p1'] * x + params['p0']

    def model_step(params, x):
        if isinstance(x, Iterable):
            out = map(lambda x: model_step(params, x), x)
            out = np.array(out)
            return out

        if x < log10(4):
            return params['p0']
        elif x >= log10(4):
            return params['p1']

    def resid(params, model, x, y, yerr):
        return (y - model(params, x)) / yerr

    res_linear = lmfit.minimize(resid, p0, args=(
        model_linear,
        x,
        y,
        yerr,
    ))
    p1_linear = res_linear.params
    print "linear model"
    lmfit.report_fit(res_linear)

    res_step = lmfit.minimize(resid, p0, args=(
        model_step,
        x,
        y,
        yerr,
    ))
    p1_step = res_linear.params
    print "step model"
    lmfit.report_fit(res_step)

    print "BIC(linear) - BIC(step) = {}".format(res_linear.bic - res_step.bic)

    semilogx()
    xerr = bins_to_xerr(cksbin.bin0, cksbin.binc, cksbin.bin1)
    print xerr
    errorbar(10**x, y, xerr=xerr, yerr=yerr, fmt='o')
    plot(10**x, model_linear(p1_linear, x))

    prad_fe_label()
    xlim(0.5, 16)
Beispiel #29
0
    def fitEPSC(self):

        # create a set of Parameters
        params = lmfit.Parameters()
        params.add('amp',
                   value=self.ptreedata.param('Initial Fit Parameters').param(
                       'amp').value(),
                   min=-self.dmax,
                   max=self.dmax)
        params.add('tau_rise',
                   value=self.ptreedata.param('Initial Fit Parameters').param(
                       'taurise').value(),
                   min=1e-4,
                   max=1e-1)
        params.add('tau_fall',
                   value=self.ptreedata.param('Initial Fit Parameters').param(
                       'taufall').value(),
                   min=1e-4,
                   max=1e-1)
        params.add('DC',
                   value=self.ptreedata.param('Initial Fit Parameters').param(
                       'DC').value(),
                   min=-1e3,
                   max=1e3)
        dc = np.mean(self.dataY[0:10])
        params.add('DC', value=dc, min=dc - dc * 1, max=dc + dc * 1)
        t0 = self.T0.value()
        t1 = self.T1.value()
        it0 = int(t0 / self.dt)
        it1 = int(t1 / self.dt)
        if it0 > it1:
            t = it0
            it0 = it1
            it1 = t

        # do fit, here with the default leastsq algorithm
        time_zero = int(self.time_zero / self.dt)
        print('timezero: ', time_zero, self.dataX[time_zero])
        print(self.dataX[it0:it1] - self.time_zero)
        print(self.dataY[it0:it1])

        minner = lmfit.Minimizer(
            self._fcn_EPSC,
            params,
            fcn_args=(self.dataX[it0:it1] - self.dataX[time_zero],
                      self.dataY[it0:it1]))
        self.fitresult = minner.minimize(method='least_squares', )

        # calculate final result
        final = self.dataY[it0:it1] + self.fitresult.residual

        # write error report
        lmfit.report_fit(self.fitresult)
        self.updateFit(self.fitresult)
        self.fitx = self.dataX[it0:it1]
        self.fity = final
        self.showFit()
Beispiel #30
0
    def paramOptimization(self, data, time, ts=None):

        warnings.filterwarnings("ignore")

        # set parameters including bounds; you can also fix parameters (use vary=False)
        S0, E0, I0, R10, R20, D0 = self.y0
        _, a0, b0, c0, f0, mu0, xi0 = self.modele.getParam()

        params = Parameters()
        params.add('N', value=self.N, vary=False)
        params.add('E0', value=E0, vary=False)
        params.add('I0', value=I0, vary=False)
        params.add('R10', value=R10, vary=False)
        params.add('R20', value=R20, vary=False)
        params.add('D0', value=D0, vary=False)

        params.add('a', value=a0, vary=True, min=0.0, max=0.99)
        params.add('b', value=b0, vary=True, min=0.0, max=0.99)
        params.add('c', value=c0, vary=True, min=0.0, max=0.99)
        params.add('f', value=f0, vary=True, min=0.0, max=0.99)
        params.add('mu', value=mu0, vary=True, min=0.00001, max=0.15)
        params.add('xi', value=xi0, vary=True, min=0.000001, max=0.1)

        # The time delay is only used for the first period (otherwise it is 0 and doesn't need to be estimated)
        if ts != None:
            params.add('ts', value=ts, vary=False)
        else:
            params.add('ts',
                       value=self.TS,
                       vary=True,
                       min=0,
                       max=len(time) - np.shape(data)[0] - 2)

        # Fit the model by minimization
        result = minimize(residual,
                          params,
                          args=(time, data, self, self.indexdata),
                          method='powell')  #powell, least_squares
        if self.verbose > 1:
            result.params.pretty_print()
            # display fitted statistics
            report_fit(result)

        # Update params with the optimized values
        self.setParamInit(result.params['N'].value, result.params['E0'].value,
                          result.params['I0'].value,
                          result.params['R10'].value,
                          result.params['R20'].value,
                          result.params['D0'].value)
        self.modele.setParam(
            result.params['N'].value, result.params['a'].value,
            result.params['b'].value, result.params['c'].value,
            result.params['f'].value, result.params['mu'].value,
            result.params['xi'].value)
        self.TS = result.params['ts'].value

