print("- duration: {}".format(current_entity.duration))
        print("- embedding: {}".format(current_entity.embedding))

# ------
# Basic delete:
#     Now let's see how to delete things in Milvus.
#     You can simply delete entities by their ids.
# ------
client.delete_entity_by_id(collection_name, ids=[1, 4])
client.flush()  # flush is important
result = client.get_entity_by_id(collection_name, ids=[1, 4])

counts_delete = sum([1 for entity in result if entity is not None])
counts_in_collection = client.count_entities(collection_name)
print("\n----------delete id = 1, id = 4----------")
print("Get {} entities by id 1, 4".format(counts_delete))
print("There are {} entities after delete films with 1, 4".format(counts_in_collection))

# ------
# Basic delete:
#     You can drop partitions we create, and drop the collection we create.
# ------
client.drop_partition(collection_name, partition_tag='American')
if collection_name in client.list_collections():
    client.drop_collection(collection_name)

# ------
# Summary:
#     Now we've went through all basic communications pymilvus can do with Milvus server, hope it's helpful!
# ------
Beispiel #2
0
class Indexer:
    '''
    索引器。
    '''
    def __init__(self, name, host='127.0.0.1', port='19531'):
        '''
        初始化。
        '''
        self.client = Milvus(host=host, port=port)
        self.collection = name

    def init(self, lenient=False):
        '''
        创建集合。
        '''
        if lenient:
            status, result = self.client.has_collection(
                collection_name=self.collection)
            if status.code != 0:
                raise ExertMilvusException(status)
            if result:
                return

        status = self.client.create_collection({
            'collection_name': self.collection,
            'dimension': 512,
            'index_file_size': 1024,
            'metric_type': MetricType.L2
        })
        if status.code != 0 and not (lenient and status.code == 9):
            raise ExertMilvusException(status)

        # 创建索引。
        status = self.client.create_index(collection_name=self.collection,
                                          index_type=IndexType.IVF_FLAT,
                                          params={'nlist': 16384})
        if status.code != 0:
            raise ExertMilvusException(status)

        return status

    def drop(self):
        '''
        删除集合。
        '''
        status = self.client.drop_collection(collection_name=self.collection)
        if status.code != 0:
            raise ExertMilvusException(status)

    def flush(self):
        '''
        写入到硬盘。
        '''
        status = self.client.flush([self.collection])
        if status.code != 0:
            raise ExertMilvusException(status)

    def compact(self):
        '''
        压缩集合。
        '''
        status = self.client.compact(collection_name=self.collection)
        if status.code != 0:
            raise ExertMilvusException(status)

    def close(self):
        '''
        关闭链接。
        '''
        self.client.close()

    def new_tag(self, tag):
        '''
        建分块标签。
        '''
        status = self.client.create_partition(collection_name=self.collection,
                                              partition_tag=tag)
        if status.code != 0:
            raise ExertMilvusException(status)

    def list_tag(self):
        '''
        列举分块标签。
        '''
        status, result = self.client.list_partitions(
            collection_name=self.collection)
        if status.code != 0:
            raise ExertMilvusException(status)
        return result

    def drop_tag(self, tag):
        '''
        删除分块标签。
        '''
        status = self.client.drop_partition(collection_name=self.collection,
                                            partition_tag=tag)
        if status.code != 0:
            raise ExertMilvusException(status)

    def index(self, vectors, tag=None, ids=None):
        '''
        添加索引
        '''
        params = {}
        if tag != None:
            params['tag'] = tag
        if ids != None:
            params['ids'] = ids
        status, result = self.client.insert(collection_name=self.collection,
                                            records=vectors,
                                            **params)
        if status.code != 0:
            raise ExertMilvusException(status)

        return result

    def listing(self, ids):
        '''
        列举信息。
        '''
        status, result = self.client.get_entity_by_id(
            collection_name=self.collection, ids=ids)
        if status.code != 0:
            raise ExertMilvusException(status)
        return result

    def counting(self):
        '''
        计算索引数。
        '''
        status, result = self.client.count_entities(
            collection_name=self.collection)
        if status.code != 0:
            raise ExertMilvusException(status)
        return result

    def unindex(self, ids):
        '''
        去掉索引。
        '''
        status = self.client.delete_entity_by_id(
            collection_name=self.collection, id_array=ids)
        if status.code != 0:
            raise ExertMilvusException(status)

    def search(self, vectors, top_count=100, tags=None):
        '''
        搜索。
        '''
        params = {'params': {'nprobe': 16}}
        if tags != None:
            params['partition_tags'] = tags
        status, results = self.client.search(collection_name=self.collection,
                                             query_records=vectors,
                                             top_k=top_count,
                                             **params)
        if status.code != 0:
            raise ExertMilvusException(status)
        return results
Beispiel #3
0
def main():
    # Connect to Milvus server
    # You may need to change _HOST and _PORT accordingly
    param = {'host': _HOST, 'port': _PORT}

