Beispiel #1
0
def nb_cv(cleaned_df):
    # Get Features
    training_set = get_nb_features(cleaned_df)
    # Get 10-Fold. Important: Shuffle=True
    cv = KFold(n_splits=10, random_state=0, shuffle=True)
    # Model
    sentiment_analyzer = SentimentAnalyzer()
    trainer = NaiveBayesClassifier.train
    # Store Result
    Accuracy = []
    # For each fold, train model, evaluate
    for train_index, test_index in cv.split(training_set):
        classifier = sentiment_analyzer.train(
            trainer,
            np.array(training_set)[train_index].tolist())
        truth_list = np.array(training_set)[test_index].tolist()
        performance = sentiment_analyzer.evaluate(truth_list, classifier)
        Accuracy.append(performance['Accuracy'])
        '''## Can add all other measures here. Sample Result as below: 
        {'Accuracy': 0.525, 
        'Precision [negative]': 0.28337874659400547, 'Recall [negative]': 0.7272727272727273, 'F-measure [negative]': 0.407843137254902, 
        'Precision [neutral]': 0.5011933174224343, 'Recall [neutral]': 0.30837004405286345, 'F-measure [neutral]': 0.38181818181818183, 
        'Precision [positive]': 0.7461629279811098, 'Recall [positive]': 0.611810261374637, 'F-measure [positive]': 0.672340425531915}
        '''
    return np.mean(np.asarray(Accuracy))
Beispiel #2
0
def runSentanal(train, test):
    sentanal = SentimentAnalyzer()

    all_words_neg = sentanal.all_words([mark_negation(doc) for doc in train])

    unigramFeats = sentanal.unigram_word_feats(all_words_neg, min_freq=4)
    sentanal.add_feat_extractor(extract_unigram_feats,
                                unigrams=unigramFeats,
                                handle_negation=True)

    # bigramFeats = sentanal.
    # sentanal.add_feat_extractor(extract_bigram_feats, bigrams=bigramFeats)

    trainList = sentanal.apply_features(train)
    testList = sentanal.apply_features(test)
    trainer = NaiveBayesClassifier.train
    classifier = sentanal.train(trainer, trainList)
    classifier.show_most_informative_features()

    # creates array for storing values
    values = []

    # display results
    for key, value in sorted(sentanal.evaluate(testList).items()):
        print('{0}: {1}'.format(key, value))
        values.append(value)

    # write results to csv
    with open(OUTPUT_CSV, mode='a') as csvFile:
        writer = csv.writer(csvFile, delimiter=',')
        writer.writerow(values)
Beispiel #3
0
def train():
    subj_docs = [
        (sent, 'subj')
        for sent in subjectivity.sents(categories='subj')[:n_instances]
    ]
    obj_docs = [(sent, 'obj')
                for sent in subjectivity.sents(categories='obj')[:n_instances]]

    train_subj_docs = subj_docs[:80]
    test_subj_docs = subj_docs[80:100]
    train_obj_docs = obj_docs[:80]
    test_obj_docs = obj_docs[80:100]
    training_docs = train_subj_docs + train_obj_docs
    testing_docs = test_subj_docs + test_obj_docs

    sentim_analyzer = SentimentAnalyzer()
    all_words_neg = sentim_analyzer.all_words(
        [mark_negation(doc) for doc in training_docs])

    unigram_feats = sentim_analyzer.unigram_word_feats(all_words_neg,
                                                       min_freq=4)
    sentim_analyzer.add_feat_extractor(extract_unigram_feats,
                                       unigrams=unigram_feats)

    training_set = sentim_analyzer.apply_features(training_docs)
    test_set = sentim_analyzer.apply_features(testing_docs)

    trainer = NaiveBayesClassifier.train
    classifier = sentim_analyzer.train(trainer, training_set)
    for key, value in sorted(sentim_analyzer.evaluate(test_set).items()):
        print('{0}: {1}'.format(key, value))
Beispiel #4
0
    def __init__(self):
        #document represented by a tuple (sentence,labelt)
        n_instances = 100
        subj_docs = [(sent, 'subj') for sent in subjectivity.sents(categories='subj')[:n_instances]]
        obj_docs = [(sent, 'obj') for sent in subjectivity.sents(categories='obj')[:n_instances]]

        #split subj and objinstances to keep a balanced uniform class distribution in both train and test sets.
        train_subj_docs = subj_docs[:80]
        test_subj_docs = subj_docs[80:100]
        train_obj_docs = obj_docs[:80]
        test_obj_docs = obj_docs[80:100]
        training_docs = train_subj_docs+train_obj_docs
        testing_docs = test_subj_docs+test_obj_docs

        #train classifier
        sentim_analyzer = SentimentAnalyzer()
        all_words_neg = sentim_analyzer.all_words([mark_negation(doc) for doc in training_docs])

        #use simple unigram word features, handling negation
        unigram_feats = sentim_analyzer.unigram_word_feats(all_words_neg, min_freq=4)
        sentim_analyzer.add_feat_extractor(extract_unigram_feats, unigrams=unigram_feats)

        #apply features to obtain a feature_value representations of our datasets
        training_set = sentim_analyzer.apply_features(training_docs)
        test_set = sentim_analyzer.apply_features(testing_docs)
        self.trainer = NaiveBayesClassifier.train
        self.classifier = sentim_analyzer.train(self.trainer, training_set)
        for key,value in sorted(sentim_analyzer.evaluate(test_set).items()):
            print('{0}: {1}'.format(key, value))
        self.sid = SentimentIntensityAnalyzer()
Beispiel #5
0
def trainSubjectivity():
    # Subjective vs. objective sentence classifier. Borrows from NLTK Documentation.
    # Plan on using it in larger machine learning sentiment model as pre-processing
    # Must differentiate between objective and subjective
    subjDocs = [(sent, 'subj') for sent in subjectivity.sents(categories='subj')]
    objDocs = [(sent, 'obj') for sent in subjectivity.sents(categories='obj')]
    nSubj = len(subjDocs)
    nObj = len(objDocs)
    # 90% Training, 10% Test
    subjTrain = int(.9 * nSubj)
    objTrain = int(.9 * nObj)
    trainSubj = subjDocs[:subjTrain]
    testSubj = subjDocs[subjTrain:nSubj]
    trainObj = objDocs[:objTrain]
    testObj = objDocs[objTrain:nObj]
    trainDocs = trainSubj + trainObj
    testDocs = testSubj + testObj
    # Create sentiment class, mark negation, create features (unigram)
    sentiment = SentimentAnalyzer()
    markNegation = sentiment.all_words([mark_negation(doc) for doc in trainDocs])
    unigramFeats = sentiment.unigram_word_feats(markNegation, min_freq=4)
    sentiment.add_feat_extractor(extract_unigram_feats, unigrams=unigramFeats)
    training = sentiment.apply_features(trainDocs)
    testing = sentiment.apply_features(testDocs)
    # Train classifier
    trainer = NaiveBayesClassifier.train
    subjectivityClassifier = sentiment.train(trainer, training)
    joblib.dump(subjectivityClassifier, 'subjectivity.pkl')
    for key, value in sorted(sentiment.evaluate(testing).items()): print('{0}: {1}'.format(key, value))
    ''' 
Beispiel #6
0
def sentiment_classifier(df):
    df = df.copy()

    # prepping data
    df = df[['txgot_binary', 'Convo_1']].dropna()
    text_process_col = pre.process_corpus(np.asarray(df['Convo_1']), [])
    txgot_col = np.asarray(df['txgot_binary'])

    # turns into list of tuples (convo, label)
    docs = list(zip(text_process_col, txgot_col))
    shuffle(docs)
    training_docs = docs[:int(len(docs) * 2 / 3)]
    test_docs = docs[int(len(docs) * 2 / 3):]

    # sentiment analyzer
    sentim_analyzer = SentimentAnalyzer()

    # simple unigram word features, handling negation
    all_words_neg = sentim_analyzer.all_words(
        [mark_negation(doc) for doc in training_docs])
    unigram_feats = sentim_analyzer.unigram_word_feats(all_words_neg,
                                                       min_freq=4)
    sentim_analyzer.add_feat_extractor(extract_unigram_feats,
                                       unigrams=unigram_feats)

    # train classifier
    training_set = sentim_analyzer.apply_features(training_docs)
    test_set = sentim_analyzer.apply_features(test_docs)
    trainer = NaiveBayesClassifier.train
    classifier = sentim_analyzer.train(trainer, training_set)

    # show results
    for key, value in sentim_analyzer.evaluate(test_set).items():
        print('{}: {}'.format(key, value))
Beispiel #7
0
def demo_subjectivity(trainer, save_analyzer=False, n_instances=None, output=None):
    """
    Train and test a classifier on instances of the Subjective Dataset by Pang and
    Lee. The dataset is made of 5000 subjective and 5000 objective sentences.
    All tokens (words and punctuation marks) are separated by a whitespace, so
    we use the basic WhitespaceTokenizer to parse the data.