        warnings.filterwarnings("default")
Beispiel #31
0
def diag(subf, subs, cat_freqs, cat_K, cat_J, cat_En):
    '''
    vdopler shift!
    '''
    cat_freqs = cat_freqs.copy()
    xy = []
    constants = []
    params = Parameters()
    params.add('w0', 0.0105, min=-0.01, max=0.04)
    params.add('I0', 0.050, min=0.01, max=10)
    params.add('I1', 0.050, min=0.01, max=10)
    params.add('I2', 0.050, min=0.01, max=10)
    params.add('I3', 0.050, min=0.01, max=10)
    params.add('I4', 0.050, min=0.01, max=10)
    params.add('sigma', 0.0001, min=0.00001, max=0.01)
    minm = minimize(resCH3C2H, params, args=(subf, subs, cat_freqs / 1e9))
    lines = fitCH3C2H(minm.params, subf, cat_freqs / 1e9)
    report_fit(minm.params)
    I = []
    for i in range(len(cat_freqs)):
        I.append(minm.params.get('I{0}'.format(i)).value)
    for i in range(len(cat_freqs)):
        f = cat_freqs[i] / 1e9
        par = minm.params.copy()
        for j in range(len(cat_freqs)):
            par['I{0}'.format(j)].value = 0
        par['I{0}'.format(i)].value = I[i]
        integ = ((fitCH3C2H(minm.params, subf, cat_freqs / 1e9) > 0) *
                 fitCH3C2H(minm.params, subf, cat_freqs / 1e9))
        intl, eu, error = rot(integ.sum(), cat_K[i], cat_J[i], cat_En[i],
                              cat_freqs[i], (subs - lines).std())
        xy.append((intl, eu, error))
    xy = np.array(xy)
    xy = np.flipud(xy)
    fitfunc = lambda x, k, b: -x / k + b

    def residual(params, x, yd, error):
        k = params['k'].value
        b = params['b'].value
        model = fitfunc(x, k, b)
        return (yd - model)

    params = Parameters()
    params.add('k', value=40)
    params.add('b', value=-0.8)
    minm = minimize(residual, params, args=(xy[:-1, 1], xy[:-1, 0], []))
    report_fit(minm.params)
    x = xy[:, 1]
    y = xy[:, 0]
    dy = xy[:, 2]
    Dx = len(x) * ((x**2).sum()) + (x.sum())**2
    su = 0
    for i in range(len(dy)):
        su += (dy[i] * (x[i] - x.sum()) / Dx)**2
    dB = math.sqrt(su)

    return (minm.params['k'].value.dB, xy)
Beispiel #32
0
def fit_all(t, p):
    params = lmfit.Parameters()
    params.add('lnkappa', value=2.)
    params.add('n_avrami', value=1.)
    out = lmfit.minimize(residual, params, args=(t, p, ))  # lmfit minimizer
    lmfit.report_fit(params)

    # return out.params['chi0'].value
    return out
def polar_plot(dataset,
               fig_name=None,
               polar=True,
               ax=None,
               reset_scaling=False,
               fit_mask=np.ones(16, dtype=bool)):
    if ax is None:
        fig = plt.figure(fig_name)
        fig.clf()
        ax = fig.add_subplot(111, polar=polar)
    else:
        fig = ax.figure
    phi = np.linspace(0, 2 * np.pi, 16, endpoint=False)
    phi_line = np.linspace(0, 2 * np.pi, 2**10)

    if reset_scaling:
        det_factors = dataset.det_factors.copy()
        dataset.det_factors = np.ones_like(det_factors)

    auger = dataset.auger_amplitudes.mean(axis=0)
    photo = dataset.photo_amplitudes.mean(axis=0)

    if reset_scaling:
        det_calib = auger.max() / auger
        ax.plot(phi, auger, 'gx')
        auger *= det_calib

        ax.plot(phi, photo, 'rx')
        photo *= det_calib

    ax.plot(phi, auger, 'gs', label='auger')
    ax.plot(phi, photo, 'ro', label='photo')

    params = cookie_box.initial_params(photo)
    params['beta'].vary = False
    params['beta'].value = 2
    lmfit.minimize(cookie_box.model_function,
                   params,
                   args=(phi[fit_mask], photo[fit_mask]))
    lmfit.report_fit(params)

    ax.plot(phi_line,
            cookie_box.model_function(params, phi_line),
            '-m',
            label='{:.1f} % lin {:.1f} deg'.format(
                params['linear'].value * 100,
                np.rad2deg(params['tilt'].value)))

    ax.grid(True)
    ax.legend(loc='center', bbox_to_anchor=(0, 0), fontsize='medium')
    plt.tight_layout()

    if reset_scaling:
        dataset.det_factors = det_factors

    return fig
    def fit_peaks(self, line, num_curves=1, **run_args):
        
        # Usage: lm_result, fit_line, fit_line_extended = self.fit_peaks(line, **run_args)
        
        line_full = line
        #if 'fit_range' in run_args:
            #line = line.sub_range(run_args['fit_range'][0], run_args['fit_range'][1])
        
        import lmfit
        
        def model(v, x):
            '''Gaussians with constant background.'''
            m = v['m']*x + v['b']
            for i in range(num_curves):
                m += v['prefactor{:d}'.format(i+1)]*np.exp( -np.square(x-v['x_center{:d}'.format(i+1)])/(2*(v['sigma{:d}'.format(i+1)]**2)) )
            return m
        
        def func2minimize(params, x, data):
            
            v = params.valuesdict()
            m = model(v, x)
            
            return m - data
        
        params = lmfit.Parameters()
        params.add('m', value=0)
        params.add('b', value=np.min(line.y), min=0, max=np.max(line.y))
        
        
        xspan = np.max(line.x) - np.min(line.x)
        xpeak, ypeak = line.target_y(np.max(line.y))
        for i in range(num_curves):
            #xpos = np.min(line.x) + xspan*(1.*i/num_curves)
            #xpos, ypos = line.target_x(xpeak*(i+1))
            xpos, ypos = xpeak, ypeak
            
            params.add('prefactor{:d}'.format(i+1), value=ypos-np.min(line.y), min=0, max=np.max(line.y)*10)
            params.add('x_center{:d}'.format(i+1), value=xpos, min=np.min(line.x), max=np.max(line.x))
            params.add('sigma{:d}'.format(i+1), value=xspan*0.20, min=0, max=xspan*0.50)
        