    # You can create a instance specified server addr and
    # invoke rpc method directly
    client = Milvus(**param)
    # Create collection demo_collection if it dosen't exist.
    collection_name = 'demo_partition_collection'
    partition_tag = "random"

    # create collection
    param = {
        'collection_name': collection_name,
        'dimension': _DIM,
        'index_file_size': _INDEX_FILE_SIZE,  # optional
        'metric_type': MetricType.L2  # optional
    }

    client.create_collection(param)

    # Show collections in Milvus server
    _, collections = client.list_collections()

    # Describe collection
    _, collection = client.get_collection_info(collection_name)
    print(collection)

    # create partition
    client.create_partition(collection_name, partition_tag=partition_tag)
    # display partitions
    _, partitions = client.list_partitions(collection_name)

    # 10000 vectors with 16 dimension
    # element per dimension is float32 type
    # vectors should be a 2-D array
    vectors = [[random.random() for _ in range(_DIM)] for _ in range(10000)]
    # You can also use numpy to generate random vectors:
    #     `vectors = np.random.rand(10000, 16).astype(np.float32).tolist()`

    # Insert vectors into partition of collection, return status and vectors id list
    status, ids = client.insert(collection_name=collection_name, records=vectors, partition_tag=partition_tag)

    # Wait for 6 seconds, until Milvus server persist vector data.
    time.sleep(6)

    # Get demo_collection row count
    status, num = client.count_entities(collection_name)

    # create index of vectors, search more rapidly
    index_param = {
        'nlist': 2048
    }

    # Create ivflat index in demo_collection
    # You can search vectors without creating index. however, Creating index help to
    # search faster
    status = client.create_index(collection_name, IndexType.IVF_FLAT, index_param)

    # describe index, get information of index
    status, index = client.get_index_info(collection_name)
    print(index)

    # Use the top 10 vectors for similarity search
    query_vectors = vectors[0:10]

    # execute vector similarity search, search range in partition `partition1`
    search_param = {
        "nprobe": 10
    }

    param = {
        'collection_name': collection_name,
        'query_records': query_vectors,
        'top_k': 1,
        'partition_tags': ["random"],
        'params': search_param
    }
    status, results = client.search(**param)

    if status.OK():
        # indicate search result
        # also use by:
        #   `results.distance_array[0][0] == 0.0 or results.id_array[0][0] == ids[0]`
        if results[0][0].distance == 0.0 or results[0][0].id == ids[0]:
            print('Query result is correct')
        else:
            print('Query result isn\'t correct')

    # print results
    print(results)

    # Drop partition. You can also invoke `drop_collection()`, so that all of partitions belongs to
    # designated collections will be deleted.
    status = client.drop_partition(collection_name, partition_tag)

    # Delete collection. All of partitions of this collection will be dropped.
    status = client.drop_collection(collection_name)
Beispiel #4
0
class MilvusClient(object):
    def __init__(self, collection_name=None, host=None, port=None, timeout=60):
        """
        Milvus client wrapper for python-sdk.

        Default timeout set 60s
        """
        self._collection_name = collection_name
        try:
            start_time = time.time()
            if not host:
                host = SERVER_HOST_DEFAULT
            if not port:
                port = SERVER_PORT_DEFAULT
            logger.debug(host)
            logger.debug(port)
            # retry connect for remote server
            i = 0
            while time.time() < start_time + timeout:
                try:
                    self._milvus = Milvus(host=host, port=port, try_connect=False, pre_ping=False)
                    if self._milvus.server_status():
                        logger.debug("Try connect times: %d, %s" % (i, round(time.time() - start_time, 2)))
                        break
                except Exception as e:
                    logger.debug("Milvus connect failed: %d times" % i)
                    i = i + 1

            if time.time() > start_time + timeout:
                raise Exception("Server connect timeout")

