def cik_to_v(cik, xyc=None, inverse=False): """ Calculate v-format ellipse descriptor from 2x2 'covariance matrix'^-1 cik Args: :cik: | 'Nx2x2' (covariance matrix)^-1 :inverse: | If True: input is inverse of cik. Returns: :v: | (Nx5) np.ndarray | ellipse parameters [Rmax,Rmin,xc,yc,theta] Notes: | cik is not actually the inverse covariance matrix, | only for a Gaussian or normal distribution! """ if cik.ndim < 3: cik = cik[None, ...] if inverse == True: for i in range(cik.shape[0]): cik[i, :, :] = np.linalg.inv(cik[i, :, :]) g11 = cik[:, 0, 0] g22 = cik[:, 1, 1] g12 = cik[:, 0, 1] theta = 0.5 * np.arctan2(2 * g12, (g11 - g22)) + (np.pi / 2) * (g12 < 0) #theta = theta2 + (np.pi/2)*(g12<0) #theta2 = theta cottheta = np.cos(theta) / np.sin(theta) #np.cot(theta) cottheta[np.isinf(cottheta)] = 0 a = 1 / np.sqrt((g22 + g12 * cottheta)) b = 1 / np.sqrt((g11 - g12 * cottheta)) # ensure largest ellipse axis is first (correct angle): c = b > a a[c], b[c], theta[c] = b[c], a[c], theta[c] + np.pi / 2 v = np.vstack((a, b, np.zeros(a.shape), np.zeros(a.shape), theta)).T # add center coordinates: if xyc is not None: v[:, 2:4] = xyc return v
def cik_to_v(cik, xyc=None, inverse=False): """ Calculate v-format ellipse descriptor from 2x2 'covariance matrix'^-1 cik Args: :cik: '2x2xN' (covariance matrix)^-1 Returns: :v: | (Nx5) np.ndarray | ellipse parameters [Rmax,Rmin,xc,yc,theta] Notes: | cik is not actually the inverse covariance matrix, | only for a Gaussian or normal distribution! """ if inverse == True: for i in np.arange(cik.shape[0]): cik[i, :, :] = np.linalg.inv(cik[i, :, :]) g11 = cik[:, 0, 0] g22 = cik[:, 1, 1] g12 = cik[:, 0, 1] theta2 = 1 / 2 * np.arctan2(2 * g12, (g11 - g22)) theta = theta2 + (np.pi / 2) * (g12 < 0) theta2 = theta cottheta = np.cos(theta) / np.sin(theta) #np.cot(theta) cottheta[np.isinf(cottheta)] = 0 a = 1 / np.sqrt((g22 + g12 * cottheta)) b = 1 / np.sqrt((g11 - g12 * cottheta)) v = np.vstack((a, b, np.zeros(a.shape), np.zeros(a.shape), theta)).T # add center coordinates: if xyc is not None: v[:, 2:4] = xyc return v
def plot_chromaticity_diagram_colors(diagram_samples = 256, diagram_opacity = 1.0, diagram_lightness = 0.25,\ cieobs = _CIEOBS, cspace = 'Yxy', cspace_pars = {},\ show = True, axh = None,\ show_grid = True, label_fontname = 'Times New Roman', label_fontsize = 12,\ **kwargs): """ Plot the chromaticity diagram colors. Args: :diagram_samples: | 256, optional | Sampling resolution of color space. :diagram_opacity: | 1.0, optional | Sets opacity of chromaticity diagram :diagram_lightness: | 0.25, optional | Sets lightness of chromaticity diagram :axh: | None or axes handle, optional | Determines axes to plot data in. | None: make new figure. :show: | True or False, optional | Invoke matplotlib.pyplot.show() right after plotting :cieobs: | luxpy._CIEOBS or str, optional | Determines CMF set to calculate spectrum locus or other. :cspace: | luxpy._CSPACE or str, optional | Determines color space / chromaticity diagram to plot data in. | Note that data is expected to be in specified :cspace: :cspace_pars: | {} or dict, optional | Dict with parameters required by color space specified in :cspace: | (for use with luxpy.colortf()) :show_grid: | True, optional | Show grid (True) or not (False) :label_fontname: | 'Times New Roman', optional | Sets font type of axis labels. :label_fontsize: | 12, optional | Sets font size of axis labels. :kwargs: | additional keyword arguments for use with matplotlib.pyplot. Returns: """ offset = _EPS ii, jj = np.meshgrid(np.linspace(offset, 1 + offset, diagram_samples), np.linspace(1+offset, offset, diagram_samples)) ij = np.dstack((ii, jj)) SL = _CMF[cieobs]['bar'][1:4].T SL = np.vstack((SL,SL[0])) SL = 100.0*SL/SL[:,1,None] SL = colortf(SL, tf = cspace, tfa0 = cspace_pars) Y,x,y = asplit(SL) SL = np.vstack((x,y)).T ij2D = ij.reshape((diagram_samples**2,2)) ij2D = np.hstack((diagram_lightness*100*np.ones((ij2D.shape[0],1)), ij2D)) xyz = colortf(ij2D, tf = cspace + '>xyz', tfa0 = cspace_pars) xyz[xyz < 0] = 0 xyz[np.isinf(xyz.sum(axis=1)),:] = np.nan xyz[np.isnan(xyz.sum(axis=1)),:] = offset srgb = xyz_to_srgb(xyz) srgb = srgb/srgb.max() srgb = srgb.reshape((diagram_samples,diagram_samples,3)) if show == True: if axh is None: fig = plt.figure() axh = fig.add_subplot(111) polygon = Polygon(SL, facecolor='none', edgecolor='none') axh.add_patch(polygon) image = axh.imshow( srgb, interpolation='bilinear', extent = (0.0, 1, -0.05, 1), clip_path=None, alpha=diagram_opacity) image.set_clip_path(polygon) plt.plot(x,y, color = 'darkgray') if cspace == 'Yxy': plt.xlim([0,1]) plt.ylim([0,1]) elif cspace == 'Yuv': plt.xlim([0,0.6]) plt.ylim([0,0.6]) if (cspace is not None): xlabel = _CSPACE_AXES[cspace][1] ylabel = _CSPACE_AXES[cspace][2] if (label_fontname is not None) & (label_fontsize is not None): plt.xlabel(xlabel, fontname = label_fontname, fontsize = label_fontsize) plt.ylabel(ylabel, fontname = label_fontname, fontsize = label_fontsize) if show_grid == True: plt.grid() #plt.show() return axh else: return None