        
        lm_result = lmfit.minimize(func2minimize, params, args=(line.x, line.y))
        
        if run_args['verbosity']>=5:
            print('Fit results (lmfit):')
            lmfit.report_fit(lm_result.params)
            
        fit_x = line.x
        fit_y = model(lm_result.params.valuesdict(), fit_x)
        fit_line = DataLine(x=fit_x, y=fit_y, plot_args={'linestyle':'-', 'color':'b', 'marker':None, 'linewidth':4.0})
        
        fit_x = np.linspace(np.min(line_full.x), np.max(line_full.x), num=200)
        fit_y = model(lm_result.params.valuesdict(), fit_x)
        fit_line_extended = DataLine(x=fit_x, y=fit_y, plot_args={'linestyle':'-', 'color':'b', 'alpha':0.5, 'marker':None, 'linewidth':2.0})        

        return lm_result, fit_line, fit_line_extended
Beispiel #35
0
 def fit(self):
     # set everything up, then call the fit function, finally print out the results in the table
     self.setParametersFromTable()
     import Fitting
     xData,yData = self.getCurrentData()
     result = Fitting.FitOne(self.getCurrentFunctionName(),self.params,xData,yData)
     import lmfit
     lmfit.report_fit(self.params)
     self.updateParametersTable()
     self.updatePlot()
Beispiel #36
0
def lmfitter(x , y, y_error):
	params = Parameters()
	params.add('phiStar', value=0.1, vary=True)
	params.add('LStar', value=1.0, vary=True)
	params.add('alpha', value=-1, vary=True)


	# remove inf values in errors
	out = minimize(residual, params, args=(x, y, y_error))
	report_fit(params)
	return out
Beispiel #37
0
def test_peakfit():
    from lmfit.utilfuncs import gaussian
    def residual(pars, x, data=None):
        g1 = gaussian(x, pars['a1'].value, pars['c1'].value, pars['w1'].value)
        g2 = gaussian(x, pars['a2'].value, pars['c2'].value, pars['w2'].value)
        model = g1 + g2
        if data is None:
            return model
        return (model - data)

    n    = 601
    xmin = 0.
    xmax = 15.0
    noise = np.random.normal(scale=.65, size=n)
    x = np.linspace(xmin, xmax, n)

    org_params = Parameters()
    org_params.add_many(('a1', 12.0, True, None, None, None),
                        ('c1',  5.3, True, None, None, None),
                        ('w1',  1.0, True, None, None, None),
                        ('a2',  9.1, True, None, None, None),
                        ('c2',  8.1, True, None, None, None),
                        ('w2',  2.5, True, None, None, None))

    data  = residual(org_params, x) + noise


    fit_params = Parameters()
    fit_params.add_many(('a1',  8.0, True, None, 14., None),
                        ('c1',  5.0, True, None, None, None),
                        ('w1',  0.7, True, None, None, None),
                        ('a2',  3.1, True, None, None, None),
                        ('c2',  8.8, True, None, None, None))

    fit_params.add('w2', expr='2.5*w1')

    myfit = Minimizer(residual, fit_params,
                      fcn_args=(x,), fcn_kws={'data':data})

    myfit.prepare_fit()

    init = residual(fit_params, x)


    myfit.leastsq()

    print(' N fev = ', myfit.nfev)
    print(myfit.chisqr, myfit.redchi, myfit.nfree)

    report_fit(fit_params)

    fit = residual(fit_params, x)
    check_paras(fit_params, org_params)
def example():
    '''
    Make a "noisy" hologram. Then fit the noisy hologram. Plot the results.
    '''
    ## Make Noisy Hologram.
    # Create hologram to be fitted.
    x,y,z = 0., 0., 100.
    a_p = 0.5
    n_p = 1.5
    n_m = 1.339
    dim = [201,201]
    lamb = 0.447
    mpp = 0.135
    hologram = sph.spheredhm([x,y,z], a_p, n_p, n_m, dim, mpp, lamb)
    
    # Add noise.
    std = 0.03
    noise = np.random.normal(size=hologram.shape)*std
    noisy_hologram = hologram + noise

    ## Fit the noisy hologram.
    init_params = {'x':x, 'y':y, 'z':z, 'a_p':a_p, 'n_p':n_p, 'n_m':n_m,
                   'mpp':mpp, 'lamb':lamb}
    mie_fit = Mie_Fitter(init_params)
    result = mie_fit.fit(noisy_hologram)

    # Calculate the resulting image.
    residual = result.residual.reshape(*dim)
    final = hologram + residual

    # Write error report.
    report_fit(result)

    ## Make plots.
    # Plot images.
    sns.set(style='white', font_scale=1.4)
    plt.imshow(np.hstack([hologram, final, residual+1]))
    plt.title('Image, Fit, Residual')
    plt.gray()
    plt.show()

    # Plot Covariance.
    f, ax = plt.subplots()
    #cmap = sns.diverging_palette(220, 10, as_cmap=True)

    sns.set(font_scale=1.5)
    plt.title('Log Covariance Matrix')
    sns.heatmap(np.log(result.covar), cmap='PuBu',
                square=True, cbar_kws={}, ax=ax)
    ax.set_xticklabels(['x', 'y', 'z', r'a$_p$', r'n$_p$'])
    ax.set_yticklabels([r'n$_p$', r'a$_p$', 'z', 'y', 'x'])
    plt.show()
Beispiel #39
0
def run_minimize(paramdic, maxlimitdic, minlimitdic, datadic, extrakeys, extrakeyssolv, rsolvtest, outfile, nptype, mintotalerror):
    
    mintotalerror = mintotalerror
    params = Parameters()
    for ikey, ivalue in paramdic.iteritems():
        maxlimit = maxlimitdic[ikey]
        minlimit = minlimitdic[ikey]
        ikey = ikey.replace("@","zzz") #replace @ with zzz because this character is not supported by lmfit library
        ikey = ikey.replace(".","xxx") #replace . with xxx because this character is not supported by lmfit library
        #~ params.add(ikey, value=ivalue) 
        #~ if "rczzz" in ikey:
            #~ params.add(ikey, value=ivalue, min=minlimit, max=maxlimit) 
        #~ else:
            #~ params.add(ikey, ivalue, False) 
        params.add(ikey, value=ivalue, min=minlimit, max=maxlimit)

    print params

    #experimental data
    datacompoundnamelist = []
    for ikey, ivalue in datadic.iteritems():
        datacompoundnamelist.append(ikey) #to convert in error function to a dictionary

