def yolo_eval(dataset_path, ckpt_path): """Yolov3 evaluation.""" ds = create_yolo_dataset(dataset_path, is_training=False) config = ConfigYOLOV3ResNet18() net = yolov3_resnet18(config) eval_net = YoloWithEval(net, config) print("Load Checkpoint!") param_dict = load_checkpoint(ckpt_path) load_param_into_net(net, param_dict) eval_net.set_train(False) i = 1. total = ds.get_dataset_size() start = time.time() pred_data = [] print("\n========================================\n") print("total images num: ", total) print("Processing, please wait a moment.") for data in ds.create_dict_iterator(): img_np = data['image'] image_shape = data['image_shape'] annotation = data['annotation'] eval_net.set_train(False) output = eval_net(Tensor(img_np), Tensor(image_shape)) for batch_idx in range(img_np.shape[0]): pred_data.append({ "boxes": output[0].asnumpy()[batch_idx], "box_scores": output[1].asnumpy()[batch_idx], "annotation": annotation }) percent = round(i / total * 100, 2) print(' %s [%d/%d]' % (str(percent) + '%', i, total), end='\r') i += 1 print(' %s [%d/%d] cost %d ms' % (str(100.0) + '%', total, total, int((time.time() - start) * 1000)), end='\n') precisions, recalls = metrics(pred_data) print("\n========================================\n") for i in range(config.num_classes): print("class {} precision is {:.2f}%, recall is {:.2f}%".format( i, precisions[i] * 100, recalls[i] * 100))
prefix=prefix, file_num=8) print("Create Mindrecord Done, at {}".format(args_opt.mindrecord_dir)) else: print("image_dir or anno_path not exits.") if not args_opt.only_create_dataset: loss_scale = float(args_opt.loss_scale) # When create MindDataset, using the fitst mindrecord file, such as yolo.mindrecord0. dataset = create_yolo_dataset(mindrecord_file, repeat_num=args_opt.epoch_size, batch_size=args_opt.batch_size, device_num=device_num, rank=rank) dataset_size = dataset.get_dataset_size() print("Create dataset done!") net = yolov3_resnet18(ConfigYOLOV3ResNet18()) net = YoloWithLossCell(net, ConfigYOLOV3ResNet18()) init_net_param(net, "XavierUniform") # checkpoint ckpt_config = CheckpointConfig(save_checkpoint_steps=dataset_size * args_opt.save_checkpoint_epochs) ckpoint_cb = ModelCheckpoint(prefix="yolov3", directory=None, config=ckpt_config) lr = Tensor(get_lr(learning_rate=args_opt.lr, start_step=0, global_step=args_opt.epoch_size * dataset_size, decay_step=1000, decay_rate=0.95, steps=True)) opt = nn.Adam(filter(lambda x: x.requires_grad, net.get_parameters()), lr, loss_scale=loss_scale) net = TrainingWrapper(net, opt, loss_scale) if args_opt.checkpoint_path != "": param_dict = load_checkpoint(args_opt.checkpoint_path) load_param_into_net(net, param_dict)
def main(): parser = argparse.ArgumentParser(description="YOLOv3 train") parser.add_argument("--only_create_dataset", type=bool, default=False, help="If set it true, only create " "Mindrecord, default is false.") parser.add_argument("--distribute", type=bool, default=False, help="Run distribute, default is false.") parser.add_argument("--device_id", type=int, default=0, help="Device id, default is 0.") parser.add_argument("--device_num", type=int, default=1, help="Use device nums, default is 1.") parser.add_argument("--lr", type=float, default=0.001, help="Learning rate, default is 0.001.") parser.add_argument("--mode", type=str, default="sink", help="Run sink mode or not, default is sink") parser.add_argument("--epoch_size", type=int, default=10, help="Epoch size, default is 10") parser.add_argument("--batch_size", type=int, default=32, help="Batch size, default is 32.") parser.add_argument("--checkpoint_path", type=str, default="", help="Checkpoint