Beispiel #1
0
class CartPole(Environment):
    """
    The Inverted Pendulum on a Cart environment as presented in:
    "Least-Squares Policy Iteration". Lagoudakis M. G. and Parr R.. 2003.

    """
    def __init__(self,
                 m=2.,
                 M=8.,
                 l=.5,
                 g=9.8,
                 mu=1e-2,
                 max_u=50.,
                 noise_u=10.,
                 horizon=3000,
                 gamma=.95):
        """
        Constructor.

        Args:
            m (float, 2.0): mass of the pendulum;
            M (float, 8.0): mass of the cart;
            l (float, .5): length of the pendulum;
            g (float, 9.8): gravity acceleration constant;
            max_u (float, 50.): maximum allowed input torque;
            noise_u (float, 10.): maximum noise on the action;
            horizon (int, 3000): horizon of the problem;
            gamma (float, .95): discount factor.

        """
        # MDP parameters
        self._m = m
        self._M = M
        self._l = l
        self._g = g
        self._alpha = 1 / (self._m + self._M)
        self._mu = mu
        self._dt = .1
        self._max_u = max_u
        self._noise_u = noise_u
        high = np.array([np.inf, np.inf])

        # MDP properties
        observation_space = spaces.Box(low=-high, high=high)
        action_space = spaces.Discrete(3)
        mdp_info = MDPInfo(observation_space, action_space, gamma, horizon)

        # Visualization
        self._viewer = Viewer(2.5 * l, 2.5 * l)
        self._last_u = None
        self._state = None

        super().__init__(mdp_info)

    def reset(self, state=None):
        if state is None:
            angle = np.random.uniform(-np.pi / 8., np.pi / 8.)

            self._state = np.array([angle, 0.])
        else:
            self._state = state
            self._state[0] = normalize_angle(self._state[0])

        self._last_u = 0
        return self._state

    def step(self, action):
        if action == 0:
            u = -self._max_u
        elif action == 1:
            u = 0.
        else:
            u = self._max_u

        self._last_u = u

        u += np.random.uniform(-self._noise_u, self._noise_u)
        new_state = odeint(self._dynamics, self._state, [0, self._dt], (u, ))

        self._state = np.array(new_state[-1])
        self._state[0] = normalize_angle(self._state[0])

        if np.abs(self._state[0]) > np.pi * .5:
            reward = -1.
            absorbing = True
        else:
            reward = 0.
            absorbing = False

        return self._state, reward, absorbing, {}

    def render(self, mode='human'):
        start = 1.25 * self._l * np.ones(2)
        end = 1.25 * self._l * np.ones(2)

        end[0] += self._l * np.sin(self._state[0])
        end[1] += self._l * np.cos(self._state[0])

        self._viewer.line(start, end)
        self._viewer.square(start, 0, self._l / 10)
        self._viewer.circle(end, self._l / 20)

        direction = -np.sign(self._last_u) * np.array([1, 0])
        value = np.abs(self._last_u)
        self._viewer.force_arrow(start, direction, value, self._max_u,
                                 self._l / 5)

        self._viewer.display(self._dt)

    def stop(self):
        self._viewer.close()

    def _dynamics(self, state, t, u):
        theta = state[0]
        omega = state[1]

        d_theta = omega
        d_omega = (self._g * np.sin(theta) - self._alpha * self._m * self._l *
                   .5 * d_theta**2 * np.sin(2 * theta) * .5 -
                   self._alpha * np.cos(theta) * u) / (
                       2 / 3 * self._l -
                       self._alpha * self._m * self._l * .5 * np.cos(theta)**2)

        return d_theta, d_omega
Beispiel #2
0
class PuddleWorld(Environment):
    """
    Puddle world as presented in:
    "Off-Policy Actor-Critic". Degris T. et al.. 2012.

    """
    def __init__(self, start=None, goal=None, goal_threshold=.1, noise_step=.025,
                 noise_reward=0, reward_goal=0., thrust=.05, puddle_center=None,
                 puddle_width=None, gamma=.99, horizon=5000):
        """
        Constructor.

