def validate_insert(_collection_name):
    milvus = Milvus(**server_config)
    milvus.flush([_collection_name])
    status, count = milvus.count_entities(_collection_name)
    assert count == 10 * 10000, "Insert validate fail. Vectors num is not matched."

    # drop collcetion
    print("Drop collection ...")
    milvus.drop_collection(_collection_name)
    milvus.close()
def milvus_test(usr_features, IS_INFER, mov_features=None, ids=None):
    _HOST = '127.0.0.1'
    _PORT = '19530'  # default value
    table_name = 'recommender_demo'
    milvus = Milvus(_HOST, _PORT)

    if IS_INFER:
        status = milvus.drop_collection(table_name)
        time.sleep(3)

    status, ok = milvus.has_collection(table_name)
    if not ok:
        if mov_features is None:
            print("Insert vectors is none!")
            sys.exit(1)
        param = {
            'collection_name': table_name,
            'dimension': 200,
            'index_file_size': 1024,  # optional
            'metric_type': MetricType.IP  # optional
        }

        print(milvus.create_collection(param))

        insert_vectors = normaliz_data(mov_features)
        status, ids = milvus.insert(collection_name=table_name,
                                    records=insert_vectors,
                                    ids=ids)

        time.sleep(1)

    status, result = milvus.count_entities(table_name)
    print("rows in table recommender_demo:", result)

    search_vectors = normaliz_data(usr_features)
    param = {
        'collection_name': table_name,
        'query_records': search_vectors,
        'top_k': 5,
        'params': {
            'nprobe': 16
        }
    }
    time1 = time.time()
    status, results = milvus.search(**param)
    time2 = time.time()

    print("Top\t", "Ids\t", "Title\t", "Score")
    for i, re in enumerate(results[0]):
        title = paddle.dataset.movielens.movie_info()[int(re.id)].title
        print(i, "\t", re.id, "\t", title, "\t", float(re.distance) * 5)
def milvus_test(usr_features, mov_features, ids):
    _HOST = '127.0.0.1'
    _PORT = '19530'  # default value
    milvus = Milvus(_HOST, _PORT)

    table_name = 'paddle_demo1'
    status, ok = milvus.has_collection(table_name)
    if not ok:
        param = {
            'collection_name': table_name,
            'dimension': 200,
            'index_file_size': 1024,  # optional
            'metric_type': MetricType.IP  # optional
        }

        milvus.create_collection(param)

    insert_vectors = normaliz_data([usr_features.tolist()])
    status, ids = milvus.insert(collection_name=table_name,
                                records=insert_vectors,
                                ids=ids)

    time.sleep(1)

    status, result = milvus.count_entities(table_name)
    print("rows in table paddle_demo1:", result)

    # status, table = milvus.count_entities(table_name)

    search_vectors = normaliz_data([mov_features.tolist()])
    param = {
        'collection_name': table_name,
        'query_records': search_vectors,
        'top_k': 1,
        'params': {
            'nprobe': 16
        }
    }
    status, results = milvus.search(**param)
    print("Searched ids:", results[0][0].id)
    print("Score:", float(results[0][0].distance) * 5)

    status = milvus.drop_collection(table_name)
Beispiel #4
0
    {
        "name": "embedding",
        "values": embeddings,
        "type": DataType.FLOAT_VECTOR
    },
]

# ------
# Basic insert:
#     After preparing the data, we are going to insert them into our collection.
#     The number of films inserted should be 8657.
# ------
ids = client.insert(collection_name, hybrid_entities, ids)

client.flush([collection_name])
after_flush_counts = client.count_entities(collection_name)
print(" > There are {} films in collection `{}` after flush".format(
    after_flush_counts, collection_name))

# ------
# Basic create index:
#     Now that we have inserted all the films into Milvus, we are going to build index with these data.
#
#     While building index, we have to indicate which `field` to build index for, the `index_type`,
#     `metric_type` and params for the specific index type. In our case, we want to build a `IVF_FLAT`
#     index, so the specific params are "nlist". See pymilvus documentation
#     (https://milvus-io.github.io/milvus-sdk-python/pythondoc/v0.3.0/index.html) for `index_type` we
#     support and the params accordingly.
#
#     If there are already index for a collection and you call `create_index` with different params, the
#     older index will be replaced by new one.
Beispiel #5
0
class MilvusHelper:
    def __init__(self):
        try:
            self.client = Milvus(host=MILVUS_HOST, port=MILVUS_PORT)
            LOGGER.debug(
                "Successfully connect to Milvus with IP:{} and PORT:{}".format(
                    MILVUS_HOST, MILVUS_PORT))
        except Exception as e:
            LOGGER.error("Failed to connect Milvus: {}".format(e))
            sys.exit(1)

    # Return if Milvus has the collection
    def has_collection(self, collection_name):
        try:
            status = self.client.has_collection(collection_name)[1]
            return status
        except Exception as e:
            LOGGER.error("Failed to load data to Milvus: {}".format(e))
            sys.exit(1)

    # Create milvus collection if not exists
    def create_colllection(self, collection_name):
        try:
            if not self.has_collection(collection_name):
                collection_param = {
                    'collection_name': collection_name,
                    'dimension': VECTOR_DIMENSION,
                    'index_file_size': INDEX_FILE_SIZE,
                    'metric_type': METRIC_TYPE
                }
                status = self.client.create_collection(collection_param)
                if status.code != 0:
                    raise Exception(status.message)
                LOGGER.debug(
                    "Create Milvus collection: {}".format(collection_name))
        except Exception as e:
            LOGGER.error("Failed to load data to Milvus: {}".format(e))
            sys.exit(1)

    # Batch insert vectors to milvus collection
    def insert(self, collection_name, vectors):
        try:
            self.create_colllection(collection_name)
            status, ids = self.client.insert(collection_name=collection_name,
                                             records=vectors)
            if not status.code:
                LOGGER.debug(
                    "Insert vectors to Milvus in collection: {} with {} rows".
                    format(collection_name, len(vectors)))
                return ids
            else:
                raise Exception(status.message)
        except Exception as e:
            LOGGER.error("Failed to load data to Milvus: {}".format(e))
            sys.exit(1)