    #~ extra_kwargs={}
    #~ extra_kwargs['epsfcn'] = 0.5
    #~ result = minimize(fcn2min, params, args=(extrakeys, extrakeyssolv, rsolvtest, outfile, nptype, datacompoundnamelist), method='lbfgs', **extra_kwargs)

    #~ extra_kwargs={}
    #~ extra_kwargs['T'] = 300.0
    #~ extra_kwargs['stepsize']=0.1
    #~ result = minimize(fcn2min, params, args=(extrakeys, extrakeyssolv, rsolvtest, outfile, nptype, datacompoundnamelist), method='basinhopping', **extra_kwargs)


    result = minimize(fcn2min, params, args=(extrakeys, extrakeyssolv, outfile, nptype, datacompoundnamelist, limitcycle), method='powell')

    #~ #calculate final result
    #~ final = data + result.residual

    # write error report
    report_fit(params)
    
   
    #~ # try to plot results
    #~ try:
        #~ import pylab
        #~ pylab.plot(x, data, 'k+')
        #~ pylab.plot(x, final, 'r')
        #~ pylab.show()
    #~ except:
        #~ pass
        
    return datadic
def polar_plot(dataset, fig_name=None, polar=True, ax=None,
               reset_scaling=False,
               fit_mask=np.ones(16, dtype=bool)):
    if ax is None:
        fig = plt.figure(fig_name)
        fig.clf()
        ax = fig.add_subplot(111, polar=polar)
    else:
        fig = ax.figure
    phi = np.linspace(0, 2 * np.pi, 16, endpoint=False)
    phi_line = np.linspace(0, 2 * np.pi, 2**10)

    if reset_scaling:
        det_factors = dataset.det_factors.copy()
        dataset.det_factors = np.ones_like(det_factors)

    auger = dataset.auger_amplitudes.mean(axis=0)
    photo = dataset.photo_amplitudes.mean(axis=0)

    if reset_scaling:
        det_calib = auger.max() / auger
        ax.plot(phi, auger, 'gx')
        auger *= det_calib

        ax.plot(phi, photo, 'rx')
        photo *= det_calib

    ax.plot(phi, auger, 'gs', label='auger')
    ax.plot(phi, photo, 'ro', label='photo')

    params = cookie_box.initial_params(photo)
    params['beta'].vary = False
    params['beta'].value = 2
    lmfit.minimize(cookie_box.model_function, params,
                   args=(phi[fit_mask], photo[fit_mask]))
    lmfit.report_fit(params)

    ax.plot(phi_line, cookie_box.model_function(params, phi_line),
            '-m', label='{:.1f} % lin {:.1f} deg'.format(
            params['linear'].value*100,
            np.rad2deg(params['tilt'].value)))

    ax.grid(True)
    ax.legend(loc='center', bbox_to_anchor=(0, 0), fontsize='medium')
    plt.tight_layout()

    if reset_scaling:
        dataset.det_factors = det_factors

    return fig
def fit_decision_model(df):
    import lmfit
    fit_params = lmfit.Parameters()
    fit_params.add('alpha1', value=.5, min=0, max=1)
    fit_params.add('alpha2', value=.5, min=0, max=1)
    fit_params.add('lam', value = .5, min=0, max=1)
    fit_params.add('W', value = .5, min=0, max=1)
    fit_params.add('p', value = 0)
    fit_params.add('B1', value = 3)
    #fit_params.add('B2', value = 3)
    
    out = lmfit.minimize(get_likelihood, fit_params, method = 'lbfgsb', kws={'df': df})
    lmfit.report_fit(out)
    return out.params.valuesdict()
def lmfitter(x , y, y_error):
    params = Parameters()
    params.add('a', value=-1., vary=True)
    params.add('b', value=1., vary=True)
    params.add('c', value=1., vary=True)
    params.add('d', value=1., vary=True)
    params.add('e', value=0.0, vary=False)


    # remove inf values in errors
    y_error[y_error ==  np.float('inf')] = 1.0  
    out = minimize(residual, params, args=(x, y, y_error))
    report_fit(params)
    return out
    def _fit_one_file(self, data_orders, rv_guess=0.0, alpha_guess=1.0):
        # Create parameters
        params = lmfit.Parameters()
        params.add('rv', value=rv_guess, min=-5, max=5)
        params.add('alpha', value=alpha_guess, min=0, max=3)

