Beispiel #1
0
class CartPole(Environment):
    """
    The Inverted Pendulum on a Cart environment as presented in:
    "Least-Squares Policy Iteration". Lagoudakis M. G. and Parr R.. 2003.

    """
    def __init__(self,
                 m=2.,
                 M=8.,
                 l=.5,
                 g=9.8,
                 mu=1e-2,
                 max_u=50.,
                 noise_u=10.,
                 horizon=3000,
                 gamma=.95):
        """
        Constructor.

        Args:
            m (float, 2.0): mass of the pendulum;
            M (float, 8.0): mass of the cart;
            l (float, .5): length of the pendulum;
            g (float, 9.8): gravity acceleration constant;
            max_u (float, 50.): maximum allowed input torque;
            noise_u (float, 10.): maximum noise on the action;
            horizon (int, 3000): horizon of the problem;
            gamma (float, .95): discount factor.

        """
        # MDP parameters
        self._m = m
        self._M = M
        self._l = l
        self._g = g
        self._alpha = 1 / (self._m + self._M)
        self._mu = mu
        self._dt = .1
        self._max_u = max_u
        self._noise_u = noise_u
        high = np.array([np.inf, np.inf])

        # MDP properties
        observation_space = spaces.Box(low=-high, high=high)
        action_space = spaces.Discrete(3)
        mdp_info = MDPInfo(observation_space, action_space, gamma, horizon)

        # Visualization
        self._viewer = Viewer(2.5 * l, 2.5 * l)
        self._last_u = None
        self._state = None

        super().__init__(mdp_info)

    def reset(self, state=None):
        if state is None:
            angle = np.random.uniform(-np.pi / 8., np.pi / 8.)

            self._state = np.array([angle, 0.])
        else:
            self._state = state
            self._state[0] = normalize_angle(self._state[0])

        self._last_u = 0
        return self._state

    def step(self, action):
        if action == 0:
            u = -self._max_u
        elif action == 1:
            u = 0.
        else:
            u = self._max_u

        self._last_u = u

        u += np.random.uniform(-self._noise_u, self._noise_u)
        new_state = odeint(self._dynamics, self._state, [0, self._dt], (u, ))

        self._state = np.array(new_state[-1])
        self._state[0] = normalize_angle(self._state[0])

        if np.abs(self._state[0]) > np.pi * .5:
            reward = -1.
            absorbing = True
        else:
            reward = 0.
            absorbing = False

        return self._state, reward, absorbing, {}

    def render(self, mode='human'):
        start = 1.25 * self._l * np.ones(2)
        end = 1.25 * self._l * np.ones(2)

        end[0] += self._l * np.sin(self._state[0])
        end[1] += self._l * np.cos(self._state[0])

        self._viewer.line(start, end)
        self._viewer.square(start, 0, self._l / 10)
        self._viewer.circle(end, self._l / 20)

        direction = -np.sign(self._last_u) * np.array([1, 0])
        value = np.abs(self._last_u)
        self._viewer.force_arrow(start, direction, value, self._max_u,
                                 self._l / 5)

        self._viewer.display(self._dt)

    def stop(self):
        self._viewer.close()

    def _dynamics(self, state, t, u):
        theta = state[0]
        omega = state[1]

        d_theta = omega
        d_omega = (self._g * np.sin(theta) - self._alpha * self._m * self._l *
                   .5 * d_theta**2 * np.sin(2 * theta) * .5 -
                   self._alpha * np.cos(theta) * u) / (
                       2 / 3 * self._l -
                       self._alpha * self._m * self._l * .5 * np.cos(theta)**2)

        return d_theta, d_omega
Beispiel #2
0
class AbstractGridWorld(Environment):
    """
    Abstract class to build a grid world.

    """
    def __init__(self, mdp_info, height, width, start, goal):
        """
        Constructor.

        Args:
            height (int): height of the grid;
            width (int): width of the grid;
            start (tuple): x-y coordinates of the goal;
            goal (tuple): x-y coordinates of the goal.

        """
        assert not np.array_equal(start, goal)

        assert goal[0] < height and goal[1] < width,\
            'Goal position not suitable for the grid world dimension.'

        self._state = None
        self._height = height
        self._width = width
        self._start = start
        self._goal = goal

        # Visualization
        self._viewer = Viewer(self._width, self._height, 500,
                              self._height * 500 // self._width)

        super().__init__(mdp_info)

    def reset(self, state=None):
        if state is None:
            state = self.convert_to_int(self._start, self._width)

        self._state = state

        return self._state

    def step(self, action):
        state = self.convert_to_grid(self._state, self._width)

        new_state, reward, absorbing, info = self._step(state, action)
        self._state = self.convert_to_int(new_state, self._width)

        return self._state, reward, absorbing, info

    def render(self):
        for row in range(1, self._height):
            for col in range(1, self._width):
                self._viewer.line(np.array([col, 0]),
                                  np.array([col, self._height]))
                self._viewer.line(np.array([0, row]),
                                  np.array([self._width, row]))

        goal_center = np.array(
            [.5 + self._goal[1], self._height - (.5 + self._goal[0])])
        self._viewer.square(goal_center, 0, 1, (0, 255, 0))

        start_grid = self.convert_to_grid(self._start, self._width)
        start_center = np.array(
            [.5 + start_grid[1], self._height - (.5 + start_grid[0])])
        self._viewer.square(start_center, 0, 1, (255, 0, 0))

        state_grid = self.convert_to_grid(self._state, self._width)
        state_center = np.array(
            [.5 + state_grid[1], self._height - (.5 + state_grid[0])])
        self._viewer.circle(state_center, .4, (0, 0, 255))

        self._viewer.display(.1)

    def _step(self, state, action):
        raise NotImplementedError('AbstractGridWorld is an abstract class.')

    def _grid_step(self, state, action):
        if action == 0:
            if state[0] > 0:
                state[0] -= 1
        elif action == 1:
            if state[0] + 1 < self._height:
                state[0] += 1
        elif action == 2:
            if state[1] > 0:
                state[1] -= 1
        elif action == 3:
            if state[1] + 1 < self._width:
                state[1] += 1

    @staticmethod
    def convert_to_grid(state, width):
        return np.array([state[0] // width, state[0] % width])

    @staticmethod
    def convert_to_int(state, width):
        return np.array([state[0] * width + state[1]])