Beispiel #1
0
def env_creator(env_config):
    # env = MultiCarlaEnv(env_config)  # (env_actor_configs)
    env = StopSignUrbanIntersection3Car()  # Urban2Car()
    # Apply wrappers to: convert to Grayscale, resize to 84 x 84,
    # stack frames & some more op
    env = wrap_deepmind(env, dim=84, num_framestack=num_framestack)
    return env
Beispiel #2
0
def env_creator(env_config):
    import macad_gym
    env = gym.make("HomoNcomIndePOIntrxMASS3CTWN3-v0")
    # Apply wrappers to: convert to Grayscale, resize to 84 x 84,
    # stack frames & some more op
    env = wrap_deepmind(env, dim=84, num_framestack=num_framestack)
    return env
def env_creator(env_config):
    # NOTES: env_config.worker_index & vector_index are useful for
    # curriculum learning or joint training experiments
    # env = MultiCarlaEnv(env_config)  # (env_actor_configs)
    env = StopSignUrbanIntersection3Car()  # Urban2Car()
    # Apply wrappers to: convert to Grayscale, resize to 84 x 84,
    # stack frames & some more op
    env = wrap_deepmind(env, dim=84, num_framestack=num_framestack)
    return env
Beispiel #4
0
def env_creator(env_config):
    # NOTES: env_config.worker_index & vector_index are useful for
    # curriculum learning or joint training experiments
    configs = DEFAULT_MULTIENV_CONFIG
    configs["render"] = False
    env = MultiCarlaEnv(configs)
    # Apply wrappers to: convert to Grayscale, resize to 84 x 84,
    # stack frames & some more op
    env = wrap_deepmind(env, dim=84, num_framestack=num_framestack)
    return env
Beispiel #5
0
def env_creator(env_config):
    # NOTES: env_config.worker_index & vector_index are useful for
    # curriculum learning or joint training experiments
    import macad_gym
    env = gym.make("HomoNcomIndePOIntrxMASS3CTWN3-v0")

    # Apply wrappers to: convert to Grayscale, resize to 84 x 84,
    # stack frames & some more op
    env = wrap_deepmind(env, dim=84, num_framestack=num_framestack)
    return env