        # Perform the fit
        result = lmfit.minimize(self._errfcn, params, args=(data_orders, self.telluric_model))

        logger = logging.getLogger()
        if logger.level <= logging.DEBUG:
            lmfit.report_fit(params)

        return params
def r_fit(time, R, volume_params,far_field=True):
    volume_params = volume_params.valuesdict()
    t_long = volume_params['tau_long']
    params = Parameters()
    params.add('Rinf', value=-0.01, )
    params.add('R0', value=-0.05, )
    params.add('tau_long', value=t_long, vary=False)

    result = minimize(residual_r, params, args=(time, R,True,far_field), method='leastsq', maxfev=int(1e5), xtol=1e-9,
                      ftol=1e-9)
    report_fit(result.params, min_correl=0.5)
    v = result.params.valuesdict()
    t = time
    R_th = residual_r(params, time, R, fit=False)

    return result.params, R_th
def fit_hi_vel_range(guesses=None, av_image=None, av_image_error=None,
        hi_cube=None, hi_velocity_axis=None, hi_noise_cube=None, dgr=None):

    from scipy.optimize import curve_fit
    from scipy import stats
    from lmfit import minimize, Parameters, report_fit, report_errors
    from pprint import pprint

    params = Parameters()
    params.add('low_vel',
               value=guesses[0],
               min=-100,
               max=100,
               vary=True)
    params.add('high_vel',
               value=guesses[1],
               min=-100,
               max=100,
               vary=True)

    result = minimize(calc_model_chisq,
                      params,
                      kws={'av_image': av_image,
                           'av_image_error': av_image_error,
                           'hi_cube': hi_cube,
                           'hi_velocity_axis': hi_velocity_axis,
                           'hi_noise_cube': hi_noise_cube,
                           'dgr': dgr},
                      #method='BFGS',
                      method='anneal',
                      #method='powell',
                      #method='SLSQP',
                      options={'gtol': 1e-6,
                               'disp': True,
                               'maxiter' : 1e9}
                      )

    report_fit(params)
    report_errors(params)
    print result.values
    print result.errorbars
    #print(result.__dict__)
    #print(dir(result))
    #print result.vars
    #print help(result)
    print result.view_items()
    print result.Bopt
def fitcurve(val0):
    if elem.matchX is False:
        return
    ydat = measdata.D1complex[:, measdata.findex]
    data = np.empty(len(ydat) * 2, dtype='float64')
    data[0::2] = ydat.real
    data[1::2] = ydat.imag
    preFit(False)
    xaxis3 = np.linspace(squid.start, squid.stop, (squid.pt * 2))
    # Using standard curve_fit settings

    # Define fitting parameters
    params = Parameters()
    params.add('CapfF', value=squid.Cap*1e15, vary=True, min=30, max=90)
    params.add('IcuA', value=squid.Ic*1e6, vary=True, min=3.0, max=4.5)
    params.add('WbpH', value=squid.Wb*1e12, vary=True, min=0, max=1500)
    params.add('LooppH', value=squid.LOOP*1e12, vary=False, min=0.0, max=100)
    params.add('alpha', value=squid.ALP, vary=False, min=0.98, max=1.02)
    params.add('R', value=squid.R, vary=True, min=1, max=20e3)
    params.add('Z1', value=elem.Z1, vary=False, min=40, max=60)
    params.add('Z2', value=elem.Z2, vary=False, min=40, max=60)
    params.add('Z3', value=elem.Z3, vary=False, min=40, max=60)
    params.add('L2', value=elem.L2, vary=False, min=0.00, max=0.09)

    # Crop region to fit
    elem.midx = find_nearest(xaxis3, elem.xmin)
    elem.madx = find_nearest(xaxis3, elem.xmax)

    # Do Fit
    result = minimize(gta1, params, args=(xaxis3[elem.midx:elem.madx], data))

    # Present results of fitting
    print report_fit(result)
    paramsToMem(result.params)
    update2(0)
    preFit(True)
    # Calculate and plot residual there
    S11 = getfit()
    residual = data - S11
    plt.figure(4)
    plt.clf()
    plt.plot(xaxis3[elem.midx:elem.madx], residual[elem.midx:elem.madx])
    plt.axis('tight')
    plt.draw()
    print 'Avg-sqr Residuals', abs(np.mean((residual * residual))) * 1e8
    return
def sineFITwLINEARbackground(param1, param2, **kwargs):
    """
    Bounded LS minimisation for the fitting of a sinefunction to a given dataset *with a linear background instead of a constant background*. It is assumed that you can represent param2 as a function of param1. The lmfit package is used to perform the bounded LS minimisation.
    
    DANGER this routine assumes you have a fixed frequency of 1 [unit**-1]. For example:
    - if param1 is time and param2 is flux, you will have a sine with a frequency of 1 c/d. 
    - if param1 is position and param2 is flux, you will have a sine with a frequency of 1 c/pix.
    
    Returns: The optimal lmfit parameter class.
    
    TODO provide options through kwargs to set the boundaries
    
    Returns: The optimal lmfit parameter class.
    
    @param param1: param1 measurements [???]
    @type param1: numpy array of length N
    @param param2: param2 measurements [???]
    @type param2: numpy array of length N
    
    @return: paramSINE
    @rtype: lmfit parameter class
    
    @kwargs: show_ME: Boolean to indicate if you want to see the report_fit - Default is False [Boolean]
    """
    show_ME = kwargs.get('show_ME', False)
    # Determination of the guesses to start your bounded LS fit with.
    constantGUESS = np.median(param2) 				# param2
    amplitudeGUESS = np.max(np.abs(constantGUESS-param2))/2. 	# param2
    frequencyGUESS = 1. 					# DANGER Here is the frequency assumption assumption.
    phaseGUESS = 0.1 						# Using the param1[np.where(param2==np.max(param2))]-param1[0]%1-0.5 is best, when there is no scatter on param2
    slopeGUESS, constantGUESS = np.polyfit(param1, param2, 1)
    
    paramSINE = Parameters()
    #Make a params class for lmfit. 
    #		  	(Name,		Value,		Vary,	Min,				Max,				Expr)
    paramSINE.add_many(('amplitude',	amplitudeGUESS,	True,	amplitudeGUESS*0.1,		amplitudeGUESS*1.2,		None),
		      ('frequency',	frequencyGUESS,	False,	frequencyGUESS-0.05,		frequencyGUESS+0.05,		None), # DANGER Here is the frequency assumption assumption. (It is set to non-vary.)
		      ('constant',	constantGUESS,	True,	-abs(constantGUESS)*1.5,	abs(constantGUESS)*1.5,		None),
		      ('phase',		phaseGUESS,	True,	0.,				1.,				None),
		      ('slope',		slopeGUESS,	True,	-2*slopeGUESS,			+2*slopeGUESS,			None))
    resultSIN = minimize(BRITE.fitfunctions.ff_lmfitlmfit_sinslope_vs_data, paramSINE, args=(param1, param2))
    if show_ME:
      report_fit(paramsSIN, show_correl=False)
    