    :param trainer: `train` method of a classifier.
    :param save_analyzer: if `True`, store the SentimentAnalyzer in a pickle file.
    :param n_instances: the number of total sentences that have to be used for
        training and testing. Sentences will be equally split between positive
        and negative.
    :param output: the output file where results have to be reported.
    """
    from nltk.sentiment import SentimentAnalyzer
    from nltk.corpus import subjectivity

    if n_instances is not None:
        n_instances = int(n_instances/2)

    subj_docs = [(sent, 'subj') for sent in subjectivity.sents(categories='subj')[:n_instances]]
    obj_docs = [(sent, 'obj') for sent in subjectivity.sents(categories='obj')[:n_instances]]

    # We separately split subjective and objective instances to keep a balanced
    # uniform class distribution in both train and test sets.
    train_subj_docs, test_subj_docs = split_train_test(subj_docs)
    train_obj_docs, test_obj_docs = split_train_test(obj_docs)

    training_docs = train_subj_docs+train_obj_docs
    testing_docs = test_subj_docs+test_obj_docs

    sentim_analyzer = SentimentAnalyzer()
    all_words_neg = sentim_analyzer.all_words([mark_negation(doc) for doc in training_docs])

    # Add simple unigram word features handling negation
    unigram_feats = sentim_analyzer.unigram_word_feats(all_words_neg, min_freq=4)
    sentim_analyzer.add_feat_extractor(extract_unigram_feats, unigrams=unigram_feats)

    # Apply features to obtain a feature-value representation of our datasets
    training_set = sentim_analyzer.apply_features(training_docs)
    test_set = sentim_analyzer.apply_features(testing_docs)

    classifier = sentim_analyzer.train(trainer, training_set)
    try:
        classifier.show_most_informative_features()
    except AttributeError:
        print('Your classifier does not provide a show_most_informative_features() method.')
    results = sentim_analyzer.evaluate(test_set)

    if save_analyzer == True:
        save_file(sentim_analyzer, 'sa_subjectivity.pickle')

    if output:
        extr = [f.__name__ for f in sentim_analyzer.feat_extractors]
        output_markdown(output, Dataset='subjectivity', Classifier=type(classifier).__name__,
                        Tokenizer='WhitespaceTokenizer', Feats=extr,
                        Instances=n_instances, Results=results)

    return sentim_analyzer
Beispiel #8
0
    def sentiment_analysis(self, testing_data, training_data=None):
        if training_data is None:
            training_data = self.training_data
            ## Apply sentiment analysis to data to extract new "features"

            # Initialize sentiment analyzer object
        sentiment_analyzer = SentimentAnalyzer()

        # Mark all negative words in training data, using existing list of negative words
        all_negative_words = sentiment_analyzer.all_words([mark_negation(data) for data in training_data])

        unigram_features = sentiment_analyzer.unigram_word_feats(all_negative_words, min_freq=4)
        len(unigram_features)
        sentiment_analyzer.add_feat_extractor(extract_unigram_feats, unigrams=unigram_features)

        training_final = sentiment_analyzer.apply_features(training_data)
        testing_final = sentiment_analyzer.apply_features(testing_data)

        ## Traing model and test

        model = NaiveBayesClassifier.train
        classifer = sentiment_analyzer.train(model, training_final)

        for key, value in sorted(sentiment_analyzer.evaluate(testing_final).items()):
            print ("{0}: {1}".format(key, value))
Beispiel #9
0
def demo_subjectivity(trainer, save_analyzer=False, n_instances=None, output=None):
    """
    Train and test a classifier on instances of the Subjective Dataset by Pang and
    Lee. The dataset is made of 5000 subjective and 5000 objective sentences.
    All tokens (words and punctuation marks) are separated by a whitespace, so
    we use the basic WhitespaceTokenizer to parse the data.

    :param trainer: `train` method of a classifier.
    :param save_analyzer: if `True`, store the SentimentAnalyzer in a pickle file.
    :param n_instances: the number of total sentences that have to be used for
        training and testing. Sentences will be equally split between positive
        and negative.
    :param output: the output file where results have to be reported.
    """
    from nltk.sentiment import SentimentAnalyzer
    from nltk.corpus import subjectivity

    if n_instances is not None:
        n_instances = int(n_instances/2)

    subj_docs = [(sent, 'subj') for sent in subjectivity.sents(categories='subj')[:n_instances]]
    obj_docs = [(sent, 'obj') for sent in subjectivity.sents(categories='obj')[:n_instances]]

    # We separately split subjective and objective instances to keep a balanced
    # uniform class distribution in both train and test sets.
    train_subj_docs, test_subj_docs = split_train_test(subj_docs)
    train_obj_docs, test_obj_docs = split_train_test(obj_docs)

    training_docs = train_subj_docs+train_obj_docs
    testing_docs = test_subj_docs+test_obj_docs

    sentim_analyzer = SentimentAnalyzer()
    all_words_neg = sentim_analyzer.all_words([mark_negation(doc) for doc in training_docs])

    # Add simple unigram word features handling negation
    unigram_feats = sentim_analyzer.unigram_word_feats(all_words_neg, min_freq=4)
    sentim_analyzer.add_feat_extractor(extract_unigram_feats, unigrams=unigram_feats)

    # Apply features to obtain a feature-value representation of our datasets
    training_set = sentim_analyzer.apply_features(training_docs)
    test_set = sentim_analyzer.apply_features(testing_docs)

    classifier = sentim_analyzer.train(trainer, training_set)
    try:
        classifier.show_most_informative_features()
    except AttributeError:
        print('Your classifier does not provide a show_most_informative_features() method.')
    results = sentim_analyzer.evaluate(test_set)

    if save_analyzer == True:
        save_file(sentim_analyzer, 'sa_subjectivity.pickle')

    if output:
        extr = [f.__name__ for f in sentim_analyzer.feat_extractors]
        output_markdown(output, Dataset='subjectivity', Classifier=type(classifier).__name__,
                        Tokenizer='WhitespaceTokenizer', Feats=extr,
                        Instances=n_instances, Results=results)

    return sentim_analyzer
Beispiel #10
0
def demo_movie_reviews(trainer, n_instances=None, output=None):
    """
    Train classifier on all instances of the Movie Reviews dataset.
    The corpus has been preprocessed using the default sentence tokenizer and
    WordPunctTokenizer.
    Features are composed of:
        - most frequent unigrams

    :param trainer: `train` method of a classifier.
    :param n_instances: the number of total reviews that have to be used for
        training and testing. Reviews will be equally split between positive and
        negative.
    :param output: the output file where results have to be reported.
    """
    from nltk.corpus import movie_reviews
    from nltk.sentiment import SentimentAnalyzer

    if n_instances is not None:
        n_instances = int(n_instances/2)

    pos_docs = [(list(movie_reviews.words(pos_id)), 'pos') for pos_id in movie_reviews.fileids('pos')[:n_instances]]
    neg_docs = [(list(movie_reviews.words(neg_id)), 'neg') for neg_id in movie_reviews.fileids('neg')[:n_instances]]
    # We separately split positive and negative instances to keep a balanced
    # uniform class distribution in both train and test sets.
    train_pos_docs, test_pos_docs = split_train_test(pos_docs)
    train_neg_docs, test_neg_docs = split_train_test(neg_docs)

    training_docs = train_pos_docs+train_neg_docs
    testing_docs = test_pos_docs+test_neg_docs

    sentim_analyzer = SentimentAnalyzer()
    all_words = sentim_analyzer.all_words(training_docs)

    # Add simple unigram word features
    unigram_feats = sentim_analyzer.unigram_word_feats(all_words, min_freq=4)
    sentim_analyzer.add_feat_extractor(extract_unigram_feats, unigrams=unigram_feats)
    # Apply features to obtain a feature-value representation of our datasets
    training_set = sentim_analyzer.apply_features(training_docs)
    test_set = sentim_analyzer.apply_features(testing_docs)

    classifier = sentim_analyzer.train(trainer, training_set)
    try:
        classifier.show_most_informative_features()
    except AttributeError:
        print('Your classifier does not provide a show_most_informative_features() method.')
    results = sentim_analyzer.evaluate(test_set)

    if output:
        extr = [f.__name__ for f in sentim_analyzer.feat_extractors]
        output_markdown(output, Dataset='Movie_reviews', Classifier=type(classifier).__name__,
                        Tokenizer='WordPunctTokenizer', Feats=extr, Results=results,
                        Instances=n_instances)
def train():
  positive_tweets = read_tweets('positive.txt', 'positive')
  negative_tweets = read_tweets('negative.txt', 'negative')
  print len(positive_tweets)
  print len(negative_tweets)

  pos_train = positive_tweets[:len(positive_tweets)]
  neg_train = negative_tweets[:len(negative_tweets)]
  # pos_test = positive_tweets[len(positive_tweets)*80/100+1:]
  # neg_test = negative_tweets[len(positive_tweets)*80/100+1:]

  training_data = pos_train + neg_train
  # test_data = pos_test + neg_test

  sentim_analyzer = SentimentAnalyzer()
  all_words_neg = sentim_analyzer.all_words([mark_negation(doc) for doc in training_data])
  unigram_feats = sentim_analyzer.unigram_word_feats(all_words_neg, min_freq=4)
  print len(unigram_feats)

  sentim_analyzer.add_feat_extractor(extract_unigram_feats, unigrams=unigram_feats)
  training_set = sentim_analyzer.apply_features(training_data)

  # test_set = sentim_analyzer.apply_features(test_data)
  # print test_set

  trainer = NaiveBayesClassifier.train
  sentim_analyzer.train(trainer, training_set)

  # for key,value in sorted(sentim_analyzer.evaluate(test_set).items()):
  #   print('{0}: {1}'.format(key, value))
  # print sentim_analyzer.classify(tokenize_sentence('I hate driving car at night'))

  return sentim_analyzer
    def load_data(self, classifier=None):
        # source: http://www.nltk.org/book/ch06.html, http://www.nltk.org/howto/sentiment.html
        print "Loading training data...",
        sys.stdout.flush()
        training_docs, testing_docs = self.load_web_reviews()