file path") parser.add_argument("--save_checkpoint_epochs", type=int, default=5, help="Save checkpoint epochs, default is 5.") parser.add_argument("--loss_scale", type=int, default=1024, help="Loss scale, default is 1024.") parser.add_argument( "--mindrecord_dir", type=str, default="./Mindrecord_train", help= "Mindrecord directory. If the mindrecord_dir is empty, it wil generate mindrecord file by" "image_dir and anno_path. Note if mindrecord_dir isn't empty, it will use mindrecord_dir " "rather than image_dir and anno_path. Default is ./Mindrecord_train") parser.add_argument("--image_dir", type=str, default="", help="Dataset directory, " "the absolute image path is joined by the image_dir " "and the relative path in anno_path") parser.add_argument("--anno_path", type=str, default="", help="Annotation path.") args_opt = parser.parse_args() context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", device_id=args_opt.device_id) context.set_context(enable_loop_sink=True, enable_mem_reuse=True) if args_opt.distribute: device_num = args_opt.device_num context.reset_auto_parallel_context() context.set_auto_parallel_context( parallel_mode=ParallelMode.DATA_PARALLEL, mirror_mean=True, device_num=device_num) init() rank = args_opt.device_id % device_num else: rank = 0 device_num = 1 print("Start create dataset!") # It will generate mindrecord file in args_opt.mindrecord_dir, # and the file name is yolo.mindrecord0, 1, ... file_num. if not os.path.isdir(args_opt.mindrecord_dir): os.makedirs(args_opt.mindrecord_dir) prefix = "yolo.mindrecord" mindrecord_file = os.path.join(args_opt.mindrecord_dir, prefix + "0") if not os.path.exists(mindrecord_file): if os.path.isdir(args_opt.image_dir) and os.path.exists( args_opt.anno_path): print("Create Mindrecord.") data_to_mindrecord_byte_image(args_opt.image_dir, args_opt.anno_path, args_opt.mindrecord_dir, prefix=prefix, file_num=8) print("Create Mindrecord Done, at {}".format( args_opt.mindrecord_dir)) else: print("image_dir or anno_path not exits.") if not args_opt.only_create_dataset: loss_scale = float(args_opt.loss_scale) # When create MindDataset, using the fitst mindrecord file, such as yolo.mindrecord0. dataset = create_yolo_dataset(mindrecord_file, repeat_num=args_opt.epoch_size, batch_size=args_opt.batch_size, device_num=device_num, rank=rank) dataset_size = dataset.get_dataset_size() print("Create dataset done!") net = yolov3_resnet18(ConfigYOLOV3ResNet18()) net = YoloWithLossCell(net, ConfigYOLOV3ResNet18()) init_net_param(net, "XavierUniform") # checkpoint ckpt_config = CheckpointConfig(save_checkpoint_steps=dataset_size * args_opt.save_checkpoint_epochs) ckpoint_cb = ModelCheckpoint(prefix="yolov3", directory=None, config=ckpt_config) lr = Tensor( get_lr(learning_rate=args_opt.lr, start_step=0, global_step=args_opt.epoch_size * dataset_size, decay_step=1000, decay_rate=0.95, steps=True)) opt = nn.Adam(filter(lambda x: x.requires_grad, net.get_parameters()), lr, loss_scale=loss_scale) net = TrainingWrapper(net, opt, loss_scale) if args_opt.checkpoint_path != "": param_dict = load_checkpoint(args_opt.checkpoint_path) load_param_into_net(net, param_dict) callback = [ TimeMonitor(data_size=dataset_size), LossMonitor(), ckpoint_cb ] model = Model(net) dataset_sink_mode = False if args_opt.mode == "sink": print("In sink mode, one epoch return a loss.") dataset_sink_mode = True print( "Start train YOLOv3, the first epoch will be slower because of the graph compilation." ) model.train(args_opt.epoch_size, dataset, callbacks=callback, dataset_sink_mode=dataset_sink_mode)