    # Create IVF_FLAT index on milvus collection
    def create_index(self, collection_name):
        try:
            index_param = {'nlist': 16384}
            status = self.client.create_index(collection_name,
                                              IndexType.IVF_FLAT, index_param)
            if not status.code:
                LOGGER.debug(
                    "Successfully create index in collection:{} with param:{}".
                    format(collection_name, index_param))
                return status
            else:
                raise Exception(status.message)
        except Exception as e:
            LOGGER.error("Failed to create index: {}".format(e))
            sys.exit(1)

    # Delete Milvus collection
    def delete_collection(self, collection_name):
        try:
            status = self.client.drop_collection(
                collection_name=collection_name)
            if not status.code:
                LOGGER.debug(
                    "Successfully drop collection: {}".format(collection_name))
                return status
            else:
                raise Exception(status.message)
        except Exception as e:
            LOGGER.error("Failed to drop collection: {}".format(e))
            sys.exit(1)

    # Search vector in milvus collection
    def search_vectors(self, collection_name, vectors, top_k):
        try:
            search_param = {'nprobe': 16}
            status, result = self.client.search(
                collection_name=collection_name,
                query_records=vectors,
                top_k=top_k,
                params=search_param)
            if not status.code:
                LOGGER.debug("Successfully search in collection: {}".format(
                    collection_name))
                return result
            else:
                raise Exception(status.message)
        except Exception as e:
            LOGGER.error("Failed to search vectors in Milvus: {}".format(e))
            sys.exit(1)

    # Get the number of milvus collection
    def count(self, collection_name):
        try:
            status, num = self.client.count_entities(
                collection_name=collection_name)
            if not status.code:
                LOGGER.debug(
                    "Successfully get the num:{} of the collection:{}".format(
                        num, collection_name))
                return num
            else:
                raise Exception(status.message)
        except Exception as e:
            LOGGER.error("Failed to count vectors in Milvus: {}".format(e))
            sys.exit(1)
Beispiel #6
0
def main():
    # Specify server addr when create milvus client instance
    milvus = Milvus(_HOST, _PORT)

    # Create collection demo_collection if it dosen't exist.
    collection_name = 'example_async_collection_'

    status, ok = milvus.has_collection(collection_name)
    if not ok:
        param = {
            'collection_name': collection_name,
            'dimension': _DIM,
            'index_file_size': 128,  # optional
            'metric_type': MetricType.L2  # optional
        }

        status = milvus.create_collection(param)
        if not status.OK():
            print("Create collection failed: {}".format(status.message),
                  file=sys.stderr)
            print("exiting ...", file=sys.stderr)
            sys.exit(1)

    # Show collections in Milvus server
    _, collections = milvus.list_collections()

    # Describe demo_collection
    _, collection = milvus.get_collection_info(collection_name)
    print(collection)

    # 10000 vectors with 16 dimension
    # element per dimension is float32 type
    # vectors should be a 2-D array
    vectors = [[random.random() for _ in range(_DIM)] for _ in range(100000)]

    # You can also use numpy to generate random vectors:
    #     `vectors = np.random.rand(10000, 16).astype(np.float32)`

    def _insert_callback(status, ids):
        if status.OK():
            print("Insert successfully")
        else:
            print("Insert failed.", status.message)

    # Insert vectors into demo_collection, adding callback function
    insert_future = milvus.insert(collection_name=collection_name,
                                  records=vectors,
                                  _async=True,
                                  _callback=_insert_callback)
    # Or invoke result() to get results:
    #   insert_future = milvus.insert(collection_name=collection_name, records=vectors, _async=True)
    #   status, ids = insert_future.result()
    insert_future.done()

    # Flush collection  inserted data to disk.
    def _flush_callback(status):
        if status.OK():
            print("Flush successfully")
        else:
            print("Flush failed.", status.message)

    flush_future = milvus.flush([collection_name],
                                _async=True,
                                _callback=_flush_callback)
    # Or invoke result() to get results:
    #   flush_future = milvus.flush([collection_name], _async=True)
    #   status = flush_future.result()
    flush_future.done()

    def _compact_callback(status):
        if status.OK():
            print("Compact successfully")
        else:
            print("Compact failed.", status.message)

    compact_furure = milvus.compact(collection_name,
                                    _async=True,
                                    _cakkback=_compact_callback)
    # Or invoke result() to get results:
    #   compact_future = milvus.compact(collection_name, _async=True)
    #   status = compact_future.result()
    compact_furure.done()

    # Get demo_collection row count
    status, result = milvus.count_entities(collection_name)

    # present collection info
    _, info = milvus.get_collection_stats(collection_name)
    print(info)

    # create index of vectors, search more rapidly
    index_param = {'nlist': 2048}

    def _index_callback(status):
        if status.OK():
            print("Create index successfully")
        else:
            print("Create index failed.", status.message)

    # Create ivflat index in demo_collection
    # You can search vectors without creating index. however, Creating index help to
    # search faster
    print("Creating index: {}".format(index_param))
    index_future = milvus.create_index(collection_name,
                                       IndexType.IVF_FLAT,
                                       index_param,
                                       _async=True,
                                       _callback=_index_callback)
    # Or invoke result() to get results:
    #   index_future = milvus.create_index(collection_name, IndexType.IVF_FLAT, index_param, _async=True)
    #   status = index_future.result()
    index_future.done()

    # describe index, get information of index
    status, index = milvus.get_index_info(collection_name)
    print(index)

    # Use the top 10 vectors for similarity search
    query_vectors = vectors[0:10]

    # execute vector similarity search
    search_param = {"nprobe": 16}

    print("Searching ... ")

    def _search_callback(status, results):
        # if status.OK():
        #     print("Search successfully")
        # else:
        #     print("Search failed.", status.message)
        if status.OK():
            # indicate search result
            # also use by:
            #   `results.distance_array[0][0] == 0.0 or results.id_array[0][0] == ids[0]`
            if results[0][0].distance == 0.0:  # or results[0][0].id == ids[0]:
                print('Query result is correct')
            else:
                print('Query result isn\'t correct')

            # print results
            print(results)
        else:
            print("Search failed. ", status)

    param = {
        'collection_name': collection_name,
        'query_records': query_vectors,
        'top_k': 1,
        'params': search_param,
        "_async": True,
        "_callback": _search_callback
    }
    search_future = milvus.search(**param)
    # Or invoke result() to get results:
    #
    #   param = {
    #       'collection_name': collection_name,
    #       'query_records': query_vectors,
    #       'top_k': 1,
    #       'params': search_param,
    #       "_async": True,
    #   }
    #   search_future = milvus.search(param)
    #   status, results = index_future.result()

    search_future.done()