        # documents = [(word_tokenize(movie_reviews.raw(fileid)), category)
        #             for category in movie_reviews.categories()
        #             for fileid in movie_reviews.fileids(category)]
        # random.shuffle(documents)
        # cutoff = int(len(documents) * 0.1)
        # training_docs, testing_docs = documents[cutoff:], documents[:cutoff]
        print "Done!"

        print "Extracting unigram features and applying to training data...",
        sys.stdout.flush()
        sentim_analyzer = SentimentAnalyzer(classifier=classifier)
        all_words = sentim_analyzer.all_words([mark_negation(doc) for doc in training_docs])
        unigram_feats = sentim_analyzer.unigram_word_feats(all_words)#, top_n=5000)
        # print len(unigrams)
        sentim_analyzer.add_feat_extractor(extract_unigram_feats, unigrams=unigram_feats, handle_negation=True)
        training_set = sentim_analyzer.apply_features(training_docs)
        testing_set = sentim_analyzer.apply_features(testing_docs)
        print "Done!"
        return sentim_analyzer, training_set, testing_set
Beispiel #13
0
def sentiment_analysis(data):
    from nltk.classify import NaiveBayesClassifier
    from nltk.corpus import subjectivity
    from nltk.sentiment import SentimentAnalyzer
    from nltk.sentiment.util import *

    n_instances = 100
    subj_docs = [
        (sent, 'subj')
        for sent in subjectivity.sents(categories='subj')[:n_instances]
    ]
    obj_docs = [(sent, 'obj')
                for sent in subjectivity.sents(categories='obj')[:n_instances]]

    train_subj_docs = subj_docs[:80]
    test_subj_docs = subj_docs[80:100]
    train_obj_docs = obj_docs[:80]
    test_obj_docs = obj_docs[80:100]
    training_docs = train_subj_docs + train_obj_docs
    testing_docs = test_subj_docs + test_obj_docs

    sentim_analyzer = SentimentAnalyzer()
    all_words_neg = sentim_analyzer.all_words(
        [mark_negation(doc) for doc in training_docs])

    unigram_feats = sentim_analyzer.unigram_word_feats(all_words_neg,
                                                       min_freq=4)
    sentim_analyzer.add_feat_extractor(extract_unigram_feats,
                                       unigrams=unigram_feats)

    training_set = sentim_analyzer.apply_features(training_docs)
    test_set = sentim_analyzer.apply_features(testing_docs)

    trainer = NaiveBayesClassifier.train
    classifier = sentim_analyzer.train(trainer, training_set)

    for key, value in sorted(sentim_analyzer.evaluate(test_set).items()):
        print('{0}: {1}'.format(key, value))

    from nltk.sentiment.vader import SentimentIntensityAnalyzer
    from nltk import tokenize

    sid = SentimentIntensityAnalyzer()
    for line in data:
        ss = sid.polarity_scores(line['line_text'])
        line['compound'] = ss['compound']
        line['neg'] = ss['neg']
        line['pos'] = ss['pos']
        line['neu'] = ss['neu']
def runClassifier(classifierKey, emailsInSentenceForm, unigram_features):
    #Create a sentiment analyzer to analyze the text documents. This analyzer
    #provides an abstraction for managing a classifier, and feature extractor.
    #It also provides convinence data metrics on classifier performance.
    sentim_analyzer = SentimentAnalyzer()
    #Create a feature extractor based on the unigram word features created.
    #The unigram feature extractor is found in the sentiment utils package.
    sentim_analyzer.add_feat_extractor(extract_unigram_feats,
                                       unigrams=unigram_features)

    print("Current classifier: " + classifierKey)
    #Load the classifier.
    classifier = loadModel(classifierKey)

    #Set up sentiment counts for the emails.
    posVote = 0
    negVote = 0
    classifierResultsDict = []
    #int(emailsInSentenceForm.shape[0]/3.0)
    for emailIndex in range(0, int(emailsInSentenceForm.shape[0])):
        if (emailIndex % 100 == 0):
            print(classifierKey + " On email: " + str(emailIndex))
            #Write the results to a file.
            f = open("./" + classifierKey + "Results.pkl", "w")
            pickle.dump(classifierResultsDict, f)
            f.close()
        #Get the list of sentences for the email.
        email = emailsInSentenceForm.iloc[emailIndex, :][0]
        featurizedSentenceList = sentim_analyzer.apply_features(email)
        for sent in featurizedSentenceList:
            label = classifier.classify(sent[0])
            if label == "pos":
                posVote += 1
            else:
                negVote += 1
        #Take the maximum vote for the class label. Use 1 and -1 to faciliitate the later correlation calculations.
        if posVote >= negVote:
            classifierResultsDict.append(1)
        else:
            classifierResultsDict.append(-1)
        #Reset pos and neg votes to 0.
        posVote = 0
        negVote = 0

    #Write the results to a file.
    f = open("./" + classifierKey + "Results.pkl", "w")
    pickle.dump(classifierResultsDict, f)
    f.close()
Beispiel #15
0
def get_best_classifier_from_debates():
    """
    The best classifier for debates turned out to be Freq Dist, Logitic
    :return: the trained classifier using the entire corpus
    """
    neg_docs, pos_docs = sentimentAnalysisDocumentBased.get_political_debates()
    train_docs = neg_docs + pos_docs

    # Set up the Sentiment Analyzer
    analyzer = SentimentAnalyzer()
    analyzer.add_feat_extractor(
        sentimentAnalysisDocumentBased.extract_freq_dist)
    train_feat = list(analyzer.apply_features(train_docs, labeled=True))
    classifier = SklearnClassifier(LogisticRegression()).train(train_feat)

    return analyzer, classifier
Beispiel #16
0
def get_best_classifer_from_movies():
    """
    The best classifier for movies turned out to be Bigram, Linear SVM
    :return: the trained classifier using the entire corpus
    """
    neg_docs, pos_docs = sentimentAnalysisDocumentBased.get_movie_corpus()
    train_docs = neg_docs + pos_docs

    # Set up the Sentiment Analyzer
    analyzer = SentimentAnalyzer()
    analyzer.add_feat_extractor(
        sentimentAnalysisDocumentBased.extract_sig_bigram_feats)
    train_feat = list(analyzer.apply_features(train_docs, labeled=True))
    classifier = SklearnClassifier(LinearSVC()).train(train_feat)

    return analyzer, classifier
Beispiel #17
0
def createClassifier(ignoreTweets=False):
    neg_ids = movie_reviews.fileids('neg')
    pos_ids = movie_reviews.fileids('pos')
    neg_sents = [(extractWords(movie_reviews.words(fileids=[f])), 'neg')
                 for f in neg_ids]
    pos_sents = [(extractWords(movie_reviews.words(fileids=[f])), 'pos')
                 for f in pos_ids]

    #if you dont want to process all tweets, just call :
    (neg_pols, pos_pols) = getSentPolarities()
    (neg_tweets, pos_tweets) = getTweets(ignoreTweets)
    neg_sents = neg_sents + neg_tweets + neg_pols
    pos_sents = pos_sents + pos_tweets + pos_pols
    trainsizeneg = int(0.75 * len(neg_sents))
    trainsizepos = int(0.75 * len(pos_sents))

    all_train = neg_sents[:trainsizeneg] + pos_sents[:trainsizepos]
    all_test = neg_sents[trainsizeneg:] + pos_sents[trainsizepos:]
    # train size = 1500, test size = 500

    s_analyzer = SentimentAnalyzer()

    classifier = NaiveBayesClassifier.train(all_train)
    print accuracy(classifier, all_test)
    #classifier.show_most_informative_features()

    return classifier
Beispiel #18
0
def NB(df_train, df_dev):
    # Feature extraction
    # n=1200
    df_train['clean_text'] = df_train['clean_text'].apply(
        lambda x: stem_stop(x))
    df_dev['clean_text'] = df_dev['clean_text'].apply(lambda x: stem_stop(x))

    df_pos_train = df_train[df_train['tweet_sentiment'] == 'positive']
    # df_pos_train= df_pos_train.sample(n=n, random_state=1)
    pos_tweets = df_pos_train['clean_text'].tolist()

    df_neg_train = df_train[df_train['tweet_sentiment'] == 'negative']
    # df_neg_train= df_neg_train.sample(n=n, random_state=1)
    neg_tweets = df_neg_train['clean_text'].tolist()

    df_neutral_train = df_train[df_train['tweet_sentiment'] == 'neutral']
    # df_neutral_train= df_neutral_train.sample(n=n, random_state=1)
    neutral_tweets = df_neutral_train['clean_text'].tolist()

    positive_featuresets = [(features(tweet), 'positive')
                            for tweet in pos_tweets]
    negative_featuresets = [(features(tweet), 'negative')
                            for tweet in neg_tweets]
    neutral_featuresets = [(features(tweet), 'neutral')
                           for tweet in neutral_tweets]
    training_features = positive_featuresets + negative_featuresets + neutral_featuresets
    ngram_vectorizer = CountVectorizer(analyzer='word',
                                       binary=True,
                                       lowercase=False,
                                       ngram_range=(1, 2))

    # train the model
    sentiment_analyzer = SentimentAnalyzer()
    trainer = NaiveBayesClassifier.train

    classifier = sentiment_analyzer.train(trainer, training_features)
    truth_list = list(df_dev[['clean_text',
                              'tweet_sentiment']].itertuples(index=False,
                                                             name=None))

    # test the model
    for i, (text, expected) in enumerate(truth_list):
        text_feats = features(text)
        truth_list[i] = (text_feats, expected)
    re = sentiment_analyzer.evaluate(truth_list, classifier)
    print(re)
    return classifier
Beispiel #19
0
def demo_movie_reviews(trainer, n_instances=None, output=None):
    """
    Train classifier on all instances of the Movie Reviews dataset.
    The corpus has been preprocessed using the default sentence tokenizer and
    WordPunctTokenizer.
    Features are composed of:
        - most frequent unigrams