        Args:
            start (np.array, None): starting position of the agent;
            goal (np.array, None): goal position;
            goal_threshold (float, .1): distance threshold of the agent from the
                goal to consider it reached;
            noise_step (float, .025): noise in actions;
            noise_reward (float, 0): standard deviation of gaussian noise in reward;
            reward_goal (float, 0): reward obtained reaching goal state;
            thrust (float, .05): distance walked during each action;
            puddle_center (np.array, None): center of the puddle;
            puddle_width (np.array, None): width of the puddle;

        """
        # MDP parameters
        self._start = np.array([.2, .4]) if start is None else start
        self._goal = np.array([1., 1.]) if goal is None else goal
        self._goal_threshold = goal_threshold
        self._noise_step = noise_step
        self._noise_reward = noise_reward
        self._reward_goal = reward_goal
        self._thrust = thrust
        puddle_center = [[.3, .6], [.4, .5], [.8, .9]] if puddle_center is None else puddle_center
        self._puddle_center = [np.array(center) for center in puddle_center]
        puddle_width = [[.1, .03], [.03, .1], [.03, .1]] if puddle_width is None else puddle_width
        self._puddle_width = [np.array(width) for width in puddle_width]

        self._actions = [np.zeros(2) for _ in range(5)]
        for i in range(4):
            self._actions[i][i // 2] = thrust * (i % 2 * 2 - 1)

        # MDP properties
        action_space = Discrete(5)
        observation_space = Box(0., 1., shape=(2,))
        mdp_info = MDPInfo(observation_space, action_space, gamma, horizon)

        # Visualization
        self._pixels = None
        self._viewer = Viewer(1.0, 1.0)

        super().__init__(mdp_info)

    def reset(self, state=None):
        if state is None:
            self._state = self._start.copy()
        else:
            self._state = state

        return self._state

    def step(self, action):
        idx = action[0]
        self._state += self._actions[idx] + np.random.uniform(
            low=-self._noise_step, high=self._noise_step, size=(2,))
        self._state = np.clip(self._state, 0., 1.)

        absorbing = np.linalg.norm((self._state - self._goal),
                                   ord=1) < self._goal_threshold

        if not absorbing:
            reward = np.random.randn() * self._noise_reward + self._get_reward(
                self._state)
        else:
            reward = self._reward_goal

        return self._state, reward, absorbing, {}

    def render(self):
        if self._pixels is None:
            img_size = 100
            pixels = np.zeros((img_size, img_size, 3))
            for i in range(img_size):
                for j in range(img_size):
                    x = i / img_size
                    y = j / img_size
                    pixels[i, img_size - 1 - j] = self._get_reward(
                        np.array([x, y]))

            pixels -= pixels.min()
            pixels *= 255. / pixels.max()
            self._pixels = np.floor(255 - pixels)

        self._viewer.background_image(self._pixels)
        self._viewer.circle(self._state, 0.01,
                            color=(0, 255, 0))

        goal_area = [
            [-self._goal_threshold, 0],
            [0, self._goal_threshold],
            [self._goal_threshold, 0],
            [0, -self._goal_threshold]
        ]
        self._viewer.polygon(self._goal, 0, goal_area,
                             color=(255, 0, 0), width=1)

        self._viewer.display(0.1)

    def stop(self):
        if self._viewer is not None:
            self._viewer.close()

    def _get_reward(self, state):
        reward = -1.
        for cen, wid in zip(self._puddle_center, self._puddle_width):
            reward -= 2. * norm.pdf(state[0], cen[0], wid[0]) * norm.pdf(
                state[1], cen[1], wid[1])

        return reward
Beispiel #3
0
class AbstractGridWorld(Environment):
    """
    Abstract class to build a grid world.

    """
    def __init__(self, mdp_info, height, width, start, goal):
        """
        Constructor.

        Args:
            height (int): height of the grid;
            width (int): width of the grid;
            start (tuple): x-y coordinates of the goal;
            goal (tuple): x-y coordinates of the goal.