    return paramSINE  
Beispiel #48
0
    def optimize(self, optimization_iterations=10,  fcn_callback=None):
        params = Parameters()
        params.add("density", value=self.density, min=self.density_min, max=self.density_max)
        params.add("background_scaling", value=self.background_scaling, min=self.bkg_min, max=self.bkg_max)

        def fcn_optimization(params):
            density = params['density'].value
            background_scaling = params['background_scaling'].value

            self.background_spectrum.scaling = background_scaling
            calculator = StandardCalculator(
                original_spectrum=self.original_spectrum,
                background_spectrum=self.background_spectrum,
                elemental_abundances=self.elemental_abundances,
                density=density,
                r=self.r,
                interpolation_method=self.interpolation_method,
                interpolation_parameters=self.interpolation_parameters,
                use_modification_fcn=self.use_modification_fcn
            )
            calculator.optimize(
                r=self.minimization_r,
                iterations=optimization_iterations
            )

            if fcn_callback is not None:
                fr_spectrum = calculator.calc_fr()
                gr_spectrum = calculator.calc_gr()
                fcn_callback(background_scaling, density, fr_spectrum, gr_spectrum)

            r, fr = calculator.calc_fr(self.minimization_r).data

            output = (-fr - 4 * np.pi * convert_density_to_atoms_per_cubic_angstrom(self.elemental_abundances, density) *
                    self.minimization_r) ** 2


            self.write_output(u'{} X: {:.3f} Den: {:.3f}'.format(self.iteration, np.sum(output)/(r[1]-r[0]), density))
            self.iteration+=1
            return output

        self.output_txt.setPlainText('')
        minimize(fcn_optimization, params)
        self.write_fit_result(params)
        report_fit(params)
def volume_fit(time, volumeexp,far_field=True):
    params = Parameters()
    params.add('V0', value=-1e-5,)
    params.add('delta',value=0.0001,min=0)
    params.add('Vinf', expr='V0-delta')
    params.add('tau_long', value=0.1)

    result = minimize(residual_volume, params, args=(time, volumeexp,True,far_field), method='leastsq', maxfev=int(1e5), xtol=1e-9,
                      ftol=1e-9)
    v = result.params.valuesdict()
    t = time
    V_th = residual_volume(params, t, volumeexp, fit=False)
    # plt.plot(time - t0, volumeexp, 'ro', label="Experimental")
    # plt.plot(t_th - t0, V_th, 'b-', label="Theoretical")
    # plt.title("Volume")
    # plt.legend()
    # plt.show()
    report_fit(result.params, min_correl=0.5)
    return result.params, V_th
def far_field_fit(time, yg, volume_params, R_params, rho, k, g=9.81, mass=0, manip_name=None):
    # yg = savgol_filter(yg,11,3)
    volume_params = volume_params.valuesdict()
    R_params = R_params.valuesdict()
    Finf = volume_params['Vinf'] * rho * g
    F0 = volume_params['V0'] * rho * g
    deltaF = -(Finf - F0)
    Rinf = R_params['Rinf']
    R0 = R_params['R0']
    deltaR =-(Rinf - R0)
    print deltaF
    params = Parameters()
    Amin = 0.05
    params.add('q0', value=0.1)
    params.add('q0p', value=0.1)
    params.add('k', value=8.33)
    params.add('massTot', value=0.036, min=0.01,max= 1)
    params.add('deltaprim', value=-0.1)
    params.add('deltaF', value=deltaF, vary=False)
    params.add('Finf', value=Finf, vary=False)
    params.add('deltaR', value=deltaR, vary=False)
    params.add('Rinf', value=Rinf, vary=False)
    params.add('tau_v', value=volume_params['tau_long'], vary=False)
    params.add('tau_R', value=R_params['tau_long'], vary=False)
    params.add('C1', expr="Finf/k", )
    params.add('C2', expr="deltaF/(massTot*((1/tau_v)**2-(2*lamda/tau_v)+omega0**2))")
    params.add('D1', expr="Rinf" )
    params.add('D2', expr="(omega0**2)*deltaR/((1/tau_R)**2-(2*lamda/tau_R)+omega0**2)")
    params.add('omega0', expr="(k/massTot)**0.5")
    params.add('lamda', value=1)
    params.add('deltaprim', expr='lamda**2-omega0**2')
    result = minimize(residual_far_field, params, args=(time, yg), method='leastsq', maxfev=int(1e5), xtol=1e-9,
                      ftol=1e-9)
    report_fit(result.params, min_correl=0.5)
    print result.success
    v = params.valuesdict()
    yg_th = residual_far_field(params, time, yg, fit=False)
    v["added_mass"] =0
    v['real_mass'] = mass
    v["added_mass"] = v['massTot'] - v['real_mass']

    # yg_f,ygdot_fa,ygdotdot_f = filterer(yg,win_size,pol_order,double_filter)
    return params, yg_th
def run_main():
    
    
    x1, x2, x3 = dw['target fuel_consumptions'].values, dw['target engine_speeds_out'].values, dw.velocities.values
    data = dw['target engine_coolant_temperatures'].values #.diff().fillna(0)

    temperature_threshold = 95
    temperature_max, initial_engine_temperature = data.max(), data[0]
    t_init = initial_engine_temperature 