    :param trainer: `train` method of a classifier.
    :param n_instances: the number of total reviews that have to be used for
        training and testing. Reviews will be equally split between positive and
        negative.
    :param output: the output file where results have to be reported.
    """
    from nltk.corpus import movie_reviews
    from nltk.sentiment import SentimentAnalyzer

    if n_instances is not None:
        n_instances = int(n_instances/2)

    pos_docs = [(list(movie_reviews.words(pos_id)), 'pos') for pos_id in movie_reviews.fileids('pos')[:n_instances]]
    neg_docs = [(list(movie_reviews.words(neg_id)), 'neg') for neg_id in movie_reviews.fileids('neg')[:n_instances]]
    # We separately split positive and negative instances to keep a balanced
    # uniform class distribution in both train and test sets.
    train_pos_docs, test_pos_docs = split_train_test(pos_docs)
    train_neg_docs, test_neg_docs = split_train_test(neg_docs)

    training_docs = train_pos_docs+train_neg_docs
    testing_docs = test_pos_docs+test_neg_docs

    sentim_analyzer = SentimentAnalyzer()
    all_words = sentim_analyzer.all_words(training_docs)

    # Add simple unigram word features
    unigram_feats = sentim_analyzer.unigram_word_feats(all_words, min_freq=4)
    sentim_analyzer.add_feat_extractor(extract_unigram_feats, unigrams=unigram_feats)
    # Apply features to obtain a feature-value representation of our datasets
    training_set = sentim_analyzer.apply_features(training_docs)
    test_set = sentim_analyzer.apply_features(testing_docs)

    classifier = sentim_analyzer.train(trainer, training_set)
    try:
        classifier.show_most_informative_features()
    except AttributeError:
        print('Your classifier does not provide a show_most_informative_features() method.')
    results = sentim_analyzer.evaluate(test_set)

    if output:
        extr = [f.__name__ for f in sentim_analyzer.feat_extractors]
        output_markdown(output, Dataset='Movie_reviews', Classifier=type(classifier).__name__,
                        Tokenizer='WordPunctTokenizer', Feats=extr, Results=results,
                        Instances=n_instances)
    def __init__(self, sentiment_only, num_phrases_to_track=20):
        # neg_phrases = filter_negative_phrases(load_csv_sentences('thoughtsandfeelings.csv'))
        # pos_phrases = filter_positive_phrases(load_csv_sentences('spiritualforums.csv'))
        # file_pos = open("pos_phrases.txt", 'w')
        # file_neg = open("neg_phrases.txt", 'w')

        # for item in pos_phrases:
        #     print>>file_pos, item
        # for item in neg_phrases:
        #     print>>file_neg, item
        self.recent_sentiment_scores = []

        neg_file = open("ALL_neg_phrases_filtered.txt", "r")
        pos_file = open("webtext_phrases_with_lots_of_words.txt", "r")
        neg_phrases = neg_file.readlines()
        pos_phrases = pos_file.readlines()

        neg_docs = []
        pos_docs = []
        for phrase in neg_phrases:
            neg_docs.append((phrase.split(), 'suicidal'))
        for phrase in pos_phrases[:len(neg_phrases)]:
            pos_docs.append((phrase.split(), 'alright'))

        print len(neg_docs)
        print len(pos_docs)
        # negcutoff = len(neg_docs) * 3 / 4
        # poscutoff = len(pos_docs) * 3 / 4
        negcutoff = -200
        poscutoff = -200

        train_pos_docs = pos_docs[:poscutoff]
        test_pos_docs = pos_docs[poscutoff:]
        train_neg_docs = neg_docs[:negcutoff]
        test_neg_docs = neg_docs[negcutoff:]
        training_docs = train_pos_docs + train_neg_docs
        testing_docs = test_pos_docs + test_neg_docs

        self.sentim_analyzer = SentimentAnalyzer()

        if not sentiment_only:
            all_words = self.sentim_analyzer.all_words([doc for doc in training_docs])
            unigram_feats = self.sentim_analyzer.unigram_word_feats(all_words, min_freq=1)
            self.sentim_analyzer.add_feat_extractor(extract_unigram_feats, unigrams=unigram_feats)

        self.sentim_analyzer.add_feat_extractor(vader_sentiment_feat)

        # bigram_feats = self.sentim_analyzer.bigram_collocation_feats(all_words, min_freq=1)
        # self.sentim_analyzer.add_feat_extractor(extract_bigram_feats, bigrams=bigram_feats)

        training_set = self.sentim_analyzer.apply_features(training_docs)
        test_set = self.sentim_analyzer.apply_features(testing_docs)
        trainer = NaiveBayesClassifier.train
        self.classifier = self.sentim_analyzer.train(trainer, training_set)
        for key, value in sorted(self.sentim_analyzer.evaluate(test_set).items()):
            print('{0}: {1}'.format(key, value))
        self.classifier.show_most_informative_features(20)
Beispiel #21
0
 def __init__(self, n_instances=500):
     self.n_instances = n_instances
     self.subj_classifier = None
     self.sentim_analyzer = None
     try:
         BASE_DIR = os.path.dirname(
             os.path.dirname(os.path.abspath(__file__)))
         with open(os.path.join(BASE_DIR, 'main\my_classifier.pickle'),
                   'rb') as f:
             sentim_analyzer = pickle.load(f)
             self.sentim_analyzer = sentim_analyzer
     except IOError:
         with open('plot.tok.gt9.5000') as obj_sents:
             obj_sents = obj_sents.read()
         with open('quote.tok.gt9.5000') as subj_sents:
             subj_sents = subj_sents.read()
         self.obj_sents = obj_sents
         self.sentim_analyzer = SentimentAnalyzer()
         self.train_diploma(subj_sents, obj_sents)
Beispiel #22
0
def train_lr(training_set):
    
    sentim_analyzer = SentimentAnalyzer()
    all_words_neg = sentim_analyzer.all_words([mark_negation(doc) for doc in training_set])
    unigram_feats = sentim_analyzer.unigram_word_feats(all_words_neg, min_freq=4)
    sentim_analyzer.add_feat_extractor(extract_unigram_feats, unigrams=unigram_feats)
    
    training_set = sentim_analyzer.apply_features(training_set)
                                              
    trainer = logreg.train
    classifier = sentim_analyzer.train(trainer, training_set)                 
    return [sentim_analyzer,classifier]
Beispiel #23
0
def subjectivity_classifier():
    from nltk.classify import NaiveBayesClassifier
    from nltk.corpus import subjectivity
    from nltk.sentiment import SentimentAnalyzer
    from nltk.sentiment.util import *
    """
    Initializes and trains categorical subjectivity analyzer
    """
    N_INSTANCES = 100

    subj_docs = [
        (sent, 'subj')
        for sent in subjectivity.sents(categories='subj')[:N_INSTANCES]
    ]
    obj_docs = [(sent, 'obj')
                for sent in subjectivity.sents(categories='obj')[:N_INSTANCES]]

    train_subj_docs = subj_docs[:80]
    test_subj_docs = subj_docs[80:]
    train_obj_docs = obj_docs[:80]
    test_obj_docs = obj_docs[80:]
    training_docs = train_subj_docs + train_obj_docs
    testing_docs = test_subj_docs + test_obj_docs

    sent_analyzer = SentimentAnalyzer()
    all_words_neg = sent_analyzer.all_words(
        [mark_negation(doc) for doc in training_docs])

    unigram_feats = sent_analyzer.unigram_word_feats(all_words_neg, min_freq=4)
    print(f"unigram feats: {len(unigram_feats)}")

    sent_analyzer.add_feat_extractor(extract_unigram_feats,
                                     unigrams=unigram_feats)

    training_set = sent_analyzer.apply_features(training_docs)
    test_set = sent_analyzer.apply_features(testing_docs)

    trainer = NaiveBayesClassifier.train
    classifier = sent_analyzer.train(trainer, training_set)
    for k, v in sorted(sent_analyzer.evaluate(test_set).items()):
        print(f"{k}: {v}")

    return sent_analyzer
Beispiel #24
0
def run_sa_mov(train, test):
    a = SentimentAnalyzer()
    tr = NaiveBayesClassifier.train
    all_words = mov_analyzer.all_words(train)
    # Add simple unigram word features
    unigram_feats = a.unigram_word_feats(all_words, min_freq=4)
    a.add_feat_extractor(extract_unigram_feats, unigrams=unigram_feats)
    # Apply features to obtain a feature-value representation of our datasets
    tr_set = a.apply_features(train)
    test_set = a.apply_features(test)

    #Training
    clf = a.train(tr, tr_set)
    res = a.evaluate(test_set)

    print(res)
def get_nltk_NB(NEG_DATA, POS_DATA, num_train):
    train_neg, test_neg = get_nltk_train_test(NEG_DATA, 'neg', num_train)
    train_pos, test_pos = get_nltk_train_test(POS_DATA, 'pos', num_train)

    training_docs = train_neg + train_pos
    testing_docs = test_neg + test_pos

    sentim_analyzer = SentimentAnalyzer()
    all_words_neg = sentim_analyzer.all_words([mark_negation(doc) for doc in training_docs])
    unigram_feats = sentim_analyzer.unigram_word_feats(all_words_neg)
    sentim_analyzer.add_feat_extractor(extract_unigram_feats, unigrams=unigram_feats)
    training_set = sentim_analyzer.apply_features(training_docs)
    test_set = sentim_analyzer.apply_features(testing_docs)

    trainer = NaiveBayesClassifier.train
    classifier = sentim_analyzer.train(trainer, training_set)
    
