Beispiel #1
0
def get_cluster_sizes(ds, cluster_counter=None):
    """Computer cluster sizes from all samples in a boolean dataset.

    Individually for each sample, in the input dataset, clusters of non-zero
    values will be determined after reverse-applying any transformation of the
    dataset's mapper (if any).

    Parameters
    ----------
    ds : dataset or array
      A dataset with boolean samples.
    cluster_counter : list or None
      If not None, the given list is extended with the cluster sizes computed
      from the present input dataset. Otherwise, a new list is generated.

    Returns
    -------
    list
      Unsorted list of cluster sizes from all samples in the input dataset
      (optionally appended to any values passed via ``cluster_counter``).
    """
    # XXX input needs to be boolean for the cluster size calculation to work
    if cluster_counter is None:
        cluster_counter = Counter()

    mapper = IdentityMapper()
    data = np.asanyarray(ds)
    if hasattr(ds, 'a') and 'mapper' in ds.a:
        mapper = ds.a.mapper

    for i in xrange(len(ds)):
        osamp = mapper.reverse1(data[i])
        m_clusters = _get_map_cluster_sizes(osamp)
        cluster_counter.update(m_clusters)
    return cluster_counter
Beispiel #2
0
def test_identity_mapper(s):
    idm = IdentityMapper()
    # doesn't matter what you throw at it
    assert_true(idm.forward(s) is s)
    assert_true(idm.forward1(s) is s)
    assert_true(idm.reverse(s) is s)
    assert_true(idm.reverse1(s) is s)
Beispiel #3
0
def test_identity_mapper(s):
    idm = IdentityMapper()
    # doesn't matter what you throw at it
    assert_true(idm.forward(s) is s)
    assert_true(idm.forward1(s) is s)
    assert_true(idm.reverse(s) is s)
    assert_true(idm.reverse1(s) is s)
Beispiel #4
0
def test_identity_mapper(s):
    idm = IdentityMapper()
    # doesn't matter what you throw at it
    assert_true(idm.forward(s) is s)
    assert_true(idm.forward1(s) is s)
    assert_true(idm.reverse(s) is s)
    assert_true(idm.reverse1(s) is s)
    # even like this it should work, but type conversion
    # can happen
    assert_array_equal(_verified_reverse1(idm, s), s)
    assert_array_equal(idm.reverse1(s), s)
    def _call(self, ds):
        if len(ds) > 1:
            # average all samples into one, assuming we got something like one
            # sample per subject as input
            avgr = mean_sample()
            ds = avgr(ds)
        # threshold input; at this point we only have one sample left
        thrd = ds.samples[0] > self._thrmap
        # mapper default
        mapper = IdentityMapper()
        # overwrite if possible
        if hasattr(ds, 'a') and 'mapper' in ds.a:
            mapper = ds.a.mapper
        # reverse-map input
        othrd = _verified_reverse1(mapper, thrd)
        # TODO: what is your purpose in life osamp? ;-)
        osamp = _verified_reverse1(mapper, ds.samples[0])
        # prep output dataset
        outds = ds.copy(deep=False)
        outds.fa['featurewise_thresh'] = self._thrmap
        # determine clusters
        labels, num = measurements.label(othrd,structure=np.ones([3,3,3]))
        area = measurements.sum(othrd,
                                labels,
                                index=np.arange(1, num + 1)).astype(int)
        com = measurements.center_of_mass(
            osamp, labels=labels, index=np.arange(1, num + 1))
        maxpos = measurements.maximum_position(
            osamp, labels=labels, index=np.arange(1, num + 1))
        # for the rest we need the labels flattened
        labels = mapper.forward1(labels)
        # relabel clusters starting with the biggest and increase index with
        # decreasing size
        ordered_labels = np.zeros(labels.shape, dtype=int)
        ordered_area = np.zeros(area.shape, dtype=int)
        ordered_com = np.zeros((num, len(osamp.shape)), dtype=float)
        ordered_maxpos = np.zeros((num, len(osamp.shape)), dtype=float)
        for i, idx in enumerate(np.argsort(area)):
            ordered_labels[labels == idx + 1] = num - i
            # kinda ugly, but we are looping anyway
            ordered_area[i] = area[idx]
            ordered_com[i] = com[idx]
            ordered_maxpos[i] = maxpos[idx]
        labels = ordered_labels
        area = ordered_area[::-1]
        com = ordered_com[::-1]
        maxpos = ordered_maxpos[::-1]
        del ordered_labels  # this one can be big
        # store cluster labels after forward-mapping
        outds.fa['clusters_featurewise_thresh'] = labels.copy()
        # location info
        outds.a['clusterlocations'] = \
            np.rec.fromarrays(
                [com, maxpos], names=('center_of_mass', 'max'))

