def __init__(self, args): super(Model, self).__init__() self.se_resnet = se_resnet18() self.convnet = convnet() self.fc_in = torch.nn.Linear(256, 256) self.fc_out = torch.nn.Linear(256, 199)
def fit_convnet(cell, stimulus_type): """ Demo code for fitting a convnet model """ # initialize model mdl = convnet(cell, stimulus_type, num_filters=(8, 16), filter_size=(13, 13), weight_init='normal', l2_reg=0.01, mean_adapt=False) # train batchsize = 5000 # number of samples per batch num_epochs = 10 # number of epochs to train for save_weights_every = 50 # save weights every n iterations mdl.train(batchsize, num_epochs=num_epochs, save_every=save_weights_every) return mdl
def _build_model(self): self.n_color_cls = 8 self.net = models.convnet(num_classes=self.option.n_class) self.pred_net_r = models.Predictor(input_ch=32, num_classes=self.n_color_cls) self.pred_net_g = models.Predictor(input_ch=32, num_classes=self.n_color_cls) self.pred_net_b = models.Predictor(input_ch=32, num_classes=self.n_color_cls) self.loss = nn.CrossEntropyLoss(ignore_index=255) self.color_loss = nn.CrossEntropyLoss(ignore_index=255) if self.option.cuda: self.net.cuda() self.pred_net_r.cuda() self.pred_net_g.cuda() self.pred_net_b.cuda() self.loss.cuda() self.color_loss.cuda()
if __name__ == '__main__': # Let's load and process the dataset import numpy as np from fuel.datasets.dogs_vs_cats import DogsVsCats from fuel.streams import DataStream from fuel.schemes import ShuffledScheme from fuel.transformers.image import RandomFixedSizeCrop from fuel.transformers import Flatten # Load the training set train = DogsVsCats(('train',),subset=slice(0, 20)) #subset=slice(0, 20000) test = DogsVsCats(('test',),subset=slice(0,20)) input_size = (150,150) from models import mlp,convnet #main(None,mlp(input_size[0]*input_size[1]*3), train, test, num_epochs=1, input_size=input_size, batch_size=5, num_batches=20, flatten_stream=True) main("test1.txt", convnet(input_size), train, test, num_epochs=1, input_size=input_size, batch_size=64, num_batches=100) # from deep_res import build_cnn # model = build_cnn(x,3,64) # # THEANO_FLAGS='cuda.root=/usr/lib/nvidia-cuda-toolkit/', THEANO_FLAGS=cuda.root=/usr/lib/nvidia-cuda-toolkit/,device=gpu,floatX=float32 python dogs_cats.py # THEANO_FLAGS=device=gpu # THEANO_FLAGS=exception_verbosity=high,optimizer=None
test_data = QD_Dataset(mtype="test", root=args.data_root) test_loader = torch.utils.data.DataLoader(test_data, batch_size=args.test_bs, shuffle=True) num_classes = train_data.get_number_classes() print("Train images number: %d" % len(train_data)) print("Test images number: %d" % len(test_data)) net = None if args.model == 'resnet34': net = resnet34(num_classes) elif args.model == 'convnet': net = convnet(num_classes) if args.ngpu > 1: net = nn.DataParallel(net) if args.ngpu > 0: net.cuda() print(net) optimizer = torch.optim.SGD(net.parameters(), state['learning_rate'], momentum=state['momentum'], weight_decay=state['weight_decay']) Train_Loss = []
Img[i][j] = [1, 1, 1] else: Img[i][j] = [ 1 - canvas[i * shape + j] / 255, 1 - canvas[i * shape + j] / 255, 1 - canvas[i * shape + j] / 255 ] plt.imshow(Img) plt.title(name) plt.savefig("./" + root + "/ans/" + str(idx) + "_" + name + ".png") net = None if args.model == 'resnet34': net = resnet34(args.num_classes) elif args.model == 'convnet': net = convnet(args.num_classes) if args.ngpu > 1: net = nn.DataParallel(net) if args.ngpu > 0: net.cuda() net.load_state_dict(torch.load('./' + args.model_file_name)) print("Model loaded, start evaluating.") generate_eval_dataset() eval_data = QD_Dataset(mtype="eval", root="Dataset") eval_loader = torch.utils.data.DataLoader(eval_data, batch_size=args.eval_bs,
if __name__ == '__main__': print('PAC 2018') example = data_dir + subjects[0]['id'] + '.nii' image_size = nib.load(example).shape print('Image size:', image_size) features = np.zeros((len(subjects), 4)) labels = np.zeros((len(subjects), 2)) for i, sub in enumerate(subjects): features[i, 0] = sub['tiv'] features[i, 1] = sub['site'] features[i, 2] = sub['gender'] features[i, 3] = sub['age'] if sub['label'] == 1: labels[i, :] = [1, 0] else: labels[i, :] = [0, 1] f = hdf5_smash(subjects) model = convnet(image_size) model.fit_generator(batch_gen(f, labels, features), steps_per_epoch=None, epochs=10, validation_data=0.1, shuffle=False)