    # Delete demo_collection
    status = milvus.drop_collection(collection_name)
Beispiel #7
0
def main():
    # Specify server addr when create milvus client instance
    # milvus client instance maintain a connection pool, param
    # `pool_size` specify the max connection num.
    # 获取服务端的连接
    milvus = Milvus(_HOST, _PORT)

    # Create collection demo_collection if it dosen't exist.
    # 创建collection
    collection_name = 'example_collection_'
    # 看是否有这个collection
    status, ok = milvus.has_collection(collection_name)
    # 如果没有则创建
    if not ok:
        param = {
            'collection_name': collection_name,
            'dimension': _DIM,
            'index_file_size': _INDEX_FILE_SIZE,  # optional
            'metric_type': MetricType.L2  # optional
        }
        # 创建collection
        milvus.create_collection(param)

    # Show collections in Milvus server
    # 查看所有的collection
    _, collections = milvus.list_collections()
    print(collections)

    # Describe demo_collection
    # 得到当前的collection
    _, collection = milvus.get_collection_info(collection_name)
    print(collection)

    # 10000 vectors with 128 dimension
    # element per dimension is float32 type
    # vectors should be a 2-D array
    # 创建10个长度为8的向量
    vectors = [[random.random() for _ in range(_DIM)] for _ in range(10)]
    print(vectors)
    # You can also use numpy to generate random vectors:
    #   vectors = np.random.rand(10000, _DIM).astype(np.float32)

    # Insert vectors into demo_collection, return status and vectors id list
    # 把这10个向量都插入milvus
    status, ids = milvus.insert(collection_name=collection_name,
                                records=vectors)
    if not status.OK():
        print("Insert failed: {}".format(status))
    print(ids)

    # Flush collection  inserted data to disk.
    # 数据落盘
    milvus.flush([collection_name])
    # Get demo_collection row count
    # 得到当前row的数量
    status, result = milvus.count_entities(collection_name)
    print(status)
    print(result)

    # present collection statistics info
    # 查看collection的统计数据
    _, info = milvus.get_collection_stats(collection_name)
    print(info)

    # Obtain raw vectors by providing vector ids
    # 得到前十个数据
    status, result_vectors = milvus.get_entity_by_id(collection_name, ids[:10])
    print(result_vectors)

    # create index of vectors, search more rapidly
    # 创建索引
    index_param = {'nlist': 2048}

    # Create ivflat index in demo_collection
    # You can search vectors without creating index. however, Creating index help to
    # search faster
    # 创建ivf_flat
    print("Creating index: {}".format(index_param))
    status = milvus.create_index(collection_name, IndexType.IVF_FLAT,
                                 index_param)

    # describe index, get information of index
    # 得到索引的信息
    status, index = milvus.get_index_info(collection_name)
    print(index)

    # Use the top 10 vectors for similarity search
    # 对前10个数据进行query
    query_vectors = vectors[0:10]

    # execute vector similarity search
    # 索引的搜索的中心点数量
    search_param = {"nprobe": 16}

    print("Searching ... ")

    param = {
        'collection_name': collection_name,
        'query_records': query_vectors,
        'top_k': 1,
        'params': search_param,
    }
    # 进行搜索
    status, results = milvus.search(**param)
    if status.OK():
        print(results)
        # indicate search result
        # also use by:
        #   `results.distance_array[0][0] == 0.0 or results.id_array[0][0] == ids[0]`
        if results[0][0].distance == 0.0 or results[0][0].id == ids[0]:
            print('Query result is correct')
        else:
            print('Query result isn\'t correct')

        # print results
        print(results)
    else:
        print("Search failed. ", status)

    # Delete demo_collection
    # 删除掉collection
    status = milvus.drop_collection(collection_name)
Beispiel #8
0
def main():
    milvus = Milvus(_HOST, _PORT)

    # num = random.randint(1, 100000)
    num = 100000
    # Create collection demo_collection if it dosen't exist.
    collection_name = 'example_hybrid_collections_{}'.format(num)
    if milvus.has_collection(collection_name):
        milvus.drop_collection(collection_name)

    collection_param = {
        "fields": [{
            "field": "A",
            "type": DataType.INT32
        }, {
            "field": "B",
            "type": DataType.INT32
        }, {
            "field": "C",
            "type": DataType.INT64
        }, {
            "field": "Vec",
            "type": DataType.FLOAT_VECTOR,
            "params": {
                "dim": 128,
                "metric_type": "L2"
            }
        }],
        "segment_size":
        100
    }
    milvus.create_collection(collection_name, collection_param)

    milvus.compact(collection_name)

    # milvus.create_partition(collection_name, "p_01", timeout=1800)
    # pars = milvus.list_partitions(collection_name)
    # ok = milvus.has_partition(collection_name, "p_01", timeout=1800)
    # assert ok
    # ok = milvus.has_partition(collection_name, "p_02")
    # assert not ok
    # for p in pars:
    #     if p == "_default":
    #         continue
    #     milvus.drop_partition(collection_name, p)

    # milvus.drop_collection(collection_name)
    # sys.exit(0)

    A_list = [random.randint(0, 255) for _ in range(num)]
    vec = [[random.random() for _ in range(128)] for _ in range(num)]
    hybrid_entities = [{
        "field": "A",
        "values": A_list,
        "type": DataType.INT32
    }, {
        "field": "B",
        "values": A_list,
        "type": DataType.INT32
    }, {
        "field": "C",
        "values": A_list,
        "type": DataType.INT64
    }, {
        "field": "Vec",
        "values": vec,
        "type": DataType.FLOAT_VECTOR,
        "params": {
            "dim": 128
        }
    }]

    for slice_e in utils.entities_slice(hybrid_entities):
        ids = milvus.insert(collection_name, slice_e)
    milvus.flush([collection_name])
    print("Flush ... ")
    # time.sleep(3)
    count = milvus.count_entities(collection_name)

    milvus.delete_entity_by_id(collection_name, ids[:1])
    milvus.flush([collection_name])
    print("Get entity be id start ...... ")
    entities = milvus.get_entity_by_id(collection_name, ids[:1])
    et = entities.dict()
    milvus.delete_entity_by_id(collection_name, ids[1:2])
    milvus.flush([collection_name])

    print("Create index ......")
    milvus.create_index(collection_name, "Vec", {
        "index_type": "IVF_FLAT",
        "metric_type": "L2",
        "params": {
            "nlist": 100
        }
    })
    print("Create index done.")