        except Exception as e:
            raise e
        self._metric_type = None
        if self._collection_name and self.exists_collection():
            self._metric_type = metric_type_to_str(self.describe()[1].metric_type)
            self._dimension = self.describe()[1].dimension

    def __str__(self):
        return 'Milvus collection %s' % self._collection_name

    def set_collection(self, name):
        self._collection_name = name

    def check_status(self, status):
        if not status.OK():
            logger.error(self._collection_name)
            logger.error(status.message)
            logger.error(self._milvus.server_status())
            logger.error(self.count())
            raise Exception("Status not ok")

    def check_result_ids(self, result):
        for index, item in enumerate(result):
            if item[0].distance >= epsilon:
                logger.error(index)
                logger.error(item[0].distance)
                raise Exception("Distance wrong")

    def create_collection(self, collection_name, dimension, index_file_size, metric_type):
        if not self._collection_name:
            self._collection_name = collection_name
        if metric_type not in METRIC_MAP.keys():
            raise Exception("Not supported metric_type: %s" % metric_type)
        metric_type = METRIC_MAP[metric_type]
        create_param = {'collection_name': collection_name,
                 'dimension': dimension,
                 'index_file_size': index_file_size, 
                 "metric_type": metric_type}
        status = self._milvus.create_collection(create_param)
        self.check_status(status)

    def create_partition(self, tag_name):
        status = self._milvus.create_partition(self._collection_name, tag_name)
        self.check_status(status)

    def drop_partition(self, tag_name):
        status = self._milvus.drop_partition(self._collection_name, tag_name)
        self.check_status(status)

    def list_partitions(self):
        status, tags = self._milvus.list_partitions(self._collection_name)
        self.check_status(status)
        return tags

    @time_wrapper
    def insert(self, X, ids=None, collection_name=None):
        if collection_name is None:
            collection_name = self._collection_name
        status, result = self._milvus.insert(collection_name, X, ids)
        self.check_status(status)
        return status, result

    def insert_rand(self):
        insert_xb = random.randint(1, 100)
        X = [[random.random() for _ in range(self._dimension)] for _ in range(insert_xb)]
        X = utils.normalize(self._metric_type, X)
        count_before = self.count()
        status, _ = self.insert(X)
        self.check_status(status)
        self.flush()
        if count_before + insert_xb != self.count():
            raise Exception("Assert failed after inserting")

    def get_rand_ids(self, length):
        while True:
            status, stats = self._milvus.get_collection_stats(self._collection_name)
            self.check_status(status)
            segments = stats["partitions"][0]["segments"]
            # random choice one segment
            segment = random.choice(segments)
            status, segment_ids = self._milvus.list_id_in_segment(self._collection_name, segment["name"])
            if not status.OK():
                logger.error(status.message)
                continue
            if len(segment_ids):
                break
        if length >= len(segment_ids):
            logger.debug("Reset length: %d" % len(segment_ids))
            return segment_ids
        return random.sample(segment_ids, length)

    def get_rand_ids_each_segment(self, length):
        res = []
        status, stats = self._milvus.get_collection_stats(self._collection_name)
        self.check_status(status)
        segments = stats["partitions"][0]["segments"]
        segments_num = len(segments)
        # random choice from each segment
        for segment in segments:
            status, segment_ids = self._milvus.list_id_in_segment(self._collection_name, segment["name"])
            self.check_status(status)
            res.extend(segment_ids[:length])
        return segments_num, res

    def get_rand_entities(self, length):
        ids = self.get_rand_ids(length)
        status, get_res = self._milvus.get_entity_by_id(self._collection_name, ids)
        self.check_status(status)
        return ids, get_res

    @time_wrapper
    def get_entities(self, get_ids):
        status, get_res = self._milvus.get_entity_by_id(self._collection_name, get_ids)
        self.check_status(status)
        return get_res

    @time_wrapper
    def delete(self, ids, collection_name=None):
        if collection_name is None:
            collection_name = self._collection_name
        status = self._milvus.delete_entity_by_id(collection_name, ids)
        self.check_status(status)

    def delete_rand(self):
        delete_id_length = random.randint(1, 100)
        count_before = self.count()
        logger.info("%s: length to delete: %d" % (self._collection_name, delete_id_length))
        delete_ids = self.get_rand_ids(delete_id_length)
        self.delete(delete_ids)
        self.flush()
        logger.info("%s: count after delete: %d" % (self._collection_name, self.count()))
        status, get_res = self._milvus.get_entity_by_id(self._collection_name, delete_ids)
        self.check_status(status)
        for item in get_res:
            if item:
                raise Exception("Assert failed after delete")
        if count_before - len(delete_ids) != self.count():
            raise Exception("Assert failed after delete")