    #results = []
    for key,value in sorted(sentim_analyzer.evaluate(test_set).items()):
        print('{0}: {1}'.format(key,value))
Beispiel #26
0
 def GetSampleTrainDataForNLTK(self, trainSet):
     sentim_analyzer = SentimentAnalyzer()
     all_words_neg = sentim_analyzer.all_words(
         [mark_negation(doc) for doc in trainSet])
     unigram_feats = sentim_analyzer.unigram_word_feats(all_words_neg,
                                                        min_freq=4)
     sentim_analyzer.add_feat_extractor(extract_unigram_feats,
                                        unigrams=unigram_feats)
     sampleTrainData = sentim_analyzer.apply_features(trainSet)
     return sampleTrainData
Beispiel #27
0
    def train(self):
        training_docs = list()

        for index, row in self.training_data.iterrows():
            row['text'] = self.clean_tweet(row['text'])
            row['text'] = row['text'].translate(self.translate_table)
            tokens = self.tokenizer.tokenize(row['text'])
            training_docs.append((tokens, row['sentiment'].lower()))

        sentim_analyzer = SentimentAnalyzer()
        training_set = nltk.classify.apply_features(self.extract_features,
                                                    training_docs)
        self.classifier = nltk.NaiveBayesClassifier.train(training_set)
def train_sentiment():
    instances = 8000
    subj = [(sent, 'subj') for sent in subjectivity.sents(categories='subj')[:instances]]
    obj = [(sent, 'obj') for sent in subjectivity.sents(categories='obj')[:instances]]
    train_subj = subj
    train_obj = obj
    train_set = train_subj + train_obj
    sentiment = SentimentAnalyzer()
    all_neg = sentiment.all_words([mark_negation(doc) for doc in train_set])
    uni_g = sentiment.unigram_word_feats(all_neg, min_freq=4)
    sentiment.add_feat_extractor(extract_unigram_feats, unigrams=uni_g)
    trained_set = sentiment.apply_features(train_set)
    nb = NaiveBayesClassifier.train
    classifier = sentiment.train(nb, trained_set)
    return classifier
Beispiel #29
0
def addfeatures(cleaned_tokens_list):
    sentim_analyzer = SentimentAnalyzer()
    all_words_neg = sentim_analyzer.all_words(
        [mark_negation(token_list) for token_list in cleaned_tokens_list])
    unigram_feats = sentim_analyzer.unigram_word_feats(all_words_neg,
                                                       min_freq=4)
    sentim_analyzer.add_feat_extractor(extract_unigram_feats,
                                       unigrams=unigram_feats)
Beispiel #30
0
def getTrainer():

    if (LOAD == False):
        dic = getData("/home/cioni/git/sentimentw/inputFolder/positive.csv",
                      "/home/cioni/git/sentimentw/inputFolder/negative.csv",
                      5000)
        train = dic
        snt = SentimentAnalyzer()
        wrds = snt.all_words(dic, True)
        feat = snt.unigram_word_feats(wrds, min_freq=3)
        snt.add_feat_extractor(nltk.sentiment.util.extract_unigram_feats,
                               unigrams=feat)
        train = snt.apply_features(train)
        trainer = NaiveBayesClassifier.train
        classifier = snt.apply_features(train, True)
        snt.train(trainer, train)
        clFile = open("classifierSmall2.pickle", "wb+")
        pickle.dump(snt, clFile)
        return snt
    else:
        load_cls = open("classifier.pickle", "rb")
        snt = pickle.load(load_cls)
        return snt
Beispiel #31
0
def prepare_review(review):
    global word_counts
    global review_counter
    review_counter += 1
    print(review_counter)
    review = review.lower()
    review = word_tokenize(review)
    s_a = SentimentAnalyzer()
    #this marks words between a negation phrase (ex, 'not'') and the next punctuation with a 'NEG' tag
    #review = s_a.all_words([mark_negation(review)])
    review = [word for word in review if word]  # remove empty words
    # For some reason, word lemmatizers have a difficult time handling the word 'hate' and think
    # that it stems from the word 'hat'. So, you have to manually
    review = [
        word if word[:4] != 'hate' or word[:5] != 'hatin' else 'hate'
        for word in review
    ]
    pos_tags = pos_tag(review)
    review = [
        WordNetLemmatizer().lemmatize(word[0], get_wordnet_pos(word[1]))
        for word in pos_tags
    ]
    review = s_a.all_words([mark_negation(review)])
    review = [
        word for word in review if word not in stopwords.words('english')
    ]
    # https://stackoverflow.com/questions/5843518/remove-all-special-characters-punctuation-and-spaces-from-string
    review = [re.sub(r'[^(a-zA-Z\s]', '', word) for word in review]
    review = [word for word in review if len(word) > 1]
    for word in review:
        if word in word_counts:
            word_counts[word] += 1
        else:
            word_counts[word] = 1
    review = ' '.join(review)

    return review
    def __init__(self):
        self.sentim_analyzer = SentimentAnalyzer()
        self.genre_dict = read_file("jsons/movie_genre_quote_dict_2.json")
        context_file = "jsons/final_context.json"
        movie_file = "jsons/final_movies.json"
        quote_file = "jsons/final_quotes.json"
        year_rating_file = "jsons/final_year_rating.json"

        self.context = read_file(context_file)
        self.movies = read_file(movie_file)
        self.quotes = read_file(quote_file)
        self.year_rating_dict = read_file(year_rating_file)

        # Reincode to unicode
        for i in range(len(self.context)):
            self.context[i] = self.context[i].encode("utf-8").decode("utf-8")
            self.movies[i] = self.movies[i].encode("utf-8").decode("utf-8")
            self.quotes[i] = self.quotes[i].encode("utf-8").decode("utf-8")

        self.context, self.quotes, self.movies = quote_pruner(self.context, self.quotes, self.movies)

        self.inverted_index = read_file("jsons/f_inverted_index.json")
        self.idf = read_file("jsons/f_idf.json")

        # Initialize query tokenizer
        self.tokenizer = TreebankWordTokenizer()
        # Compute document norms
        self.norms = compute_doc_norms(self.inverted_index, self.idf, len(self.context))

        word_co_filename = "jsons/word_co.json"
        word_count_filename = "jsons/word_count_dict.json"
        pmi_dict_filename = "jsons/pmi_dict.json"
        # Read files
        self.word_co = read_file(word_co_filename)
        self.word_count_dict = read_file(word_count_filename)
        self.pmi_dict = read_file(pmi_dict_filename)
Beispiel #33
0
def analyze_sentiment(paragraph):
    n_instances = 100
    subj_docs = [
        (sent, 'subj')
        for sent in subjectivity.sents(categories='subj')[:n_instances]
    ]
    obj_docs = [(sent, 'obj')
                for sent in subjectivity.sents(categories='obj')[:n_instances]]

    train_subj_docs = subj_docs[:80]
    test_subj_docs = subj_docs[80:100]
    train_obj_docs = obj_docs[:80]
    test_obj_docs = obj_docs[80:100]
    training_docs = train_subj_docs + train_obj_docs
    testing_docs = test_subj_docs + test_obj_docs
    sentim_analyzer = SentimentAnalyzer()
    all_words_neg = sentim_analyzer.all_words(
        [mark_negation(doc) for doc in training_docs])

    unigram_feats = sentim_analyzer.unigram_word_feats(all_words_neg,
                                                       min_freq=4)
    sentim_analyzer.add_feat_extractor(extract_unigram_feats,
                                       unigrams=unigram_feats)

    training_set = sentim_analyzer.apply_features(training_docs)
    test_set = sentim_analyzer.apply_features(testing_docs)

    trainer = NaiveBayesClassifier.train
    classifier = sentim_analyzer.train(trainer, training_set)

    sid = SentimentIntensityAnalyzer()
    total_sum = 0
    count = 0.0

    sentences = sent_tokenize(paragraph)

    for sentence in sentences:
        total_sum += sid.polarity_scores(sentence)["compound"]
        count += 1

    return total_sum * 10 / count
Beispiel #34
0
    def sentimentAnalysis(self, number):
        ids = self.getHandleIds(number)

        rows = self.query(date=True,
                          text=True,
                          is_from_me=True,
                          condition='handle_id in (' + ','.join(ids) + ')')

        sent_analyzer = SentimentAnalyzer()

        res = {"Me": {}, number: {}}

        plt.title("Sentiment Analysis")
        plt.ylabel("Sentiment")
        plt.xlabel("Date")
        plt.legend()
        plt.savefig("results/sentiment")
        plt.show()
def train():
    positive_tweets = read_tweets('positive.txt', 'positive')
    negative_tweets = read_tweets('negative.txt', 'negative')
    print len(positive_tweets)
    print len(negative_tweets)

    pos_train = positive_tweets[:len(positive_tweets)]
    neg_train = negative_tweets[:len(negative_tweets)]
    # pos_test = positive_tweets[len(positive_tweets)*80/100+1:]
    # neg_test = negative_tweets[len(positive_tweets)*80/100+1:]

    training_data = pos_train + neg_train
    # test_data = pos_test + neg_test

    sentim_analyzer = SentimentAnalyzer()
    all_words_neg = sentim_analyzer.all_words(
        [mark_negation(doc) for doc in training_data])
    unigram_feats = sentim_analyzer.unigram_word_feats(all_words_neg,
                                                       min_freq=4)
    print len(unigram_feats)

    sentim_analyzer.add_feat_extractor(extract_unigram_feats,
                                       unigrams=unigram_feats)
    training_set = sentim_analyzer.apply_features(training_data)