    info = milvus.get_collection_info(collection_name)
    print(info)
    stats = milvus.get_collection_stats(collection_name)
    print("\nstats\n")
    print(stats)
    query_hybrid = \
    {
        "bool": {
            "must": [
                {
                    "term": {
                        "A": [1, 2, 5]
                    }
                },
                {
                    "range": {
                        "B": {"GT": 1, "LT": 100}
                    }
                },
                {
                    "vector": {
                        "Vec": {
                            "topk": 10, "query": vec[: 10000], "params": {"nprobe": 10}
                        }
                    }
                }
            ],
        },
    }

    # print("Start searach ..", flush=True)
    # results = milvus.search(collection_name, query_hybrid)
    # print(results)
    #
    # for r in list(results):
    #     print("ids", r.ids)
    #     print("distances", r.distances)

    t0 = time.time()
    count = 0
    results = milvus.search(collection_name, query_hybrid, fields=["B"])
    for r in list(results):
        # print("ids", r.ids)
        # print("distances", r.distances)
        for rr in r:
            count += 1
            # print(rr.entity.get("B"))

    print("Search cost {} s".format(time.time() - t0))

    # for result in results:
    #     for r in result:
    #         print(f"{r}")

    # itertor entity id
    # for result in results:
    #     for r in result:
    #         # get distance
    #         dis = r.distance
    #         id_ = r.id
    #         # obtain all field name
    #         fields = r.entity.fields
    #         for f in fields:
    #             # get field value by field name
    #             # fv = r.entity.
    #             fv = r.entity.value_of_field(f)
    #             print(fv)

    milvus.drop_collection(collection_name)
        print("- release_year: {}".format(current_entity.release_year))
        print("- duration: {}".format(current_entity.duration))
        print("- embedding: {}".format(current_entity.embedding))

# ------
# Basic delete:
#     Now let's see how to delete things in Milvus.
#     You can simply delete entities by their ids.
# ------
client.delete_entity_by_id(collection_name, ids=[1, 4])
client.flush()  # flush is important
result = client.get_entity_by_id(collection_name, ids=[1, 4])

counts_delete = sum([1 for entity in result if entity is not None])
counts_in_collection = client.count_entities(collection_name)
print("\n----------delete id = 1, id = 4----------")
print("Get {} entities by id 1, 4".format(counts_delete))
print("There are {} entities after delete films with 1, 4".format(counts_in_collection))

# ------
# Basic delete:
#     You can drop partitions we create, and drop the collection we create.
# ------
client.drop_partition(collection_name, partition_tag='American')
if collection_name in client.list_collections():
    client.drop_collection(collection_name)

# ------
# Summary:
#     Now we've went through all basic communications pymilvus can do with Milvus server, hope it's helpful!
Beispiel #10
0
class Indexer:
    '''
    索引器。
    '''
    def __init__(self, name, host='127.0.0.1', port='19531'):
        '''
        初始化。
        '''
        self.client = Milvus(host=host, port=port)
        self.collection = name

    def init(self, lenient=False):
        '''
        创建集合。
        '''
        if lenient:
            status, result = self.client.has_collection(
                collection_name=self.collection)
            if status.code != 0:
                raise ExertMilvusException(status)
            if result:
                return

        status = self.client.create_collection({
            'collection_name': self.collection,
            'dimension': 512,
            'index_file_size': 1024,
            'metric_type': MetricType.L2
        })
        if status.code != 0 and not (lenient and status.code == 9):
            raise ExertMilvusException(status)

        # 创建索引。
        status = self.client.create_index(collection_name=self.collection,
                                          index_type=IndexType.IVF_FLAT,
                                          params={'nlist': 16384})
        if status.code != 0:
            raise ExertMilvusException(status)

        return status

    def drop(self):
        '''
        删除集合。
        '''
        status = self.client.drop_collection(collection_name=self.collection)
        if status.code != 0:
            raise ExertMilvusException(status)

    def flush(self):
        '''
        写入到硬盘。
        '''
        status = self.client.flush([self.collection])
        if status.code != 0:
            raise ExertMilvusException(status)

    def compact(self):
        '''
        压缩集合。
        '''
        status = self.client.compact(collection_name=self.collection)
        if status.code != 0:
            raise ExertMilvusException(status)

    def close(self):
        '''
        关闭链接。
        '''
        self.client.close()

    def new_tag(self, tag):
        '''
        建分块标签。
        '''
        status = self.client.create_partition(collection_name=self.collection,
                                              partition_tag=tag)
        if status.code != 0:
            raise ExertMilvusException(status)

    def list_tag(self):
        '''
        列举分块标签。
        '''
        status, result = self.client.list_partitions(
            collection_name=self.collection)
        if status.code != 0:
            raise ExertMilvusException(status)
        return result

    def drop_tag(self, tag):
        '''
        删除分块标签。
        '''
        status = self.client.drop_partition(collection_name=self.collection,
                                            partition_tag=tag)
        if status.code != 0:
            raise ExertMilvusException(status)

    def index(self, vectors, tag=None, ids=None):
        '''
        添加索引
        '''
        params = {}
        if tag != None:
            params['tag'] = tag
        if ids != None:
            params['ids'] = ids
        status, result = self.client.insert(collection_name=self.collection,
                                            records=vectors,
                                            **params)
        if status.code != 0:
            raise ExertMilvusException(status)

        return result

    def listing(self, ids):
        '''
        列举信息。
        '''
        status, result = self.client.get_entity_by_id(
            collection_name=self.collection, ids=ids)
        if status.code != 0:
            raise ExertMilvusException(status)
        return result

    def counting(self):
        '''
        计算索引数。
        '''
        status, result = self.client.count_entities(
            collection_name=self.collection)
        if status.code != 0:
            raise ExertMilvusException(status)
        return result

    def unindex(self, ids):
        '''
        去掉索引。
        '''
        status = self.client.delete_entity_by_id(
            collection_name=self.collection, id_array=ids)
        if status.code != 0:
            raise ExertMilvusException(status)

    def search(self, vectors, top_count=100, tags=None):
        '''
        搜索。
        '''
        params = {'params': {'nprobe': 16}}
        if tags != None:
            params['partition_tags'] = tags
        status, results = self.client.search(collection_name=self.collection,
                                             query_records=vectors,
                                             top_k=top_count,
                                             **params)
        if status.code != 0:
            raise ExertMilvusException(status)
        return results
def main():
    # Specify server addr when create milvus client instance
    # milvus client instance maintain a connection pool, param
    # `pool_size` specify the max connection num.
    milvus = Milvus(_HOST, _PORT)

