Beispiel #1
0
def yolo_eval(dataset_path, ckpt_path):
    """Yolov3 evaluation."""

    ds = create_yolo_dataset(dataset_path, is_training=False)
    config = ConfigYOLOV3ResNet18()
    net = yolov3_resnet18(config)
    eval_net = YoloWithEval(net, config)
    print("Load Checkpoint!")
    param_dict = load_checkpoint(ckpt_path)
    load_param_into_net(net, param_dict)

    eval_net.set_train(False)
    i = 1.
    total = ds.get_dataset_size()
    start = time.time()
    pred_data = []
    print("\n========================================\n")
    print("total images num: ", total)
    print("Processing, please wait a moment.")
    for data in ds.create_dict_iterator():
        img_np = data['image']
        image_shape = data['image_shape']
        annotation = data['annotation']

        eval_net.set_train(False)
        output = eval_net(Tensor(img_np), Tensor(image_shape))
        for batch_idx in range(img_np.shape[0]):
            pred_data.append({
                "boxes": output[0].asnumpy()[batch_idx],
                "box_scores": output[1].asnumpy()[batch_idx],
                "annotation": annotation
            })
        percent = round(i / total * 100, 2)

        print('    %s [%d/%d]' % (str(percent) + '%', i, total), end='\r')
        i += 1
    print('    %s [%d/%d] cost %d ms' %
          (str(100.0) + '%', total, total, int((time.time() - start) * 1000)),
          end='\n')

    precisions, recalls = metrics(pred_data)
    print("\n========================================\n")
    for i in range(config.num_classes):
        print("class {} precision is {:.2f}%, recall is {:.2f}%".format(
            i, precisions[i] * 100, recalls[i] * 100))
Beispiel #2
0
                                          prefix=prefix,
                                          file_num=8)
            print("Create Mindrecord Done, at {}".format(args_opt.mindrecord_dir))
        else:
            print("image_dir or anno_path not exits.")

    if not args_opt.only_create_dataset:
        loss_scale = float(args_opt.loss_scale)

        # When create MindDataset, using the fitst mindrecord file, such as yolo.mindrecord0.
        dataset = create_yolo_dataset(mindrecord_file, repeat_num=args_opt.epoch_size,
                                      batch_size=args_opt.batch_size, device_num=device_num, rank=rank)
        dataset_size = dataset.get_dataset_size()
        print("Create dataset done!")

        net = yolov3_resnet18(ConfigYOLOV3ResNet18())
        net = YoloWithLossCell(net, ConfigYOLOV3ResNet18())
        init_net_param(net, "XavierUniform")

        # checkpoint
        ckpt_config = CheckpointConfig(save_checkpoint_steps=dataset_size * args_opt.save_checkpoint_epochs)
        ckpoint_cb = ModelCheckpoint(prefix="yolov3", directory=None, config=ckpt_config)

        lr = Tensor(get_lr(learning_rate=args_opt.lr, start_step=0, global_step=args_opt.epoch_size * dataset_size,
                           decay_step=1000, decay_rate=0.95, steps=True))
        opt = nn.Adam(filter(lambda x: x.requires_grad, net.get_parameters()), lr, loss_scale=loss_scale)
        net = TrainingWrapper(net, opt, loss_scale)

        if args_opt.checkpoint_path != "":
            param_dict = load_checkpoint(args_opt.checkpoint_path)
            load_param_into_net(net, param_dict)
Beispiel #3
0
def main():
    parser = argparse.ArgumentParser(description="YOLOv3 train")
    parser.add_argument("--only_create_dataset",
                        type=bool,
                        default=False,
                        help="If set it true, only create "
                        "Mindrecord, default is false.")
    parser.add_argument("--distribute",
                        type=bool,
                        default=False,
                        help="Run distribute, default is false.")
    parser.add_argument("--device_id",
                        type=int,
                        default=0,
                        help="Device id, default is 0.")
    parser.add_argument("--device_num",
                        type=int,
                        default=1,
                        help="Use device nums, default is 1.")
    parser.add_argument("--lr",
                        type=float,
                        default=0.001,
                        help="Learning rate, default is 0.001.")
    parser.add_argument("--mode",
                        type=str,
                        default="sink",
                        help="Run sink mode or not, default is sink")
    parser.add_argument("--epoch_size",
                        type=int,
                        default=10,
                        help="Epoch size, default is 10")
    parser.add_argument("--batch_size",
                        type=int,
                        default=32,
                        help="Batch size, default is 32.")
    parser.add_argument("--checkpoint_path",
                        type=str,
                        default="",
                        help="Checkpoint file path")
    parser.add_argument("--save_checkpoint_epochs",
                        type=int,
                        default=5,
                        help="Save checkpoint epochs, default is 5.")
    parser.add_argument("--loss_scale",
                        type=int,
                        default=1024,
                        help="Loss scale, default is 1024.")
    parser.add_argument(
        "--mindrecord_dir",
        type=str,
        default="./Mindrecord_train",
        help=
        "Mindrecord directory. If the mindrecord_dir is empty, it wil generate mindrecord file by"
        "image_dir and anno_path. Note if mindrecord_dir isn't empty, it will use mindrecord_dir "
        "rather than image_dir and anno_path. Default is ./Mindrecord_train")
    parser.add_argument("--image_dir",
                        type=str,
                        default="",
                        help="Dataset directory, "
                        "the absolute image path is joined by the image_dir "
                        "and the relative path in anno_path")
    parser.add_argument("--anno_path",
                        type=str,
                        default="",
                        help="Annotation path.")
    args_opt = parser.parse_args()