        # update cluster size histogram with the actual result to get a
        # proper lower bound for p-values
        # this will make a copy, because the original matrix is int
        cluster_probs_raw = _transform_to_pvals(
            area, self._null_cluster_sizes.astype('float'))

        clusterstats = (
            [area, cluster_probs_raw],
            ['size', 'prob_raw']
        )
        # evaluate a bunch of stats for all clusters
        morestats = {}
        for cid in xrange(len(area)):
            # keep clusters on outer loop, because selection is more expensive
            clvals = ds.samples[0, labels == cid + 1]
            for id_, fx in (
                    ('mean', np.mean),
                    ('median', np.median),
                    ('min', np.min),
                    ('max', np.max),
                    ('std', np.std)):
                stats = morestats.get(id_, [])
                stats.append(fx(clvals))
                morestats[id_] = stats

        for k, v in morestats.items():
            clusterstats[0].append(v)
            clusterstats[1].append(k)

        if self.params.multicomp_correction is not None:
            # do a local import as only this tiny portion needs statsmodels
            import statsmodels.stats.multitest as smm
            rej, probs_corr = smm.multipletests(
                cluster_probs_raw,
                alpha=self.params.fwe_rate,
                method=self.params.multicomp_correction)[:2]
            # store corrected per-cluster probabilities
            clusterstats[0].append(probs_corr)
            clusterstats[1].append('prob_corrected')
            # remove cluster labels that did not pass the FWE threshold
            for i, r in enumerate(rej):
                if not r:
                    labels[labels == i + 1] = 0
            outds.fa['clusters_fwe_thresh'] = labels
        outds.a['clusterstats'] = \
            np.rec.fromarrays(clusterstats[0], names=clusterstats[1])
        return outds
Beispiel #6
0
 def nohyper(dss):
     return [IdentityMapper() for ds in dss]
def timesegments_classification(dss,
                                hyper=None,
                                part1=HalfPartitioner(),
                                part2=NFoldPartitioner(attr='subjects'),
                                window_size=6,
                                overlapping_windows=True,
                                distance='correlation',
                                do_zscore=True):
    """Time-segment classification across subjects using Hyperalignment

    Parameters
    ----------
    dss : list of datasets
       Datasets to benchmark on.  Usually a single dataset per subject.
    hyper : Hyperalignment-like, optional
       Beast which if called on a list of datasets should spit out trained
       mappers.  If not specified, `IdentityMapper`s will be used
    part1 : Partitioner, optional
       Partitioner to split data for hyperalignment "cross-validation"
    part2 : Partitioner, optional
       Partitioner for CV within the hyperalignment test split
    window_size : int, optional
       How many temporal points to consider for a classification sample
    overlapping_windows : bool, optional
       Strategy to how create and classify "samples" for classification.  If
       True -- `window_size` samples from each time point (but trailing ones)
       constitute a sample, and upon "predict" `window_size` of samples around
       each test point is not considered.  If False -- samples are just taken
       (with training and testing splits) at `window_size` step from one to
       another.
    do_zscore : bool, optional
       Perform zscoring (overall, not per-chunk) for each dataset upon
       partitioning with part1
    ...
    """
    # Generate outer-most partitioning ()
    parts = [copy.deepcopy(part1).generate(ds) for ds in dss]

    iter = 1
    errors = []

    while True:
        try:
            dss_partitioned = [p.next() for p in parts]
        except StopIteration:
            # we are done -- no more partitions
            break
        if __debug__:
            debug("BM", "Iteration %d", iter)

        dss_train, dss_test = zip(*[
            list(Splitter("partitions").generate(ds)) for ds in dss_partitioned
        ])

        # TODO:  allow for doing feature selection

        if do_zscore:
            for ds in dss_train + dss_test:
                zscore(ds, chunks_attr=None)

        if hyper is not None:
            # since otherwise it would remember previous loop dataset as the "commonspace"
            # Now let's do hyperalignment but on a copy in each loop iteration
            hyper_ = copy.deepcopy(hyper)
            mappers = hyper_(dss_train)
        else:
            mappers = [IdentityMapper() for ds in dss_train]

        dss_test_aligned = [
            mapper.forward(ds) for mapper, ds in zip(mappers, dss_test)
        ]

        # assign .sa.subjects to those datasets
        for i, ds in enumerate(dss_test_aligned):
            # part2.attr is by default "subjects"
            ds.sa[part2.attr] = [i]

        dss_test_bc = []
        for ds in dss_test_aligned:
            if overlapping_windows:
                startpoints = range(len(ds) - window_size + 1)
            else:
                startpoints = _get_nonoverlapping_startpoints(
                    len(ds), window_size)
            bm = BoxcarMapper(startpoints, window_size)
            bm.train(ds)
            ds_ = bm.forward(ds)
            ds_.sa['startpoints'] = startpoints