    # Create collection demo_collection if it dosen't exist.
    collection_name = 'example_collection_'

    status, ok = milvus.has_collection(collection_name)
    if not ok:
        param = {
            'collection_name': collection_name,
            'dimension': _DIM,
            'index_file_size': _INDEX_FILE_SIZE,  # optional
            'metric_type': MetricType.L2  # optional
        }

        milvus.create_collection(param)

    # Show collections in Milvus server
    _, collections = milvus.list_collections()

    # Describe demo_collection
    _, collection = milvus.get_collection_info(collection_name)
    print(collection)

    # element per dimension is float32 type
    # vectors should be a 2-D array
    vectors = text2vec(index_sentences)
    print(vectors)

    # Insert vectors into demo_collection, return status and vectors id list
    status, ids = milvus.insert(collection_name=collection_name,
                                records=vectors)
    if not status.OK():
        print("Insert failed: {}".format(status))
    else:
        print(ids)
    #create a quick lookup table to easily access the indexed text/sentences given the ids
    look_up = {}
    for ID, sentences in zip(ids, index_sentences):
        look_up[ID] = sentences

    for k in look_up:
        print(k, look_up[k])

    # Flush collection  inserted data to disk.
    milvus.flush([collection_name])
    # Get demo_collection row count
    status, result = milvus.count_entities(collection_name)

    # present collection statistics info
    _, info = milvus.get_collection_stats(collection_name)
    print(info)

    # Obtain raw vectors by providing vector ids
    status, result_vectors = milvus.get_entity_by_id(collection_name, ids)

    # create index of vectors, search more rapidly
    index_param = {'nlist': 2048}

    # Create ivflat index in demo_collection
    # You can search vectors without creating index. however, Creating index help to
    # search faster
    print("Creating index: {}".format(index_param))
    status = milvus.create_index(collection_name, IndexType.IVF_FLAT,
                                 index_param)

    # describe index, get information of index
    status, index = milvus.get_index_info(collection_name)
    print(index)

    # Use the query sentences for similarity search
    query_vectors = text2vec(query_sentences)

    # execute vector similarity search
    search_param = {"nprobe": 16}

    print("Searching ... ")

    param = {
        'collection_name': collection_name,
        'query_records': query_vectors,
        'top_k': 1,
        'params': search_param,
    }

    status, results = milvus.search(**param)
    if status.OK():
        # indicate search result
        # also use by:
        #   `results.distance_array[0][0] == 0.0 or results.id_array[0][0] == ids[0]`
        if results[0][0].distance == 0.0 or results[0][0].id == ids[0]:
            print('Query result is correct')
        else:
            print('Query result isn\'t correct')

        # print results
        for res in results:
            for ele in res:
                print('id:{}, text:{}, distance: {}'.format(
                    ele.id, look_up[ele.id], ele.distance))

    else:
        print("Search failed. ", status)

    # Delete demo_collection
    status = milvus.drop_collection(collection_name)
Beispiel #12
0
class MilvusClient(object):
    def __init__(self, collection_name=None, host=None, port=None, timeout=60):
        """
        Milvus client wrapper for python-sdk.

        Default timeout set 60s
        """
        self._collection_name = collection_name
        try:
            start_time = time.time()
            if not host:
                host = SERVER_HOST_DEFAULT
            if not port:
                port = SERVER_PORT_DEFAULT
            logger.debug(host)
            logger.debug(port)
            # retry connect for remote server
            i = 0
            while time.time() < start_time + timeout:
                try:
                    self._milvus = Milvus(host=host, port=port, try_connect=False, pre_ping=False)
                    if self._milvus.server_status():
                        logger.debug("Try connect times: %d, %s" % (i, round(time.time() - start_time, 2)))
                        break
                except Exception as e:
                    logger.debug("Milvus connect failed: %d times" % i)
                    i = i + 1

            if time.time() > start_time + timeout:
                raise Exception("Server connect timeout")

        except Exception as e:
            raise e
        self._metric_type = None
        if self._collection_name and self.exists_collection():
            self._metric_type = metric_type_to_str(self.describe()[1].metric_type)
            self._dimension = self.describe()[1].dimension

    def __str__(self):
        return 'Milvus collection %s' % self._collection_name

    def set_collection(self, name):
        self._collection_name = name

    def check_status(self, status):
        if not status.OK():
            logger.error(self._collection_name)
            logger.error(status.message)
            logger.error(self._milvus.server_status())
            logger.error(self.count())
            raise Exception("Status not ok")

    def check_result_ids(self, result):
        for index, item in enumerate(result):
            if item[0].distance >= epsilon:
                logger.error(index)
                logger.error(item[0].distance)
                raise Exception("Distance wrong")

    def create_collection(self, collection_name, dimension, index_file_size, metric_type):
        if not self._collection_name:
            self._collection_name = collection_name
        if metric_type not in METRIC_MAP.keys():
            raise Exception("Not supported metric_type: %s" % metric_type)
        metric_type = METRIC_MAP[metric_type]
        create_param = {'collection_name': collection_name,
                 'dimension': dimension,
                 'index_file_size': index_file_size, 
                 "metric_type": metric_type}
        status = self._milvus.create_collection(create_param)
        self.check_status(status)

    def create_partition(self, tag_name):
        status = self._milvus.create_partition(self._collection_name, tag_name)
        self.check_status(status)

    def drop_partition(self, tag_name):
        status = self._milvus.drop_partition(self._collection_name, tag_name)
        self.check_status(status)

    def list_partitions(self):
        status, tags = self._milvus.list_partitions(self._collection_name)
        self.check_status(status)
        return tags