    # test_set = sentim_analyzer.apply_features(test_data)
    # print test_set

    trainer = NaiveBayesClassifier.train
    sentim_analyzer.train(trainer, training_set)

    # for key,value in sorted(sentim_analyzer.evaluate(test_set).items()):
    #   print('{0}: {1}'.format(key, value))
    # print sentim_analyzer.classify(tokenize_sentence('I hate driving car at night'))

    return sentim_analyzer
Beispiel #36
0
def train_model(training):
	## Apply sentiment analysis to data to extract new "features"

	# Initialize sentiment analyzer object
	sentiment_analyzer = SentimentAnalyzer()

	# Mark all negative words in training data, using existing list of negative words
	all_negative_words = sentiment_analyzer.all_words([mark_negation(data) for data in training])

	unigram_features = sentiment_analyzer.unigram_word_feats(all_negative_words, min_freq=4)
	len(unigram_features)
	sentiment_analyzer.add_feat_extractor(extract_unigram_feats,unigrams=unigram_features)

	training_final = sentiment_analyzer.apply_features(training)

	return [training_final]
Beispiel #37
0
def get_objectivity_analyzer():
    n_instances = 100
    subj_docs = [(sent, 'subj') for sent in subjectivity.sents(categories='subj')[:n_instances]]
    obj_docs = [(sent, 'obj') for sent in subjectivity.sents(categories='obj')[:n_instances]]
    
    train_subj_docs = subj_docs
    train_obj_docs = obj_docs
    training_docs = train_subj_docs+train_obj_docs
    sentim_analyzer = SentimentAnalyzer()
    all_words_neg = sentim_analyzer.all_words([mark_negation(doc) for doc in training_docs])
    
    unigram_feats = sentim_analyzer.unigram_word_feats(all_words_neg, min_freq=4)
    
    sentim_analyzer.add_feat_extractor(extract_unigram_feats, unigrams=unigram_feats)
    
    training_set = sentim_analyzer.apply_features(training_docs)

    trainer = NaiveBayesClassifier.train
    sentiment_classifier = sentim_analyzer.train(trainer, training_set)
    
    return sentim_analyzer
Beispiel #38
0
len(subj_docs), len(obj_docs)
(100, 100)
subj_docs[0]


(['smart', 'and', 'alert', ',', 'thirteen', 'conversations', 'about', 'one',
'thing', 'is', 'a', 'small', 'gem', '.'], 'subj')


train_subj_docs = subj_docs[:80]
test_subj_docs = subj_docs[80:100]
train_obj_docs = obj_docs[:80]
test_obj_docs = obj_docs[80:100]
training_docs = train_subj_docs+train_obj_docs
testing_docs = test_subj_docs+test_obj_docs
sentim_analyzer = SentimentAnalyzer()
all_words_neg = sentim_analyzer.all_words([mark_negation(doc) for doc in training_docs])
unigram_feats = sentim_analyzer.unigram_word_feats(all_words_neg, min_freq=1)
len(unigram_feats)

sentim_analyzer.add_feat_extractor(extract_unigram_feats, unigrams=unigram_feats)
training_set = sentim_analyzer.apply_features(training_docs)
test_set = sentim_analyzer.apply_features(testing_docs)
trainer = NaiveBayesClassifier.train
classifier = sentim_analyzer.train(trainer, training_set)

for key,value in sorted(sentim_analyzer.evaluate(test_set).items()):
    print('{0}: {1}'.format(key, value))

    from nltk.sentiment.vader import SentimentIntensityAnalyzer
sentences = ["VADER is smart, handsome, and funny.", # positive sentence example
  row = line.split(',')
  sentiment = row[1]
  tweet = row[3].strip()
  translator = str.maketrans({key: None for key in string.punctuation})
  tweet = tweet.translate(translator)
  tweet = tweet.split(' ')
  tweet_lower = []
  for word in tweet:
    tweet_lower.append(word.lower())
  return (tweet_lower, sentiment)

#call the function on each row in the dataset
train_data = train_data_raw.map(lambda line: get_row(line))

#create a SentimentAnalyzer object
sentim_analyzer = SentimentAnalyzer()

#get list of stopwords (with _NEG) to use as a filter
stopwords_all = []
for word in stopwords.words('english'):
  stopwords_all.append(word)
  stopwords_all.append(word + '_NEG')

#take 10,000 Tweets from this training dataset for this example and get all the words
#that are not stop words
train_data_sample = train_data.take(10000)
all_words_neg = sentim_analyzer.all_words([mark_negation(doc) for doc in train_data_sample])
all_words_neg_nostops = [x for x in all_words_neg if x not in stopwords_all]

#create unigram features and extract features
unigram_feats = sentim_analyzer.unigram_word_feats(all_words_neg_nostops, top_n=200)
Beispiel #40
0
def demo_tweets(trainer, n_instances=None, output=None):
    """
    Train and test Naive Bayes classifier on 10000 tweets, tokenized using
    TweetTokenizer.
    Features are composed of:
        - 1000 most frequent unigrams
        - 100 top bigrams (using BigramAssocMeasures.pmi)

    :param trainer: `train` method of a classifier.
    :param n_instances: the number of total tweets that have to be used for
        training and testing. Tweets will be equally split between positive and
        negative.
    :param output: the output file where results have to be reported.
    """
    from nltk.tokenize import TweetTokenizer
    from nltk.sentiment import SentimentAnalyzer
    from nltk.corpus import twitter_samples, stopwords

    # Different customizations for the TweetTokenizer
    tokenizer = TweetTokenizer(preserve_case=False)
    # tokenizer = TweetTokenizer(preserve_case=True, strip_handles=True)
    # tokenizer = TweetTokenizer(reduce_len=True, strip_handles=True)

    if n_instances is not None:
        n_instances = int(n_instances/2)

    fields = ['id', 'text']
    positive_json = twitter_samples.abspath("positive_tweets.json")
    positive_csv = 'positive_tweets.csv'
    json2csv_preprocess(positive_json, positive_csv, fields, limit=n_instances)

    negative_json = twitter_samples.abspath("negative_tweets.json")
    negative_csv = 'negative_tweets.csv'
    json2csv_preprocess(negative_json, negative_csv, fields, limit=n_instances)

    neg_docs = parse_tweets_set(negative_csv, label='neg', word_tokenizer=tokenizer)
    pos_docs = parse_tweets_set(positive_csv, label='pos', word_tokenizer=tokenizer)

    # We separately split subjective and objective instances to keep a balanced
    # uniform class distribution in both train and test sets.
    train_pos_docs, test_pos_docs = split_train_test(pos_docs)
    train_neg_docs, test_neg_docs = split_train_test(neg_docs)

    training_tweets = train_pos_docs+train_neg_docs
    testing_tweets = test_pos_docs+test_neg_docs

    sentim_analyzer = SentimentAnalyzer()
    # stopwords = stopwords.words('english')
    # all_words = [word for word in sentim_analyzer.all_words(training_tweets) if word.lower() not in stopwords]
    all_words = [word for word in sentim_analyzer.all_words(training_tweets)]

    # Add simple unigram word features
    unigram_feats = sentim_analyzer.unigram_word_feats(all_words, top_n=1000)
    sentim_analyzer.add_feat_extractor(extract_unigram_feats, unigrams=unigram_feats)

    # Add bigram collocation features
    bigram_collocs_feats = sentim_analyzer.bigram_collocation_feats([tweet[0] for tweet in training_tweets],
        top_n=100, min_freq=12)
    sentim_analyzer.add_feat_extractor(extract_bigram_feats, bigrams=bigram_collocs_feats)

    training_set = sentim_analyzer.apply_features(training_tweets)
    test_set = sentim_analyzer.apply_features(testing_tweets)

    classifier = sentim_analyzer.train(trainer, training_set)
    # classifier = sentim_analyzer.train(trainer, training_set, max_iter=4)
    try:
        classifier.show_most_informative_features()
    except AttributeError:
        print('Your classifier does not provide a show_most_informative_features() method.')
    results = sentim_analyzer.evaluate(test_set)

    if output:
        extr = [f.__name__ for f in sentim_analyzer.feat_extractors]
        output_markdown(output, Dataset='labeled_tweets', Classifier=type(classifier).__name__,
                        Tokenizer=tokenizer.__class__.__name__, Feats=extr,
                        Results=results, Instances=n_instances)
Beispiel #41
0
training_subjective = subjective[: int(0.8 * n)]
test_subjective = subjective[int(0.8 * n) : n]
training_objective = objective[: int(0.8 * n)]
test_objective = objective[int(0.8 * n) : n]

# Now aggregate the training and test sets

training = training_subjective + training_objective
test = test_subjective + test_objective

## Apply sentiment analysis to data to extract new "features"

# Initialize sentiment analyzer object

sentiment_analyzer = SentimentAnalyzer()

# Mark all negative words in training data, using existing list of negative words

all_negative_words = sentiment_analyzer.all_words([mark_negation(data) for data in training])

unigram_features = sentiment_analyzer.unigram_word_feats(all_negative_words, min_freq=4)
len(unigram_features)
sentiment_analyzer.add_feat_extractor(extract_unigram_feats, unigrams=unigram_features)

training_final = sentiment_analyzer.apply_features(training)
test_final = sentiment_analyzer.apply_features(test)