    
    # do fit, here with leastsq model
    _t0 = datetime.datetime.now()

    result = minimize(fcn2min, params, args=(x1, x2, x3, data, t_init))
    
    _t1 = datetime.datetime.now()
    print("Elapsed time: %s"%(_t1-_t0))
    
    # calculate final result
    final = fcn(result.params, x1, x2, x3, t_init)
    
    # write error report
    report_fit(result.params)
    
    
    
    n1, n2, n3 = dn['target fuel_consumptions'].values, dn['target engine_speeds_out'].values, dn.velocities.values
    nedc_data = dn['target engine_coolant_temperatures'].values 
    nedc_t_init = nedc_data[0]
    nedc_final = fcn(result.params, n1, n2, n3, nedc_t_init)

    # try to plot results
    try:
        import pylab
        pylab.plot(data, 'k+')
        pylab.plot(final, 'r')
        pylab.plot(nedc_data, 'g+')
        pylab.plot(nedc_final, 'b')
        pylab.show()
    except:
        pass
def test_1var():
    rands = [-0.21698284, 0.41900591, 0.02349374, -0.218552, -0.3513699,
             0.33418304, 0.04226855, 0.213303, 0.45948731, 0.33587736]

    x = numpy.arange(10)+1
    y = numpy.arange(10)+1+rands
    y_errs = numpy.sqrt(y)/2

    params = lmfit.Parameters()
    params.add(name="m", value=1.0, vary=True)
    params.add(name="c", value=0.0, vary=False)

    out = lmfit.minimize(linear_chisq, params, args=(x, y))

    lmfit.report_fit(out)
    assert_allclose(params['m'].value, 1.025, rtol=0.02, atol=0.02)
    assert(len(params)==2)
    assert(out.nvarys == 1)
    assert(out.chisqr > 0.01)
    assert(out.chisqr < 5.00)
def test_simple():
    # create data to be fitted
    np.random.seed(1)
    x = np.linspace(0, 15, 301)
    data = (5. * np.sin(2 * x - 0.1) * np.exp(-x*x*0.025) +
            np.random.normal(size=len(x), scale=0.2) )

    # define objective function: returns the array to be minimized
    def fcn2min(params, x, data):
        """ model decaying sine wave, subtract data"""
        amp = params['amp'].value
        shift = params['shift'].value
        omega = params['omega'].value
        decay = params['decay'].value

        model = amp * np.sin(x * omega + shift) * np.exp(-x*x*decay)
        return model - data

    # create a set of Parameters
    params = Parameters()
    params.add('amp',   value= 10,  min=0)
    params.add('decay', value= 0.1)
    params.add('shift', value= 0.0, min=-pi / 2., max=pi / 2)
    params.add('omega', value= 3.0)

    # do fit, here with leastsq model
    result = minimize(fcn2min, params, args=(x, data))

    # calculate final result
    final = data + result.residual

    # write error report
    print(" --> SIMPLE --> ")
    print(result.params)
    report_fit(result.params)

    #assert that the real parameters are found

    for para, val in zip(result.params.values(), [5, 0.025, -.1, 2]):
        
        check(para, val)
def fit_hi_vel_range(
    guesses=None, av_image=None, av_image_error=None, hi_cube=None, hi_velocity_axis=None, hi_noise_cube=None, dgr=None
):

    from scipy.optimize import curve_fit
    from scipy import stats
    from lmfit import minimize, Parameters, report_fit, report_errors
    from pprint import pprint

    params = Parameters()
    params.add("low_vel", value=guesses[0], min=-100, max=100, vary=True)
    params.add("high_vel", value=guesses[1], min=-100, max=100, vary=True)

    result = minimize(
        calc_model_chisq,
        params,
        kws={
            "av_image": av_image,
            "av_image_error": av_image_error,
            "hi_cube": hi_cube,
            "hi_velocity_axis": hi_velocity_axis,
            "hi_noise_cube": hi_noise_cube,
            "dgr": dgr,
        },
        # method='BFGS',
        method="anneal",
        # method='powell',
        # method='SLSQP',
        options={"gtol": 1e-6, "disp": True, "maxiter": 1e9},
    )

    report_fit(params)
    report_errors(params)
    print result.values
    print result.errorbars
    # print(result.__dict__)
    # print(dir(result))
    # print result.vars
    # print help(result)
    print result.view_items()
    print result.Bopt
Beispiel #55
0
def generate(mod_pars, body_pars, photo_data, rv_data, fit_method, ncores, fname):
    nbodies, epoch, max_h, orbit_error, rv_body, rv_corr = mod_pars
    masses, radii, fluxes, u1, u2, a, e, inc, om, ln, ma = body_pars

    lmparams = lmParameters()
    # lmparams.add('N', value=N, vary=False)
    # lmparams.add('epoch', value=epoch, vary=False)
    # lmparams.add('maxh', value=maxh, vary=False)
    # lmparams.add('orbit_error', value=orbit_error, vary=False)

    for i in range(nbodies):
        lmparams.add('mass_{0}'.format(i), value=masses[i], min=0.0, max=0.1, vary=False)
        lmparams.add('radius_{0}'.format(i), value=radii[i], min=0.0, max=1.0, vary=False)
        lmparams.add('flux_{0}'.format(i), value=fluxes[i], min=0.0, max=1.0, vary=False)
        lmparams.add('u1_{0}'.format(i), value=u1[i], min=0.0, max=1.0, vary=False)
        lmparams.add('u2_{0}'.format(i), value=u2[i], min=0.0, max=1.0, vary=False)