    @time_wrapper
    def insert(self, X, ids=None, collection_name=None):
        if collection_name is None:
            collection_name = self._collection_name
        status, result = self._milvus.insert(collection_name, X, ids)
        self.check_status(status)
        return status, result

    def insert_rand(self):
        insert_xb = random.randint(1, 100)
        X = [[random.random() for _ in range(self._dimension)] for _ in range(insert_xb)]
        X = utils.normalize(self._metric_type, X)
        count_before = self.count()
        status, _ = self.insert(X)
        self.check_status(status)
        self.flush()
        if count_before + insert_xb != self.count():
            raise Exception("Assert failed after inserting")

    def get_rand_ids(self, length):
        while True:
            status, stats = self._milvus.get_collection_stats(self._collection_name)
            self.check_status(status)
            segments = stats["partitions"][0]["segments"]
            # random choice one segment
            segment = random.choice(segments)
            status, segment_ids = self._milvus.list_id_in_segment(self._collection_name, segment["name"])
            if not status.OK():
                logger.error(status.message)
                continue
            if len(segment_ids):
                break
        if length >= len(segment_ids):
            logger.debug("Reset length: %d" % len(segment_ids))
            return segment_ids
        return random.sample(segment_ids, length)

    def get_rand_ids_each_segment(self, length):
        res = []
        status, stats = self._milvus.get_collection_stats(self._collection_name)
        self.check_status(status)
        segments = stats["partitions"][0]["segments"]
        segments_num = len(segments)
        # random choice from each segment
        for segment in segments:
            status, segment_ids = self._milvus.list_id_in_segment(self._collection_name, segment["name"])
            self.check_status(status)
            res.extend(segment_ids[:length])
        return segments_num, res

    def get_rand_entities(self, length):
        ids = self.get_rand_ids(length)
        status, get_res = self._milvus.get_entity_by_id(self._collection_name, ids)
        self.check_status(status)
        return ids, get_res

    @time_wrapper
    def get_entities(self, get_ids):
        status, get_res = self._milvus.get_entity_by_id(self._collection_name, get_ids)
        self.check_status(status)
        return get_res

    @time_wrapper
    def delete(self, ids, collection_name=None):
        if collection_name is None:
            collection_name = self._collection_name
        status = self._milvus.delete_entity_by_id(collection_name, ids)
        self.check_status(status)

    def delete_rand(self):
        delete_id_length = random.randint(1, 100)
        count_before = self.count()
        logger.info("%s: length to delete: %d" % (self._collection_name, delete_id_length))
        delete_ids = self.get_rand_ids(delete_id_length)
        self.delete(delete_ids)
        self.flush()
        logger.info("%s: count after delete: %d" % (self._collection_name, self.count()))
        status, get_res = self._milvus.get_entity_by_id(self._collection_name, delete_ids)
        self.check_status(status)
        for item in get_res:
            if item:
                raise Exception("Assert failed after delete")
        if count_before - len(delete_ids) != self.count():
            raise Exception("Assert failed after delete")

    @time_wrapper
    def flush(self, collection_name=None):
        if collection_name is None:
            collection_name = self._collection_name
        status = self._milvus.flush([collection_name])
        self.check_status(status)

    @time_wrapper
    def compact(self, collection_name=None):
        if collection_name is None:
            collection_name = self._collection_name
        status = self._milvus.compact(collection_name)
        self.check_status(status)

    @time_wrapper
    def create_index(self, index_type, index_param=None):
        index_type = INDEX_MAP[index_type]
        logger.info("Building index start, collection_name: %s, index_type: %s" % (self._collection_name, index_type))
        if index_param:
            logger.info(index_param)
        status = self._milvus.create_index(self._collection_name, index_type, index_param)
        self.check_status(status)

    def describe_index(self):
        status, result = self._milvus.get_index_info(self._collection_name)
        self.check_status(status)
        index_type = None
        for k, v in INDEX_MAP.items():
            if result._index_type == v:
                index_type = k
                break
        return {"index_type": index_type, "index_param": result._params}

    def drop_index(self):
        logger.info("Drop index: %s" % self._collection_name)
        return self._milvus.drop_index(self._collection_name)

    def query(self, X, top_k, search_param=None, collection_name=None):
        if collection_name is None:
            collection_name = self._collection_name
        status, result = self._milvus.search(collection_name, top_k, query_records=X, params=search_param)
        self.check_status(status)
        return result

    def query_rand(self):
        top_k = random.randint(1, 100)
        nq = random.randint(1, 100)
        nprobe = random.randint(1, 100)
        search_param = {"nprobe": nprobe}
        _, X = self.get_rand_entities(nq)
        logger.info("%s, Search nq: %d, top_k: %d, nprobe: %d" % (self._collection_name, nq, top_k, nprobe))
        status, _ = self._milvus.search(self._collection_name, top_k, query_records=X, params=search_param)
        self.check_status(status)
        # for i, item in enumerate(search_res):
        #     if item[0].id != ids[i]:
        #         logger.warning("The index of search result: %d" % i)
        #         raise Exception("Query failed")

    # @time_wrapper
    # def query_ids(self, top_k, ids, search_param=None):
    #     status, result = self._milvus.search_by_id(self._collection_name, ids, top_k, params=search_param)
    #     self.check_result_ids(result)
    #     return result

    def count(self, name=None):
        if name is None:
            name = self._collection_name
        logger.debug(self._milvus.count_entities(name))
        row_count = self._milvus.count_entities(name)[1]
        if not row_count:
            row_count = 0
        logger.debug("Row count: %d in collection: <%s>" % (row_count, name))
        return row_count

    def drop(self, timeout=120, name=None):
        timeout = int(timeout)
        if name is None:
            name = self._collection_name
        logger.info("Start delete collection: %s" % name)
        status = self._milvus.drop_collection(name)
        self.check_status(status)
        i = 0
        while i < timeout:
            if self.count(name=name):
                time.sleep(1)
                i = i + 1
                continue
            else:
                break
        if i >= timeout:
            logger.error("Delete collection timeout")

    def describe(self):
        # logger.info(self._milvus.get_collection_info(self._collection_name))
        return self._milvus.get_collection_info(self._collection_name)

    def show_collections(self):
        return self._milvus.list_collections()

    def exists_collection(self, collection_name=None):
        if collection_name is None:
            collection_name = self._collection_name
        _, res = self._milvus.has_collection(collection_name)
        # self.check_status(status)
        return res

    def clean_db(self):
        collection_names = self.show_collections()[1]
        for name in collection_names:
            logger.debug(name)
            self.drop(name=name)