            # reassign subjects so they are not arrays
            def assign_unique(ds, sa):
                ds.sa[sa] = [
                    np.asscalar(np.unique(x)) for x in ds.sa[sa].value
                ]

            assign_unique(ds_, part2.attr)

            fm = FlattenMapper()
            fm.train(ds_)
            dss_test_bc.append(ds_.get_mapped(fm))

        ds_test = vstack(dss_test_bc)
        # Perform classification across subjects comparing against mean
        # spatio-temporal pattern of other subjects
        errors_across_subjects = []
        for ds_test_part in part2.generate(ds_test):
            ds_train_, ds_test_ = list(
                Splitter("partitions").generate(ds_test_part))
            # average across subjects to get a representative pattern per timepoint
            ds_train_ = mean_group_sample(['startpoints'])(ds_train_)
            assert (ds_train_.shape == ds_test_.shape)

            if distance == 'correlation':
                # TODO: redo more efficiently since now we are creating full
                # corrcoef matrix.  Also we might better just take a name for
                # the pdist measure but then implement them efficiently
                # (i.e. without hstacking both pieces together first)
                dist = 1 - np.corrcoef(
                    ds_train_, ds_test_)[len(ds_test_):, :len(ds_test_)]
            else:
                raise NotImplementedError

            if overlapping_windows:
                dist = wipe_out_offdiag(dist, window_size)

            winners = np.argmin(dist, axis=1)
            error = np.mean(winners != np.arange(len(winners)))
            errors_across_subjects.append(error)
        errors.append(errors_across_subjects)
        iter += 1

    errors = np.array(errors)
    if __debug__:
        debug(
            "BM", "Finished with %s array of errors. Mean error %.2f" %
            (errors.shape, np.mean(errors)))
    return errors
Beispiel #8
0
    def _call(self, ds):
        if len(ds) > 1:
            # average all samples into one, assuming we got something like one
            # sample per subject as input
            avgr = mean_sample()
            ds = avgr(ds)
        # threshold input; at this point we only have one sample left
        thrd = ds.samples[0] > self._thrmap
        # mapper default
        mapper = IdentityMapper()
        # overwrite if possible
        if hasattr(ds, 'a') and 'mapper' in ds.a:
            mapper = ds.a.mapper
        # reverse-map input
        osamp = mapper.reverse1(thrd)
        # prep output dataset
        outds = ds.copy(deep=False)
        outds.fa['featurewise_thresh'] = self._thrmap
        # determine clusters
        labels, num = measurements.label(osamp)
        area = measurements.sum(osamp,
                                labels,
                                index=np.arange(1, num + 1)).astype(int)
        # for the rest we need the labels flattened
        labels = mapper.forward1(labels)
        # relabel clusters starting with the biggest and increase index with
        # decreasing size
        ordered_labels = np.zeros(labels.shape, dtype=int)
        ordered_area = np.zeros(area.shape, dtype=int)
        for i, idx in enumerate(np.argsort(area)):
            ordered_labels[labels == idx + 1] = num - i
            ordered_area[i] = area[idx]
        area = ordered_area[::-1]
        labels = ordered_labels
        del ordered_labels  # this one can be big
        # store cluster labels after forward-mapping
        outds.fa['clusters_featurewise_thresh'] = labels.copy()
        # update cluster size histogram with the actual result to get a
        # proper lower bound for p-values
        # this will make a copy, because the original matrix is int
        cluster_probs_raw = _transform_to_pvals(
            area, self._null_cluster_sizes.astype('float'))

        if self.params.multicomp_correction is None:
            probs_corr = np.array(cluster_probs_raw)
            rej = probs_corr <= self.params.fwe_rate
            outds.a['clusterstats'] = \
                np.rec.fromarrays(
                    [area, cluster_probs_raw], names=('size', 'prob_raw'))
        else:
            # do a local import as only this tiny portion needs statsmodels
            import statsmodels.stats.multitest as smm
            rej, probs_corr = smm.multipletests(
                cluster_probs_raw,
                alpha=self.params.fwe_rate,
                method=self.params.multicomp_correction)[:2]
            # store corrected per-cluster probabilities
            outds.a['clusterstats'] = \
                np.rec.fromarrays(
                    [area, cluster_probs_raw, probs_corr],
                    names=('size', 'prob_raw', 'prob_corrected'))
            # remove cluster labels that did not pass the FWE threshold
            for i, r in enumerate(rej):
                if not r:
                    labels[labels == i + 1] = 0
            outds.fa['clusters_fwe_thresh'] = labels
        return outds