        # if i < N-1:
        #     params['flux_{0}'.format(i)].vary = False
        #     params['u1_{0}'.format(i)].vary = False
        #     params['u2_{0}'.format(i)].vary = False

        if i > 0:
            lmparams.add('a_{0}'.format(i), value=a[i - 1], min=0.0, max=10.0, vary=False)
            lmparams.add('e_{0}'.format(i), value=e[i - 1], min=0.0, max=1.0, vary=False)
            lmparams.add('inc_{0}'.format(i), value=inc[i - 1], min=0.0, max=np.pi, vary=False)
            lmparams.add('om_{0}'.format(i), value=om[i - 1], min=0.0, max=twopi)
            lmparams.add('ln_{0}'.format(i), value=ln[i - 1], min=0.0, max=twopi)
            lmparams.add('ma_{0}'.format(i), value=ma[i - 1], min=0.0, max=twopi)

    print('Generating maximum likelihood values...')
    results = minimize(residual, lmparams, args=(mod_pars, photo_data, rv_data, ncores, fname),
                       iter_cb=per_iteration, method=fit_method)

    # Save the final outputs
    print "Writing report..."
    report_fit(results.params)
    utilfuncs.report_as_input(mod_pars, utilfuncs.get_lmfit_parameters(mod_pars, results.params), fname)

    # Return best fit values
    return utilfuncs.get_lmfit_parameters(mod_pars, results.params)
Beispiel #56
0
def exp_fit(x, y, start_taus = [1], use_constant=True, amp_max=None, amp_min=None, weights=None, amp_penalty=0,
            verbose=True):
    num_exp = len(start_taus)
    para = lmfit.Parameters()
    if use_constant:
        para.add('const', y[-1] )

    for i in range(num_exp):
        para.add('tau' + str(i), start_taus[i], min=0)
        y_c = y - y[-1]
        a = y_c[fi(x, start_taus[i])]
        para.add('amp' + str(i), a)
        if amp_max is not None:
            para['amp' + str(i)].max = amp_max
        if amp_min is not None:
            para['amp' + str(i)].min = amp_min

    def fit(p):
        y_fit = np.zeros_like(y)
        if use_constant:
            y_fit += p['const'].value

        for i in range(num_exp):
            amp = p['amp'+str(i)].value
            tau = p['tau'+str(i)].value

            y_fit += amp * np.exp(-x/tau) + amp_penalty/y.size

        return y_fit

    def res(p):
        if weights is None:
            return y - fit(p)
        else:
            return (y - fit(p)) / weights

    mini = lmfit.minimize(res, para)
    if verbose:
        lmfit.report_fit(mini)
    y_fit = fit(mini.params)
    return mini, y_fit
Beispiel #57
0
def r_fit(time, R, volume_params,far_field):
    t_short = volume_params['tau_short']
    omega = volume_params['omega']
    t_long = volume_params['tau_long']
    params = Parameters()
    params.add('amp', value=-0.02)
    params.add('tau_short', value=t_short, vary=True)
    params.add('omega', value=omega, vary=True)
    # params.add('omega',   expr='omega0*sqrt(1-(1/(tau_short*omega0)**2))')
    params.add('shift', value=1, min=0, max=2 * np.pi)
    params.add('Rinf', value=-0.01, )
    params.add('R0', value=-0.05, )
    params.add('tau_long', value=t_long, vary=True)

    result = minimize(residual_r, params, args=(time, R,far_field), method='leastsq', maxfev=int(5e4), xtol=1e-8,
                      ftol=1e-8)
    report_fit(result.params, min_correl=0.5)
    v = result.params.valuesdict()
    t = time
    R_th = residual_r(params, time, R, fit=False)

    return v, R_th
Beispiel #58
0
def example():
    # create data to be fitted
    x = np.linspace(0, 15, 301)
    data = (5. * np.sin(2 * x - 0.1) * np.exp(-x*x*0.025) +
            np.random.normal(size=len(x), scale=0.2) )
    # define objective function: returns the array to be minimized
    def fcn2min(params, x, data):
        """ model decaying sine wave, subtract data""" 
        amp = params['amp'].value
        shift = params['shift'].value
        omega = params['omega'].value
        decay = params['decay'].value
        model = amp * np.sin(x * omega + shift) * np.exp(-x*x*decay) 
        return model - data
    # create a set of Parameters
    params = Parameters()
    params.add('amp',   value= 10,  min=0)
    params.add('decay', value= 0.1)
    params.add('shift', value= 0.0, min=-np.pi/2., max=np.pi/2)
    params.add('omega', value= 3.0)
    # do fit, here with leastsq model
    result = minimize(fcn2min, params, args=(x, data))
    # calculate final result
    final = data + result.residual
    plt.plot(x,data)
    #plt.plot(x,final)
    plt.show()
    print result.residual
    resultparams = result.params
    print resultparams
    amp = resultparams['amp'].value
    decay = resultparams['decay'].value
    shift = resultparams['shift'].value
    omega = resultparams['omega'].value
    model = amp * np.sin(x * omega + shift) * np.exp(-x*x*decay) 
    plt.plot(x,model)
    plt.show()
    report_fit(result.params)
def lmfit_fit(group, x_fit, y_interp):
    '''set initial value is important, and more sepcified value can be set down ward'''
    para = [1]*group            #P initial value
    para.extend([1]*group)      #a initial value
    para.extend([3]*group)      #b initial value
    ################
    params = Parameters()
    for i in np.arange(len(para)/3):
        p = 'p'+str(i)
        a = 'a'+str(i)
        b = 'b'+str(i)
        if i == 0:
            params.add(p, value=abs(para[i]), min=10**-1)
            params.add(a, value=abs(para[i+len(para)/3]), min=0.5)
            params.add(b, value=0.5, min=0.1, max=1.1)
        else:
            params.add(p, value=abs(para[i]), min=10**-10)
            params.add(a, value=abs(para[i+len(para)/3]), min=10**-5)
            params.add(b, value=abs(para[i + 2*len(para)/3]), min=0.5, max=5)
    #using lmfit to get the final result without negtive values
    result = minimize(residuals, params, args=(x_fit, y_interp), method='leastsq')
    report_fit(result.params)
    return result