## Traing model and test

model = NaiveBayesClassifier.train
Beispiel #42
0
#!/share/apps/python/2.7.11/bin/python

import sys
import os
import re

import nltk
from nltk.tokenize import word_tokenize
from nltk.classify import NaiveBayesClassifier
from nltk.sentiment import SentimentAnalyzer
from nltk.sentiment.util import *
f = open("training_set.txt",'r')
sa = SentimentAnalyzer()
trainingset = []
for line in f:
    senti = line.split(",")[0]
    content = line[len(senti)+1:]
    tokens = word_tokenize(content.rstrip())
    trainingset.append((tokens,senti))
all_words_neg = sa.all_words([mark_negation(doc) for doc in trainingset])
unigram_feats = sa.unigram_word_feats(all_words_neg,min_freq = 4)
sa.add_feat_extractor(extract_unigram_feats,unigrams=unigram_feats)
training_set = sa.apply_features(trainingset)

for line in sys.stdin:
    if "username" in line:
        continue

    tweetWords=[]
    tweet= line.split(";")[4]
    likes = line.split(";")[3]
Beispiel #43
0
from nltk.classify import NaiveBayesClassifier
from nltk.corpus import subjectivity
from nltk.sentiment import SentimentAnalyzer
from nltk.sentiment.util import *

n_instances = 100
subj_docs = [(sent, 'subj') for sent in subjectivity.sents(categories='subj')[:n_instances]]
obj_docs = [(sent, 'obj') for sent in subjectivity.sents(categories='obj')[:n_instances]]

train_subj_docs = subj_docs[:80]
test_subj_docs = subj_docs[80:100]
train_obj_docs = obj_docs[:80]
test_obj_docs = obj_docs[80:100]
training_docs = train_subj_docs+train_obj_docs
testing_docs = test_subj_docs+test_obj_docs

sentim_analyzer = SentimentAnalyzer()
all_words_neg = sentim_analyzer.all_words([mark_negation(doc) for doc in training_docs])
print "creating data set"
i = 0
s1 = ""
s2 = ""
tup = (s1, s2)
for line in f:
    if i > 6718:
        break
    if i % 2 == 0:
        s1 = line.split()
    else:
        s2 = line
        tup = (s1, s2)
        train.append(tup)
    i += 1

print train
sentim_analyzer = SentimentAnalyzer()
all_words_neg = sentim_analyzer.all_words([mark_negation(doc) for doc in train])
print all_words_neg
unigram_feats = sentim_analyzer.unigram_word_feats(all_words_neg)
print unigram_feats
sentim_analyzer.add_feat_extractor(extract_unigram_feats, unigrams=unigram_feats)
training_set = sentim_analyzer.apply_features(train)
trainer = MaxentClassifier.train
classifier = sentim_analyzer.train(trainer, training_set)

f = open('maxent_trained_with_80_percent.pickle', 'wb')
pickle.dump(classifier, f)
f.close()
Beispiel #45
0
					text = tokenizer.tokenize(line[5].decode("utf-8"))
					text = [token for token in text if token != u'\ufffd']
					test.append((text, sent))
			

		return test, train



# Read in annotated data
NUM_TRAIN = 10000
NUM_TEST = 2500
test, train = read_input("train.csv",NUM_TRAIN,NUM_TEST)


sentiment_analyzer = SentimentAnalyzer()
#all_words = sentiment_analyzer.all_words([mark_negation(doc[0]) for doc in train])
all_words = sentiment_analyzer.all_words([doc[0] for doc in train])
unigrams = sentiment_analyzer.unigram_word_feats(all_words, min_freq=4)
# print unigrams
sentiment_analyzer.add_feat_extractor(extract_unigram_feats, unigrams=unigrams)

training_set=sentiment_analyzer.apply_features(train)
test_set=sentiment_analyzer.apply_features(test)

trainer = NaiveBayesClassifier.train
classifier = sentiment_analyzer.train(trainer, training_set)
save_file(sentiment_analyzer, "sentiment_classifier.pkl")
for key,value in sorted(sentiment_analyzer.evaluate(test_set).items()):
	print("{0}: {1}".format(key,value))
class QuoteFinder:
    def __init__(self):
        self.sentim_analyzer = SentimentAnalyzer()
        self.genre_dict = read_file("jsons/movie_genre_quote_dict_2.json")
        context_file = "jsons/final_context.json"
        movie_file = "jsons/final_movies.json"
        quote_file = "jsons/final_quotes.json"
        year_rating_file = "jsons/final_year_rating.json"

        self.context = read_file(context_file)
        self.movies = read_file(movie_file)
        self.quotes = read_file(quote_file)
        self.year_rating_dict = read_file(year_rating_file)

        # Reincode to unicode
        for i in range(len(self.context)):
            self.context[i] = self.context[i].encode("utf-8").decode("utf-8")
            self.movies[i] = self.movies[i].encode("utf-8").decode("utf-8")
            self.quotes[i] = self.quotes[i].encode("utf-8").decode("utf-8")

        self.context, self.quotes, self.movies = quote_pruner(self.context, self.quotes, self.movies)

        self.inverted_index = read_file("jsons/f_inverted_index.json")
        self.idf = read_file("jsons/f_idf.json")

        # Initialize query tokenizer
        self.tokenizer = TreebankWordTokenizer()
        # Compute document norms
        self.norms = compute_doc_norms(self.inverted_index, self.idf, len(self.context))

        word_co_filename = "jsons/word_co.json"
        word_count_filename = "jsons/word_count_dict.json"
        pmi_dict_filename = "jsons/pmi_dict.json"
        # Read files
        self.word_co = read_file(word_co_filename)
        self.word_count_dict = read_file(word_count_filename)
        self.pmi_dict = read_file(pmi_dict_filename)

    def find_basic_cooccurence(self, word_list):
        """ Initialize the base word co-occurrance list from our context and quotes.

        Arguments
        =========

        word_list: the list of words which are in our movie space

        Returns
        =======

        word_co : a dictionary representing the word_occurrance matrix
        """
        # Get English stop words
        stop_words = stopwords.words('english')

        # Merge context and quotes
        quote_list = self.quotes
        new_quote_list = []
        for q in quote_list:
            new_q = punct_strip(q)
            if new_q not in self.context:
                new_quote_list.append(new_q)
        context_quotes = self.context + new_quote_list

        # Find co occurences in context data, based co-occurences in a document
        word_co = defaultdict(list)
        word_count_dict = defaultdict(int)
        for doc in context_quotes:
            # Double loop to count word co-occurences
            tkns = self.tokenizer.tokenize(doc)
            for i in range(len(tkns)):
                if tkns[i] not in stop_words:
                    word_count_dict[tkns[i]] += 1
                    for j in range(len(tkns)):
                        if not (j == i) and (tkns[j] in word_list):
                            word_co[tkns[i]] = update_word_counts(word_co[tkns[i]], tkns[j])
        return word_co, word_count_dict

    def update_cooccurence(self, word_co_old, word_count_dict_old, word_list, docs):
        """ Updates the word co-occurrance mat and the word count dict with a new set of data.

        Arguments
        =========

        word_co_old: a word co-occurrance matrix in the form of a dictionary

        word_count_dict_old: a dictionary that keeps track of the total occurences of a word

        word_list: the list of words which are in our movie space

        docs: a list of new docs we're using to update our word co-occurence

        Returns
        =======

        word_co, word_count_dict : new word co-occurence dict/mat and new word count dictionary
        """
        # Get English stop words
        stop_words = stopwords.words('english')

        # Make init dict
        word_co = defaultdict(list)
        word_count_dict = defaultdict(int)
        word_co.update(word_co_old)
        word_count_dict.update(word_count_dict_old)

        # Find co occurences in context data, based on document (content)
        for doc in docs:
            # Double loop to count word co-occurences
            tkns = self.tokenizer.tokenize(punct_strip(doc))
            for i in range(len(tkns)):
                if tkns[i] not in stop_words:
                    word_count_dict[tkns[i]] += 1
                    for j in range(len(tkns)):
                        if not (j == i) and (tkns[j] in word_list):
                            word_co[tkns[i]] = update_word_counts(word_co[tkns[i]], tkns[j])
        return word_co, word_count_dict

    def query_vectorize(self, q, sw=False):
        # Remove punctuation, lowercase, and encode to utf
        query = punct_strip(q.lower().encode("utf-8").decode("utf-8"))

        # Tokenize query and check query stopword cutoff
        query_words = self.tokenizer.tokenize(query)

        # Remove stop words if necessary
        stop_words = stopwords.words('english')  # Get English stop words
        if (sw):
            new_query = []
            for x in query_words:
                if x not in stop_words:
                    new_query.append(x)
            query_words = new_query

        # Make query tfidf
        query_tfidf = defaultdict(int)
        for word in query_words:
            query_tfidf[word] += 1
        for word in query_tfidf:
            if word in self.idf:
                query_tfidf[word] *= self.idf[word]
            else:
                query_tfidf[word] = 0

        # Find query norm
        query_norm = 0
        for word in query_tfidf:
            query_norm += math.pow(query_tfidf[word], 2)
        query_norm = math.sqrt(query_norm)

        return query_tfidf, query_norm

    def pseudo_rocchio(self, query_tfidf, query_norm, relevant, sw=False, a=.3, b=.4, clip=True):
        """
        Arguments:
            query: a string representing the name of the movie being queried for

            relevant: a list of int representing the indices of relevant movies for query

            irrelevant: a list of strings representing the names of irrelevant movies for query

            a,b: floats, corresponding to the weighting of the original query, relevant queriesrespectively.

            clip: boolean, whether or not to clip all returned negative values to 0

        Returns:
            q_mod: a dict representing the modified query vector. this vector should have no negatve
            weights in it!
        """

        relevant_id = []
        for s, i in relevant:
            relevant_id.append(i)

        if query_norm == 0:
            return self.find_random()

        # Calculate alpha*query_vec
        query_vec = query_tfidf
        for word in query_vec:
            query_vec[word] /= query_norm
            query_vec[word] *= a