    @time_wrapper
    def flush(self, collection_name=None):
        if collection_name is None:
            collection_name = self._collection_name
        status = self._milvus.flush([collection_name])
        self.check_status(status)

    @time_wrapper
    def compact(self, collection_name=None):
        if collection_name is None:
            collection_name = self._collection_name
        status = self._milvus.compact(collection_name)
        self.check_status(status)

    @time_wrapper
    def create_index(self, index_type, index_param=None):
        index_type = INDEX_MAP[index_type]
        logger.info("Building index start, collection_name: %s, index_type: %s" % (self._collection_name, index_type))
        if index_param:
            logger.info(index_param)
        status = self._milvus.create_index(self._collection_name, index_type, index_param)
        self.check_status(status)

    def describe_index(self):
        status, result = self._milvus.get_index_info(self._collection_name)
        self.check_status(status)
        index_type = None
        for k, v in INDEX_MAP.items():
            if result._index_type == v:
                index_type = k
                break
        return {"index_type": index_type, "index_param": result._params}

    def drop_index(self):
        logger.info("Drop index: %s" % self._collection_name)
        return self._milvus.drop_index(self._collection_name)

    def query(self, X, top_k, search_param=None, collection_name=None):
        if collection_name is None:
            collection_name = self._collection_name
        status, result = self._milvus.search(collection_name, top_k, query_records=X, params=search_param)
        self.check_status(status)
        return result

    def query_rand(self):
        top_k = random.randint(1, 100)
        nq = random.randint(1, 100)
        nprobe = random.randint(1, 100)
        search_param = {"nprobe": nprobe}
        _, X = self.get_rand_entities(nq)
        logger.info("%s, Search nq: %d, top_k: %d, nprobe: %d" % (self._collection_name, nq, top_k, nprobe))
        status, _ = self._milvus.search(self._collection_name, top_k, query_records=X, params=search_param)
        self.check_status(status)
        # for i, item in enumerate(search_res):
        #     if item[0].id != ids[i]:
        #         logger.warning("The index of search result: %d" % i)
        #         raise Exception("Query failed")

    # @time_wrapper
    # def query_ids(self, top_k, ids, search_param=None):
    #     status, result = self._milvus.search_by_id(self._collection_name, ids, top_k, params=search_param)
    #     self.check_result_ids(result)
    #     return result

    def count(self, name=None):
        if name is None:
            name = self._collection_name
        logger.debug(self._milvus.count_entities(name))
        row_count = self._milvus.count_entities(name)[1]
        if not row_count:
            row_count = 0
        logger.debug("Row count: %d in collection: <%s>" % (row_count, name))
        return row_count

    def drop(self, timeout=120, name=None):
        timeout = int(timeout)
        if name is None:
            name = self._collection_name
        logger.info("Start delete collection: %s" % name)
        status = self._milvus.drop_collection(name)
        self.check_status(status)
        i = 0
        while i < timeout:
            if self.count(name=name):
                time.sleep(1)
                i = i + 1
                continue
            else:
                break
        if i >= timeout:
            logger.error("Delete collection timeout")

    def describe(self):
        # logger.info(self._milvus.get_collection_info(self._collection_name))
        return self._milvus.get_collection_info(self._collection_name)

    def show_collections(self):
        return self._milvus.list_collections()

    def exists_collection(self, collection_name=None):
        if collection_name is None:
            collection_name = self._collection_name
        _, res = self._milvus.has_collection(collection_name)
        # self.check_status(status)
        return res

    def clean_db(self):
        collection_names = self.show_collections()[1]
        for name in collection_names:
            logger.debug(name)
            self.drop(name=name)

