def test_parameter_update_int32_and_tensor(): """ test_parameter_update """ net = Net() loss = nn.SoftmaxCrossEntropyWithLogits() optimizer = Momentum(net.get_parameters(), Tensor(np.array([0.1, 0.01, 0.001]), mstype.float32), 0.001) net_with_loss = WithLossCell(net, loss) train_network = TrainOneStepCell(net_with_loss, optimizer) # compile train graph train_network.set_train() inputs = Tensor(np.ones([1, 64]).astype(np.float32)) label = Tensor(np.zeros([1, 10]).astype(np.float32)) _executor.compile(train_network, inputs, label) # test tensor param_lr = train_network.parameters_dict()['learning_rate'] update_network = ParameterUpdate(param_lr) update_network.phase = 'update_param' input_lr = Tensor(np.array([0.2, 0.02, 0.002]), mstype.float32) _executor.compile(update_network, input_lr) # test int32 param_step = train_network.parameters_dict()['global_step'] update_global_step = ParameterUpdate(param_step) input_step = Tensor(np.array([1000]), mstype.int32) _executor.compile(update_global_step, input_step)
def test_parameter_update_error(): """ test_parameter_update """ input_np = np.array([1]) input_parameter = Parameter(np.array([1]), 'input_parameter') with pytest.raises(TypeError): ParameterUpdate(input_np) with pytest.raises(TypeError): ParameterUpdate(input_parameter)
def __init__(self, in_channel, x): super().__init__() #self._save_graphs(save_graph_flag=True, save_graph_path=".") self.biasadd = P.BiasAdd() self.equal = P.Equal() self.addn = P.AddN() self.conv = Conv2d(in_channels=in_channel, out_channels=in_channel, kernel_size=1, stride=1, has_bias=False, weight_init='ones', pad_mode='same') self.bn = BatchNorm2d(num_features=in_channel) self.assignadd = P.AssignAdd() self.assign = P.Assign() self.relu = ReLU() self.mean = P.ReduceMean(keep_dims=False) self.bias = Parameter(Tensor( np.random.randint(2, size=(3, )).astype((np.float32))), name="bias") self.bias2 = Parameter(Tensor(np.ones([3]).astype(np.float32)), name="bias2") self.parameterupdate = ParameterUpdate(self.bias) self.value = Tensor(np.random.randn(*(3, )), ms.float32) self.x = x
def test_parameter_update_float32(): """ test_parameter_update """ net = Net() loss = nn.SoftmaxCrossEntropyWithLogits() optimizer = Momentum(net.get_parameters(), 0.01, 0.001) net_with_loss = WithLossCell(net, loss) train_network = TrainOneStepCell(net_with_loss, optimizer) # compile train graph train_network.set_train() inputs = Tensor(np.ones([1, 64]).astype(np.float32)) label = Tensor(np.zeros([1, 10]).astype(np.float32)) _executor.compile(train_network, inputs, label) # construct and compile update graph param_lr = train_network.parameters_dict()['learning_rate'] update_network = ParameterUpdate(param_lr) update_network.phase = 'update_param' input_lr = Tensor(0.0001, mstype.float32) _executor.compile(update_network, input_lr)