        """
        assert not np.array_equal(start, goal)

        assert goal[0] < height and goal[1] < width,\
            'Goal position not suitable for the grid world dimension.'

        self._state = None
        self._height = height
        self._width = width
        self._start = start
        self._goal = goal

        # Visualization
        self._viewer = Viewer(self._width, self._height, 500,
                              self._height * 500 // self._width)

        super().__init__(mdp_info)

    def reset(self, state=None):
        if state is None:
            state = self.convert_to_int(self._start, self._width)

        self._state = state

        return self._state

    def step(self, action):
        state = self.convert_to_grid(self._state, self._width)

        new_state, reward, absorbing, info = self._step(state, action)
        self._state = self.convert_to_int(new_state, self._width)

        return self._state, reward, absorbing, info

    def render(self):
        for row in range(1, self._height):
            for col in range(1, self._width):
                self._viewer.line(np.array([col, 0]),
                                  np.array([col, self._height]))
                self._viewer.line(np.array([0, row]),
                                  np.array([self._width, row]))

        goal_center = np.array(
            [.5 + self._goal[1], self._height - (.5 + self._goal[0])])
        self._viewer.square(goal_center, 0, 1, (0, 255, 0))

        start_grid = self.convert_to_grid(self._start, self._width)
        start_center = np.array(
            [.5 + start_grid[1], self._height - (.5 + start_grid[0])])
        self._viewer.square(start_center, 0, 1, (255, 0, 0))

        state_grid = self.convert_to_grid(self._state, self._width)
        state_center = np.array(
            [.5 + state_grid[1], self._height - (.5 + state_grid[0])])
        self._viewer.circle(state_center, .4, (0, 0, 255))

        self._viewer.display(.1)

    def _step(self, state, action):
        raise NotImplementedError('AbstractGridWorld is an abstract class.')

    def _grid_step(self, state, action):
        if action == 0:
            if state[0] > 0:
                state[0] -= 1
        elif action == 1:
            if state[0] + 1 < self._height:
                state[0] += 1
        elif action == 2:
            if state[1] > 0:
                state[1] -= 1
        elif action == 3:
            if state[1] + 1 < self._width:
                state[1] += 1

    @staticmethod
    def convert_to_grid(state, width):
        return np.array([state[0] // width, state[0] % width])

    @staticmethod
    def convert_to_int(state, width):
        return np.array([state[0] * width + state[1]])
Beispiel #4
0
class Segway(Environment):
    """
    The Segway environment (continuous version) as presented in:
    "Deep Learning for Actor-Critic Reinforcement Learning". Xueli Jia. 2015.

    """
    def __init__(self, random_start=False):
        """
        Constructor.

        Args:
            random_start (bool, False): whether to start from a random position
                or from the horizontal one.

        """
        # MDP parameters
        gamma = 0.97

        self._Mr = 0.3 * 2
        self._Mp = 2.55
        self._Ip = 2.6e-2
        self._Ir = 4.54e-4 * 2
        self._l = 13.8e-2
        self._r = 5.5e-2
        self._dt = 1e-2
        self._g = 9.81
        self._max_u = 5

        self._random = random_start

        high = np.array([-np.pi / 2, 15, 75])

        # MDP properties
        observation_space = spaces.Box(low=-high, high=high)
        action_space = spaces.Box(low=np.array([-self._max_u]),
                                  high=np.array([self._max_u]))
        horizon = 300
        mdp_info = MDPInfo(observation_space, action_space, gamma, horizon)

        # Visualization
        self._viewer = Viewer(5 * self._l, 5 * self._l)
        self._last_x = 0

        super().__init__(mdp_info)

    def reset(self, state=None):
        if state is None:
            if self._random:
                angle = np.random.uniform(-np.pi / 2, np.pi / 2)
            else:
                angle = -np.pi / 8

            self._state = np.array([angle, 0., 0.])
        else:
            self._state = state
            self._state[0] = normalize_angle(self._state[0])

        self._last_x = 0

        return self._state

    def step(self, action):
        u = self._bound(action[0], -self._max_u, self._max_u)
        new_state = odeint(self._dynamics, self._state, [0, self._dt], (u, ))

        self._state = np.array(new_state[-1])
        self._state[0] = normalize_angle(self._state[0])

        if abs(self._state[0]) > np.pi / 2:
            absorbing = True
            reward = -10000
        else:
            absorbing = False
            Q = np.diag([3.0, 0.1, 0.1])