    @time_wrapper
    def preload_collection(self):
        status = self._milvus.load_collection(self._collection_name, timeout=3000)
        self.check_status(status)
        return status

    def get_server_version(self):
        _, res = self._milvus.server_version()
        return res

    def get_server_mode(self):
        return self.cmd("mode")

    def get_server_commit(self):
        return self.cmd("build_commit_id")

    def get_server_config(self):
        return json.loads(self.cmd("get_config *"))

    def get_mem_info(self):
        result = json.loads(self.cmd("get_system_info"))
        result_human = {
            # unit: Gb
            "memory_used": round(int(result["memory_used"]) / (1024*1024*1024), 2)
        }
        return result_human

    def cmd(self, command):
        status, res = self._milvus._cmd(command)
        logger.info("Server command: %s, result: %s" % (command, res))
        self.check_status(status)
        return res
Beispiel #5
0
class ANN(object):
    def __init__(self, host='10.119.33.90', port='19530', show_info=False):
        self.client = Milvus(host, port)

        if show_info:
            logger.info({
                "ClientVersion": self.client.client_version(),
                "ServerVersion": self.client.server_version()
            })

    def create_collection(self,
                          collection_name,
                          collection_param,
                          partition_tag=None,
                          overwrite=True):
        """

        :param collection_name:
        :param collection_param:
            collection_param = {
                "fields": [
                    #  Milvus doesn't support string type now, but we are considering supporting it soon.
                    #  {"name": "title", "type": DataType.STRING},
                    {"name": "category_", "type": DataType.INT32},
                    {"name": "vector", "type": DataType.FLOAT_VECTOR, "params": {"dim": 768}},
                ],
                "segment_row_limit": 4096,
                "auto_id": False
            }

        :param overwrite:
        :return:
        """
        if self.client.has_collection(collection_name) and overwrite:
            self.client.drop_collection(collection_name)
            self.client.flush()
            time.sleep(5)

            self.client.create_collection(collection_name, collection_param)
        elif self.client.has_collection(collection_name):
            print(f"{collection_name} already exist !!!")
        else:
            self.client.create_collection(collection_name, collection_param)

        if partition_tag is not None:
            self.client.create_partition(collection_name,
                                         partition_tag=partition_tag)

    def create_index(self,
                     collection_name,
                     field_name,
                     index_type='IVF_FLAT',
                     metric_type='IP',
                     index_params=None):
        """
        MetricType:
            INVALID = 0
            L2 = 1
            IP = 2
            # Only supported for byte vectors
            HAMMING = 3
            JACCARD = 4
            TANIMOTO = 5
            #
            SUBSTRUCTURE = 6
            SUPERSTRUCTURE = 7
        IndexType:
            INVALID = 0
            FLAT = 1
            IVFLAT = 2
            IVF_SQ8 = 3
            RNSG = 4
            IVF_SQ8H = 5
            IVF_PQ = 6
            HNSW = 11
            ANNOY = 12

            # alternative name
            IVF_FLAT = IVFLAT
            IVF_SQ8_H = IVF_SQ8H

        class DataType(IntEnum):
            NULL = 0
            INT8 = 1
            INT16 = 2
            INT32 = 3
            INT64 = 4

            STRING = 20

            BOOL = 30

            FLOAT = 40
            DOUBLE = 41

            VECTOR = 100
            UNKNOWN = 9999

        class RangeType(IntEnum):
            LT = 0   # less than
            LTE = 1  # less than or equal
            EQ = 2   # equal
            GT = 3   # greater than
            GTE = 4  # greater than or equal
            NE = 5   # not equal
        :return:
        """
        if index_params is None:
            index_params = {'nlist': 1024}

        params = {
            'index_type': index_type,
            # 'index_file_size': 1024,
            'params': index_params,
            'metric_type': metric_type,
        }
        self.client.create_index(collection_name, field_name,
                                 params)  # field_name='embedding'

    def batch_insert(self, collection_name, entities, batch_size=100000):

        # 分区
        n = len(entities[0]['values'])
        num_part = n // batch_size + 1

        ids = []
        values_list = [_['values'] for _ in entities]
        for i in range(num_part):
            for e, values in zip(entities, values_list):
                e['values'] = values[i * batch_size:(i + 1) * batch_size]
            ids += self.client.insert(collection_name, entities)
            self.client.flush()
        return ids

    def search(self):  # todo: 获取相同的信息
        pass

    def drop_collection(self, collection_name):
        if self.client.has_collection(collection_name):
            self.client.drop_collection(collection_name)

    def drop_partition(self, collection_name, partition_tag):
        if self.client.has_partition(collection_name, partition_tag):
            self.client.drop_partition(collection_name,
                                       partition_tag,
                                       timeout=30)