Beispiel #1
0
def test_parameter_update_int32_and_tensor():
    """ test_parameter_update """
    net = Net()
    loss = nn.SoftmaxCrossEntropyWithLogits()
    optimizer = Momentum(net.get_parameters(), Tensor(np.array([0.1, 0.01, 0.001]), mstype.float32), 0.001)

    net_with_loss = WithLossCell(net, loss)
    train_network = TrainOneStepCell(net_with_loss, optimizer)

    # compile train graph
    train_network.set_train()
    inputs = Tensor(np.ones([1, 64]).astype(np.float32))
    label = Tensor(np.zeros([1, 10]).astype(np.float32))
    _executor.compile(train_network, inputs, label)

    # test tensor
    param_lr = train_network.parameters_dict()['learning_rate']
    update_network = ParameterUpdate(param_lr)
    update_network.phase = 'update_param'

    input_lr = Tensor(np.array([0.2, 0.02, 0.002]), mstype.float32)
    _executor.compile(update_network, input_lr)

    # test int32
    param_step = train_network.parameters_dict()['global_step']
    update_global_step = ParameterUpdate(param_step)

    input_step = Tensor(np.array([1000]), mstype.int32)
    _executor.compile(update_global_step, input_step)
Beispiel #2
0
def test_parameter_update_error():
    """ test_parameter_update """
    input_np = np.array([1])
    input_parameter = Parameter(np.array([1]), 'input_parameter')

    with pytest.raises(TypeError):
        ParameterUpdate(input_np)

    with pytest.raises(TypeError):
        ParameterUpdate(input_parameter)
 def __init__(self, in_channel, x):
     super().__init__()
     #self._save_graphs(save_graph_flag=True, save_graph_path=".")
     self.biasadd = P.BiasAdd()
     self.equal = P.Equal()
     self.addn = P.AddN()
     self.conv = Conv2d(in_channels=in_channel,
                        out_channels=in_channel,
                        kernel_size=1,
                        stride=1,
                        has_bias=False,
                        weight_init='ones',
                        pad_mode='same')
     self.bn = BatchNorm2d(num_features=in_channel)
     self.assignadd = P.AssignAdd()
     self.assign = P.Assign()
     self.relu = ReLU()
     self.mean = P.ReduceMean(keep_dims=False)
     self.bias = Parameter(Tensor(
         np.random.randint(2, size=(3, )).astype((np.float32))),
                           name="bias")
     self.bias2 = Parameter(Tensor(np.ones([3]).astype(np.float32)),
                            name="bias2")
     self.parameterupdate = ParameterUpdate(self.bias)
     self.value = Tensor(np.random.randn(*(3, )), ms.float32)
     self.x = x
Beispiel #4
0
def test_parameter_update_float32():
    """ test_parameter_update """
    net = Net()
    loss = nn.SoftmaxCrossEntropyWithLogits()
    optimizer = Momentum(net.get_parameters(), 0.01, 0.001)

    net_with_loss = WithLossCell(net, loss)
    train_network = TrainOneStepCell(net_with_loss, optimizer)

    # compile train graph
    train_network.set_train()
    inputs = Tensor(np.ones([1, 64]).astype(np.float32))
    label = Tensor(np.zeros([1, 10]).astype(np.float32))
    _executor.compile(train_network, inputs, label)

    # construct and compile update graph
    param_lr = train_network.parameters_dict()['learning_rate']
    update_network = ParameterUpdate(param_lr)
    update_network.phase = 'update_param'

    input_lr = Tensor(0.0001, mstype.float32)
    _executor.compile(update_network, input_lr)