            x = self._state

            J = x.dot(Q).dot(x)

            reward = -J

        return self._state, reward, absorbing, {}

    def _dynamics(self, state, t, u):

        alpha = state[0]
        d_alpha = state[1]

        h1 = (self._Mr + self._Mp) * (self._r**2) + self._Ir
        h2 = self._Mp * self._r * self._l * np.cos(alpha)
        h3 = self._l**2 * self._Mp + self._Ip

        omegaP = d_alpha

        dOmegaP = -(h2 * self._l * self._Mp * self._r * np.sin(alpha) * omegaP
                    **2 - self._g * h1 * self._l * self._Mp * np.sin(alpha) +
                    (h2 + h1) * u) / (h1 * h3 - h2**2)
        dOmegaR = (
            h3 * self._l * self._Mp * self._r * np.sin(alpha) * omegaP**2 -
            self._g * h2 * self._l * self._Mp * np.sin(alpha) +
            (h3 + h2) * u) / (h1 * h3 - h2**2)

        dx = list()
        dx.append(omegaP)
        dx.append(dOmegaP)
        dx.append(dOmegaR)

        return dx

    def render(self, mode='human'):
        start = 2.5 * self._l * np.ones(2)
        end = 2.5 * self._l * np.ones(2)

        dx = -self._state[2] * self._r * self._dt

        self._last_x += dx

        if self._last_x > 2.5 * self._l or self._last_x < -2.5 * self._l:
            self._last_x = (2.5 * self._l +
                            self._last_x) % (5 * self._l) - 2.5 * self._l

        start[0] += self._last_x
        end[0] += -2 * self._l * np.sin(self._state[0]) + self._last_x
        end[1] += 2 * self._l * np.cos(self._state[0])

        if (start[0] > 5 * self._l and end[0] > 5 * self._l) \
                or (start[0] < 0 and end[0] < 0):
            start[0] = start[0] % 5 * self._l
            end[0] = end[0] % 5 * self._l

        self._viewer.line(start, end)
        self._viewer.circle(start, self._r)

        self._viewer.display(self._dt)
class InvertedPendulum(Environment):
    """
    The Inverted Pendulum environment (continuous version) as presented in:
    "Reinforcement Learning In Continuous Time and Space". Doya K.. 2000.
    "Off-Policy Actor-Critic". Degris T. et al.. 2012.
    "Deterministic Policy Gradient Algorithms". Silver D. et al. 2014.

    """
    def __init__(self, random_start=False, m=1., l=1., g=9.8, mu=1e-2,
                 max_u=5., horizon=5000, gamma=.99):
        """
        Constructor.

        Args:
            random_start (bool, False): whether to start from a random position
                or from the horizontal one;
            m (float, 1.0): mass of the pendulum;
            l (float, 1.0): length of the pendulum;
            g (float, 9.8): gravity acceleration constant;
            mu (float, 1e-2): friction constant of the pendulum;
            max_u (float, 5.0): maximum allowed input torque;
            horizon (int, 5000): horizon of the problem;
            gamma (int, .99): discount factor.

        """
        # MDP parameters
        self._m = m
        self._l = l
        self._g = g
        self._mu = mu
        self._random = random_start
        self._dt = .01
        self._max_u = max_u
        self._max_omega = 5 / 2 * np.pi
        high = np.array([np.pi, self._max_omega])

        # MDP properties
        observation_space = spaces.Box(low=-high, high=high)
        action_space = spaces.Box(low=np.array([-max_u]),
                                  high=np.array([max_u]))
        mdp_info = MDPInfo(observation_space, action_space, gamma, horizon)