        # Get words in relevant docs
        relevant_words = []
        relevant_context = []
        for i in relevant_id:
            relevant_context.append(self.context[i])
        for context in relevant_context:
            context_tkns = self.tokenizer.tokenize(context)
            for tkn in context_tkns:
                if tkn not in relevant_words:
                    relevant_words.append(tkn)

        # Collect relevant doc vector sums
        relevant_docs = defaultdict(int)
        for word in relevant_words:
            if word in self.inverted_index:
                for quote_id, tf in self.inverted_index[word]:
                    if quote_id in relevant_id:
                        relevant_docs[word] += (tf / self.norms[quote_id])

        # Calculate beta term
        beta_term = b * (1.0 / len(relevant))
        for key in relevant_docs:
            relevant_docs[key] *= beta_term

        # Sum query and relevant
        q_mod = {k: query_vec.get(k, 0) + relevant_docs.get(k, 0.0) for k in set(query_vec) | set(relevant_docs)}

        # negative checks for terms, if clip
        if (clip):
            for key in q_mod:
                if q_mod[key] < 0:
                    q_mod[key] = 0
            return q_mod
        else:
            return q_mod

    def find_random(self):
        r = random.randint(0, len(self.quotes))
        return [[self.quotes[r], self.movies[r], self.context[r]]]

    def find_similar(self, query):
        query_words = self.tokenizer.tokenize(query)
        query_tfidf = defaultdict(int)
        for word in query_words:
            query_tfidf[word] += 1
        for word in query_tfidf:
            if word in self.idf:
                query_tfidf[word] *= self.idf[word]
            else:
                query_tfidf[word] = 0
        query_norm = 0
        for word in query_tfidf:
            query_norm += math.pow(query_tfidf[word], 2)
        query_norm = math.sqrt(query_norm)

        if query_norm == 0:
            return self.find_random()

        scores = [0 for _ in self.quotes]
        for word in query_tfidf:
            if word in self.inverted_index:
                for quote_id, tf in self.inverted_index[word]:
                    scores[quote_id] += query_tfidf[word] * tf * self.idf[word]

        results = []
        for i, s in enumerate(scores):
            if self.norms[i] != 0:
                results.append((s / (self.norms[i] * query_norm), i))

        top_res_num = 5
        results.sort(reverse=True)
        return [[self.quotes[i], self.movies[i], self.context[i]] for _, i in results[:top_res_num]]

    def find_final(self, q, rocchio=True, pseudo_rocchio_num=5, sw=False, pmi_num=8, ml=False):
        """
        Arguments:
            q: a string representing the query

            rocchio: a boolean representing whether or not to use pseudo relevance feedback with Rocchio

            psudo_rocchio_num: and int representing the number of top documents to consider relevant for rocchio

            sw: a boolean on whether or not to include stop words.

            pmi_num: an int representing the number of items to add to the query to expand it with PMI.

        Returns:
            result_quotes: a list of the top x results
        """

        # Vectorize query
        query_tfidf, query_norm = self.query_vectorize(q, sw)

        if query_norm == 0:
            r = random.randint(0, len(self.quotes))
            return [[self.quotes[r], self.movies[r], self.context[r]]]

        # Expand query using PMI
        # http://www.jofcis.com/publishedpapers/2011_7_1_17_24.pdf
        pmi_expansion = defaultdict(float)
        pmi_norm = 1
        for word in query_tfidf:  # Sum PMI lists
            if word in self.pmi_dict.keys():
                pmi_list = self.pmi_dict[word][:pmi_num]
                pmi_score_list = []
                for word, score in pmi_list:
                    pmi_expansion[word] += score
                    pmi_score_list.append(score)
                temp_norm = 0
                for s in pmi_score_list:
                    temp_norm += math.pow(s, 2)
                temp_norm = math.sqrt(query_norm)
                pmi_norm *= temp_norm
        query_tfidf.update(pmi_expansion)
        query_norm = query_norm * 2 * pmi_num * pmi_norm

        # Find query norm
        query_norm = 0
        for word in query_tfidf:
            query_norm += math.pow(query_tfidf[word], 2)
        query_norm = math.sqrt(query_norm)

        # Get scores
        scores = [0 for _ in self.quotes]
        for word in query_tfidf:
            if word in self.inverted_index:
                for quote_id, tf in self.inverted_index[word]:
                    scores[quote_id] += query_tfidf[word] * tf * self.idf[word]

        results = []
        for i, s in enumerate(scores):
            if self.norms[i] != 0:
                results.append((s / (self.norms[i] * query_norm), i))

        # Weight scores with year and rating
        for i in range(len(results)):
            score = results[i][0]
            index = results[i][1]
            year = self.year_rating_dict[self.movies[i]][0]
            rating = self.year_rating_dict[self.movies[i]][1]
            results[i] = (year_rating_weight(float(year), float(rating), score), index)

        # sort results
        results.sort(reverse=True)

        if rocchio:
            # Do pseudo-relevance feedback with Rocchio
            mod_query = self.pseudo_rocchio(query_tfidf, query_norm, results[:pseudo_rocchio_num], sw)
            mod_query_norm = 0
            for word in mod_query:
                mod_query_norm += math.pow(mod_query[word], 2)
            mod_query_norm = math.sqrt(mod_query_norm)

            # Re-find scores and reweight with year and rating
            scores = [0 for _ in self.quotes]
            for word in mod_query:
                if word in self.inverted_index:
                    for quote_id, tf in self.inverted_index[word]:
                        scores[quote_id] += mod_query[word] * tf * self.idf[word]

            results = []
            for i, s in enumerate(scores):
                if self.norms[i] != 0:
                    results.append((s / (self.norms[i] * mod_query_norm), i))

            d_score_updates = {}
            if ml is True:
                d_score_updates = self.find_ml(q)

            # Weight scores with year and rating
            for i in range(len(results)):
                score = results[i][0]
                index = results[i][1]
                year = self.year_rating_dict[self.movies[i]][0]
                rating = self.year_rating_dict[self.movies[i]][1]
                results[i] = (year_rating_weight(float(year), float(rating), score), index)
                if ml is True and index in d_score_updates:
                    results[i] = (results[i][0]*0.9 + d_score_updates[index], results[i][1])

        # Sort and return results
        top_res_num = 5
        results.sort(reverse=True)
        used_quotes = []
        return_res = []
        counter = 0
        while len(return_res) <= top_res_num:  # Avoid duplicate quotes
            score, i = results[counter]
            if self.quotes[i] not in used_quotes:
                used_quotes.append(self.quotes[i])
                return_res.append((score, i))
            else:
                counter += 1

        result_quotes = [[self.quotes[i], self.movies[i], self.context[i]] for _, i in
                         return_res[:top_res_num]]
        return result_quotes

    def sentiment_analysis(self, td):
        with open('jsons/all_words_neg.pickle', 'rb') as f:
            all_words_neg = pickle.load(f)

        with open('jsons/training_docs.pickle', 'rb') as f:
            training_docs = pickle.load(f)

        genres = ['action', 'crime', 'comedy', 'drama']
        testing_docs = [(td, genre) for genre in genres]

        all_words_neg = self.sentim_analyzer.all_words([mark_negation(doc) for doc in training_docs])
        unigram_feats = self.sentim_analyzer.unigram_word_feats(all_words_neg, min_freq=4)
        all_words_neg = self.sentim_analyzer.all_words([mark_negation(doc) for doc in training_docs])
        self.sentim_analyzer.add_feat_extractor(extract_unigram_feats, unigrams=unigram_feats)
        training_set = self.sentim_analyzer.apply_features(training_docs)
        test_set = self.sentim_analyzer.apply_features(testing_docs)

        trainer = NaiveBayesClassifier.train

        classifier = self.sentim_analyzer.train(trainer, training_set)
        # f = open('my_classifier_test.pickle', 'rb')
        # classifier = pickle.load(f)
        # f.close()

        # classifier = nltk.data.load("my_classifier.pickle")

        genre_accuracy = []

        for key, value in sorted(self.sentim_analyzer.evaluate(test_set).items()):
            # print('{0}: {1}'.format(key, value))
            if key == 'Precision [action]':
                genre_accuracy.append(('action', value))
            if key == 'Precision [comedy]':
                genre_accuracy.append(('comedy', value))
            if key == 'Precision [drama]':
                genre_accuracy.append(('drama', value))
            if key == 'Precision [crime]':
                genre_accuracy.append(('crime', value))

        return genre_accuracy

    # Takes in a query
    # Outputs a dictionary of movie indices movies to weights where weight is to be added to all quote scores of movies
    def find_ml(self, td):
        f_tokenizer = TreebankWordTokenizer()
        query_words = f_tokenizer.tokenize(td)
        genres = self.sentiment_analysis(query_words)
        weighted_genres = []
        genre_weights = {}
        for x in genres:
            if x[1] is not None:
                weighted_genres.append(x[0])
                genre_weights[x[0]] = x[1]

        d_score_updates = {}
        for movie in self.movies:
            g = self.genre_dict[movie][0]
            total_genre_score = 0
            if u'Comedy' in g and 'comedy' in weighted_genres:
                total_genre_score += genre_weights['comedy']
            if u'Action' in g and 'action' in weighted_genres:
                total_genre_score += genre_weights['action']
            if u'Crime' in g and 'crime' in weighted_genres:
                total_genre_score += genre_weights['crime']
            if u'Drama' in g and 'drana' in weighted_genres:
                total_genre_score += genre_weights['drama']
            d_score_updates[self.movies.index(movie)] = total_genre_score * .1

        return d_score_updates