    @time_wrapper
    def preload_collection(self):
        status = self._milvus.load_collection(self._collection_name, timeout=3000)
        self.check_status(status)
        return status

    def get_server_version(self):
        _, res = self._milvus.server_version()
        return res

    def get_server_mode(self):
        return self.cmd("mode")

    def get_server_commit(self):
        return self.cmd("build_commit_id")

    def get_server_config(self):
        return json.loads(self.cmd("get_config *"))

    def get_mem_info(self):
        result = json.loads(self.cmd("get_system_info"))
        result_human = {
            # unit: Gb
            "memory_used": round(int(result["memory_used"]) / (1024*1024*1024), 2)
        }
        return result_human

    def cmd(self, command):
        status, res = self._milvus._cmd(command)
        logger.info("Server command: %s, result: %s" % (command, res))
        self.check_status(status)
        return res
Beispiel #13
0
        "duration": 165,
        "release_year": 2012,
        "embedding": [random.random() for _ in range(8)]
    }
]

ids = client.insert(collection_name, Batmans)
print("\n----------insert batmans----------")
print("Films are inserted and the ids are: {}".format(ids))

# ------
# Basic insert entities:
#     After insert entities into collection, we need to flush collection to make sure its on disk,
#     so that we are able to retrieve it.
# ------
before_flush_counts = client.count_entities(collection_name)
client.flush([collection_name])
after_flush_counts = client.count_entities(collection_name)
print("\n----------flush----------")
print("There are {} films in collection `{}` before flush".format(before_flush_counts, collection_name))
print("There are {} films in collection `{}` after flush".format(after_flush_counts, collection_name))

# ------
# Basic insert entities:
#     We can get the detail of collection statistics info by `get_collection_stats`
# ------
info = client.get_collection_stats(collection_name)
print("\n----------get collection stats----------")
pprint(info)

# ------
Beispiel #14
0
def main():
    milvus = Milvus(uri=uri)
    param = {
        'collection_name': collection_name,
        'dimension': _DIM,
        'index_file_size': 32,
        #'metric_type': MetricType.IP
        'metric_type': MetricType.L2
    }
    # show collections in Milvus server
    _, collections = milvus.list_collections()

    # 创建 collection
    milvus.create_collection(param)
    # 创建 collection partion
    milvus.create_partition(collection_name, partition_tag)

    print(f'collections in Milvus: {collections}')
    # Describe demo_collection
    _, collection = milvus.get_collection_info(collection_name)
    print(f'descript demo_collection: {collection}')

    # build fake vectors
    vectors = [[random.random() for _ in range(_DIM)] for _ in range(10)]
    vectors1 = [[random.random() for _ in range(_DIM)] for _ in range(10)]

    status, id = milvus.insert(collection_name=collection_name,
                               records=vectors,
                               ids=list(range(10)),
                               partition_tag=partition_tag)
    print(f'status: {status} | id: {id}')
    if not status.OK():
        print(f"insert failded: {status}")

    status1, id1 = milvus.insert(collection_name=collection_name,
                                 records=vectors1,
                                 ids=list(range(10, 20)),
                                 partition_tag=partition_tag)
    print(f'status1: {status1} | id1: {id1}')

    ids_deleted = list(range(10))

    status_delete = milvus.delete_entity_by_id(collection_name=collection_name,
                                               id_array=ids_deleted)
    if status_delete.OK():
        print(f'delete successful')

    # Flush collection insered data to disk
    milvus.flush([collection_name])
    # Get demo_collection row count
    status, result = milvus.count_entities(collection_name)
    print(f"demo_collection row count: {result}")

    # Obtain raw vectors by providing vector ids
    status, result_vectors = milvus.get_entity_by_id(collection_name,
                                                     list(range(10, 20)))

    # create index of vectors, search more repidly
    index_param = {'nlist': 2}

    # create ivflat index in demo_collection
    status = milvus.create_index(collection_name, IndexType.IVF_FLAT,
                                 index_param)
    if status.OK():
        print(f"create index ivf_flat succeeed")

    # use the top 10 vectors for similarity search
    query_vectors = vectors1[0:2]

    # execute vector similariy search
    search_param = {"nprobe": 16}

    param = {
        'collection_name': collection_name,
        'query_records': query_vectors,
        'top_k': 1,
        'params': search_param
    }

    status, results = milvus.search(**param)
    if status.OK():
        if results[0][0].distance == 0.0:
            print('query result is correct')
        else:
            print('not correct')
        print(results)
    else:
        print(f'search failed: {status}')

    # 清除已经存在的collection
    milvus.drop_collection(collection_name=collection_name)

    milvus.close()
Beispiel #15
0
def main():
    # Connect to Milvus server
    # You may need to change _HOST and _PORT accordingly
    param = {'host': _HOST, 'port': _PORT}

    # You can create a instance specified server addr and
    # invoke rpc method directly
    client = Milvus(**param)
    # Create collection demo_collection if it dosen't exist.
    collection_name = 'demo_partition_collection'
    partition_tag = "random"

    # create collection
    param = {
        'collection_name': collection_name,
        'dimension': _DIM,
        'index_file_size': _INDEX_FILE_SIZE,  # optional
        'metric_type': MetricType.L2  # optional
    }

    client.create_collection(param)

    # Show collections in Milvus server
    _, collections = client.list_collections()

    # Describe collection
    _, collection = client.get_collection_info(collection_name)
    print(collection)

    # create partition
    client.create_partition(collection_name, partition_tag=partition_tag)
    # display partitions
    _, partitions = client.list_partitions(collection_name)

    # 10000 vectors with 16 dimension
    # element per dimension is float32 type
    # vectors should be a 2-D array
    vectors = [[random.random() for _ in range(_DIM)] for _ in range(10000)]
    # You can also use numpy to generate random vectors:
    #     `vectors = np.random.rand(10000, 16).astype(np.float32).tolist()`

    # Insert vectors into partition of collection, return status and vectors id list
    status, ids = client.insert(collection_name=collection_name, records=vectors, partition_tag=partition_tag)