        # Visualization
        self._viewer = Viewer(2.5 * l, 2.5 * l)
        self._last_u = None

        super().__init__(mdp_info)

    def reset(self, state=None):
        if state is None:
            if self._random:
                angle = np.random.uniform(-np.pi, np.pi)
            else:
                angle = np.pi / 2

            self._state = np.array([angle, 0.])
        else:
            self._state = state
            self._state[0] = normalize_angle(self._state[0])
            self._state[1] = self._bound(self._state[1], -self._max_omega,
                                         self._max_omega)

        self._last_u = 0.0
        return self._state

    def step(self, action):
        u = self._bound(action[0], -self._max_u, self._max_u)
        new_state = odeint(self._dynamics, self._state, [0, self._dt],
                           (u,))

        self._state = np.array(new_state[-1])
        self._state[0] = normalize_angle(self._state[0])
        self._state[1] = self._bound(self._state[1], -self._max_omega,
                                     self._max_omega)

        reward = np.cos(self._state[0])

        self._last_u = u.item()

        return self._state, reward, False, {}

    def render(self, mode='human'):
        start = 1.25 * self._l * np.ones(2)
        end = 1.25 * self._l * np.ones(2)

        end[0] += self._l * np.sin(self._state[0])
        end[1] += self._l * np.cos(self._state[0])

        self._viewer.line(start, end)
        self._viewer.circle(start, self._l / 40)
        self._viewer.circle(end, self._l / 20)
        self._viewer.torque_arrow(start, -self._last_u, self._max_u,
                                  self._l / 5)

        self._viewer.display(self._dt)

    def stop(self):
        self._viewer.close()

    def _dynamics(self, state, t, u):
        theta = state[0]
        omega = self._bound(state[1], -self._max_omega, self._max_omega)

        d_theta = omega
        d_omega = (-self._mu * omega + self._m * self._g * self._l * np.sin(
            theta) + u) / (self._m * self._l**2)

        return d_theta, d_omega
Beispiel #6
0
class RoomToyEnv(Environment):
    def __init__(self, size=5., goal=[2.5, 2.5], goal_radius=0.6):

        # Save important environment information
        self._size = size
        self._goal = np.array(goal)
        self._goal_radius = goal_radius

        # Create the action space.
        action_space = Discrete(4)  # 4 actions: N, S, W, E

        # Create the observation space. It's a 2D box of dimension (size x size).
        # You can also specify low and high array, if every component has different limits
        shape = (2,)
        observation_space = Box(0, size, shape)

        # Create the MDPInfo structure, needed by the environment interface
        mdp_info = MDPInfo(observation_space, action_space, gamma=0.99, horizon=100)

        super().__init__(mdp_info)

        # Create a state class variable to store the current state
        self._state = None

        # Create the viewer
        self._viewer = Viewer(size, size)

    def reset(self, state=None):

        if state is None:
            # Generate randomly a state inside the state space, but not inside the goal
            self._state = np.random.rand(2) * self._size

            # Check if it's inside the goal radius and repeat the sample if necessary
            while np.linalg.norm(self._state - self._goal) < self._goal_radius:
                self._state = np.random.rand(2) * self._size
        else:
            # If an initial state is provided, set it and return, after checking it's valid.
            assert np.all(state < self._size) and np.all(state > 0)
            assert np.linalg.norm(state - self._goal) > self._goal_radius
            self._state = state

        # Return the current state
        return self._state

    def step(self, action):
        # convert the action in a N, S, W, E movement
        movement = np.zeros(2)
        if action == 0:
            movement[1] += 0.1
        elif action == 1:
            movement[1] -= 0.1
        elif action == 2:
            movement[0] -= 0.1
        elif action == 3:
            movement[0] += 0.1
        else:
            assert ValueError('The environment has only 4 actions')

        # Apply the movement with some noise:
        self._state += movement + np.random.randn(2)*0.05

        # Clip the state space inside the boundaries.
        low = self.info.observation_space.low
        high = self.info.observation_space.high

        self._state = Environment._bound(self._state, low, high)

        # Compute distance form goal
        goal_distance = np.linalg.norm(self._state - self._goal)

        # Compute the reward as distance penalty from goal
        reward = -goal_distance

        # Set the absorbing flag if goal is reached
        absorbing = goal_distance < self._goal_radius

        # Return all the information + empty dictionary (used to pass additional information)
        return self._state, reward, absorbing, {}

    def render(self):
        # Draw a red circle for the agent
        self._viewer.circle(self._state, 0.1, color=(255, 0, 0))

        # Draw a green circle for the goal
        self._viewer.circle(self._goal, self._goal_radius, color=(0, 255, 0))

        # Display the image for 0.1 seconds
        self._viewer.display(0.1)