def env_creator(env_config): # env = MultiCarlaEnv(env_config) # (env_actor_configs) env = StopSignUrbanIntersection3Car() # Urban2Car() # Apply wrappers to: convert to Grayscale, resize to 84 x 84, # stack frames & some more op env = wrap_deepmind(env, dim=84, num_framestack=num_framestack) return env
def env_creator(env_config): import macad_gym env = gym.make("HomoNcomIndePOIntrxMASS3CTWN3-v0") # Apply wrappers to: convert to Grayscale, resize to 84 x 84, # stack frames & some more op env = wrap_deepmind(env, dim=84, num_framestack=num_framestack) return env
def env_creator(env_config): # NOTES: env_config.worker_index & vector_index are useful for # curriculum learning or joint training experiments # env = MultiCarlaEnv(env_config) # (env_actor_configs) env = StopSignUrbanIntersection3Car() # Urban2Car() # Apply wrappers to: convert to Grayscale, resize to 84 x 84, # stack frames & some more op env = wrap_deepmind(env, dim=84, num_framestack=num_framestack) return env
def env_creator(env_config): # NOTES: env_config.worker_index & vector_index are useful for # curriculum learning or joint training experiments configs = DEFAULT_MULTIENV_CONFIG configs["render"] = False env = MultiCarlaEnv(configs) # Apply wrappers to: convert to Grayscale, resize to 84 x 84, # stack frames & some more op env = wrap_deepmind(env, dim=84, num_framestack=num_framestack) return env
def env_creator(env_config): # NOTES: env_config.worker_index & vector_index are useful for # curriculum learning or joint training experiments import macad_gym env = gym.make("HomoNcomIndePOIntrxMASS3CTWN3-v0") # Apply wrappers to: convert to Grayscale, resize to 84 x 84, # stack frames & some more op env = wrap_deepmind(env, dim=84, num_framestack=num_framestack) return env