    # Wait for 6 seconds, until Milvus server persist vector data.
    time.sleep(6)

    # Get demo_collection row count
    status, num = client.count_entities(collection_name)

    # create index of vectors, search more rapidly
    index_param = {
        'nlist': 2048
    }

    # Create ivflat index in demo_collection
    # You can search vectors without creating index. however, Creating index help to
    # search faster
    status = client.create_index(collection_name, IndexType.IVF_FLAT, index_param)

    # describe index, get information of index
    status, index = client.get_index_info(collection_name)
    print(index)

    # Use the top 10 vectors for similarity search
    query_vectors = vectors[0:10]

    # execute vector similarity search, search range in partition `partition1`
    search_param = {
        "nprobe": 10
    }

    param = {
        'collection_name': collection_name,
        'query_records': query_vectors,
        'top_k': 1,
        'partition_tags': ["random"],
        'params': search_param
    }
    status, results = client.search(**param)

    if status.OK():
        # indicate search result
        # also use by:
        #   `results.distance_array[0][0] == 0.0 or results.id_array[0][0] == ids[0]`
        if results[0][0].distance == 0.0 or results[0][0].id == ids[0]:
            print('Query result is correct')
        else:
            print('Query result isn\'t correct')

    # print results
    print(results)

    # Drop partition. You can also invoke `drop_collection()`, so that all of partitions belongs to
    # designated collections will be deleted.
    status = client.drop_partition(collection_name, partition_tag)

    # Delete collection. All of partitions of this collection will be dropped.
    status = client.drop_collection(collection_name)
Beispiel #16
0
class MyMilvus():

    def __init__(self, name, host, port, collection_param):
        self.host = host
        self.port = port
        self.client = Milvus(host, port)
        self.collection_name = name
        self.collection_param = collection_param

        # self.collection_param = {
        #     "fields": [
        #         {"name": "release_year", "type": DataType.INT32},
        #         {"name": "embedding", "type": DataType.FLOAT_VECTOR, "params": {"dim": 8}},
        #     ],
        #     "segment_row_limit": 4096,
        #     "auto_id": False
        # }

    def create_collection(self):
        if self.collection_name not in self.client.list_collections():
            # self.client.drop_collection(self.collection_name)
            self.client.create_collection(self.collection_name, self.collection_param)

        # ------
        # Basic create index:
        #     Now that we have a collection in Milvus with `segment_row_limit` 4096, we can create index or
        #     insert entities.
        #
        #     We can call `create_index` BEFORE we insert any entities or AFTER. However Milvus won't actually
        #     start build index task if the segment row count is smaller than `segment_row_limit`. So if we want
        #     to make Milvus build index, we need to insert number of entities larger than `segment_row_limit`.
        #
        #     We are going to use data in `films.csv` so you can checkout the structure. And we need to group
        #     data with same fields together, so here is a example of how we obtain the data in files and transfer
        #     them into what we need.
        # ------

        ids = []  # ids
        titles = []  # titles
        release_years = []  # release year
        embeddings = []  # embeddings
        films = []
        with open('films.csv', 'r') as csvfile:
            reader = csv.reader(csvfile)
            films = [film for film in reader]
        for film in films:
            ids.append(int(film[0]))
            titles.append(film[1])
            release_years.append(int(film[2]))
            embeddings.append(list(map(float, film[3][1:][:-1].split(','))))

        hybrid_entities = [
            {"name": "release_year", "values": release_years, "type": DataType.INT32},
            {"name": "embedding", "values": embeddings, "type": DataType.FLOAT_VECTOR},
        ]

        # ------
        # Basic insert:
        #     After preparing the data, we are going to insert them into our collection.
        #     The number of films inserted should be 8657.
        # ------
        ids = self.client.insert(self.collection_name, hybrid_entities, ids)
        self.client.flush([self.collection_name])
        after_flush_counts = self.client.count_entities(self.collection_name)
        print(" > There are {} films in collection `{}` after flush".format(after_flush_counts, self.collection_name))

        # ------
        # Basic create index:
        #     Now that we have inserted all the films into Milvus, we are going to build index with these data.
        #
        #     While building index, we have to indicate which `field` to build index for, the `index_type`,
        #     `metric_type` and params for the specific index type. In our case, we want to build a `IVF_FLAT`
        #     index, so the specific params are "nlist". See pymilvus documentation
        #     (https://milvus-io.github.io/milvus-sdk-python/pythondoc/v0.3.0/index.html) for `index_type` we
        #     support and the params accordingly.
        #
        #     If there are already index for a collection and you call `create_index` with different params, the
        #     older index will be replaced by new one.
        # ------
        self.client.create_index(self.collection_name, "embedding",
                                 {"index_type": "IVF_FLAT", "metric_type": "L2", "params": {"nlist": 100}})

        # ------
        # Basic create index:
        #     We can get the detail of the index  by `get_collection_info`.
        # ------
        info = self.client.get_collection_info(self.collection_name)
        pprint(info)

        # ------
        # Basic hybrid search entities:
        #     If we want to use index, the specific index params need to be provided, in our case, the "params"
        #     should be "nprobe", if no "params" given, Milvus will complain about it and raise a exception.
        # ------
        # query_embedding = [random.random() for _ in range(8)]
        # query_hybrid = {
        #     "bool": {
        #         "must": [
        #             {
        #                 "term": {"release_year": [2002, 1995]}
        #             },
        #             {
        #                 "vector": {
        #                     "embedding": {"topk": 3,
        #                                   "query": [query_embedding],
        #                                   "metric_type": "L2",
        #                                   "params": {"nprobe": 8}}
        #                 }
        #             }
        #         ]
        #     }
        # }

        # ------
        # Basic hybrid search entities
        # ------
        # results = client.search(collection_name, query_hybrid, fields=["release_year", "embedding"])
        # for entities in results:
        #     for topk_film in entities:
        #         current_entity = topk_film.entity
        #         print("==")
        #         print("- id: {}".format(topk_film.id))
        #         print("- title: {}".format(titles[topk_film.id]))
        #         print("- distance: {}".format(topk_film.distance))
        #
        #         print("- release_year: {}".format(current_entity.release_year))
        #         print("- embedding: {}".format(current_entity.embedding))

        # ------
        # Basic delete index:
        #     You can drop index for a field.
        # ------
        self.client.drop_index(self.collection_name, "embedding")

        if self.collection_name in self.client.list_collections():
            self.client.drop_collection(self.collection_name)