    context.set_context(mode=context.GRAPH_MODE,
                        device_target="Ascend",
                        device_id=args_opt.device_id)
    context.set_context(enable_loop_sink=True, enable_mem_reuse=True)
    if args_opt.distribute:
        device_num = args_opt.device_num
        context.reset_auto_parallel_context()
        context.set_auto_parallel_context(
            parallel_mode=ParallelMode.DATA_PARALLEL,
            mirror_mean=True,
            device_num=device_num)
        init()
        rank = args_opt.device_id % device_num
    else:
        rank = 0
        device_num = 1

    print("Start create dataset!")

    # It will generate mindrecord file in args_opt.mindrecord_dir,
    # and the file name is yolo.mindrecord0, 1, ... file_num.
    if not os.path.isdir(args_opt.mindrecord_dir):
        os.makedirs(args_opt.mindrecord_dir)

    prefix = "yolo.mindrecord"
    mindrecord_file = os.path.join(args_opt.mindrecord_dir, prefix + "0")
    if not os.path.exists(mindrecord_file):
        if os.path.isdir(args_opt.image_dir) and os.path.exists(
                args_opt.anno_path):
            print("Create Mindrecord.")
            data_to_mindrecord_byte_image(args_opt.image_dir,
                                          args_opt.anno_path,
                                          args_opt.mindrecord_dir,
                                          prefix=prefix,
                                          file_num=8)
            print("Create Mindrecord Done, at {}".format(
                args_opt.mindrecord_dir))
        else:
            print("image_dir or anno_path not exits.")

    if not args_opt.only_create_dataset:
        loss_scale = float(args_opt.loss_scale)

        # When create MindDataset, using the fitst mindrecord file, such as yolo.mindrecord0.
        dataset = create_yolo_dataset(mindrecord_file,
                                      repeat_num=args_opt.epoch_size,
                                      batch_size=args_opt.batch_size,
                                      device_num=device_num,
                                      rank=rank)
        dataset_size = dataset.get_dataset_size()
        print("Create dataset done!")

        net = yolov3_resnet18(ConfigYOLOV3ResNet18())
        net = YoloWithLossCell(net, ConfigYOLOV3ResNet18())
        init_net_param(net, "XavierUniform")

        # checkpoint
        ckpt_config = CheckpointConfig(save_checkpoint_steps=dataset_size *
                                       args_opt.save_checkpoint_epochs)
        ckpoint_cb = ModelCheckpoint(prefix="yolov3",
                                     directory=None,
                                     config=ckpt_config)

        lr = Tensor(
            get_lr(learning_rate=args_opt.lr,
                   start_step=0,
                   global_step=args_opt.epoch_size * dataset_size,
                   decay_step=1000,
                   decay_rate=0.95,
                   steps=True))
        opt = nn.Adam(filter(lambda x: x.requires_grad, net.get_parameters()),
                      lr,
                      loss_scale=loss_scale)
        net = TrainingWrapper(net, opt, loss_scale)

        if args_opt.checkpoint_path != "":
            param_dict = load_checkpoint(args_opt.checkpoint_path)
            load_param_into_net(net, param_dict)

        callback = [
            TimeMonitor(data_size=dataset_size),
            LossMonitor(), ckpoint_cb
        ]

        model = Model(net)
        dataset_sink_mode = False
        if args_opt.mode == "sink":
            print("In sink mode, one epoch return a loss.")
            dataset_sink_mode = True
        print(
            "Start train YOLOv3, the first epoch will be slower because of the graph compilation."
        )
        model.train(args_opt.epoch_size,
                    dataset,
                    callbacks=callback,
                    dataset_sink_mode=dataset_sink_mode)