Beispiel #1
0
            test_data = util.batch_data(pickle['test'], time_batch_len = 1,
                max_time_batches = -1, softmax = True)
    else:
        raise Exception("Other datasets not yet implemented")

    print(config)

    with tf.Graph().as_default(), tf.Session() as session:
        with tf.variable_scope("model", reuse=None):
            test_model = model_class(config, training=False)

        saver = tf.train.Saver(tf.global_variables())
        model_path = os.path.join(os.path.dirname(args.config_file),
            config.model_name)
        saver.restore(session, model_path)

        test_loss, test_probs = util.run_epoch(session, test_model, test_data,
            training=False, testing=True)
        print('Testing Loss: {}'.format(test_loss))

        if config.dataset == 'softmax':
            if args.seperate:
                nottingham_util.seperate_accuracy(test_probs, test_data, num_samples=args.num_samples)
            else:
                nottingham_util.accuracy(test_probs, test_data, num_samples=args.num_samples)

        else:
            util.accuracy(test_probs, test_data, num_samples=50)

    sys.exit(1)
Beispiel #2
0
            test_data = util.batch_data(pickle['test'], time_batch_len = 1, 
                max_time_batches = -1, softmax = True)
    else:
        raise Exception("Other datasets not yet implemented")
        
    print config

    with tf.Graph().as_default(), tf.Session() as session:
        with tf.variable_scope("model", reuse=None):
            test_model = model_class(config, training=False)

        saver = tf.train.Saver(tf.all_variables())
        model_path = os.path.join(os.path.dirname(args.config_file), 
            config.model_name)
        saver.restore(session, model_path)
        
        test_loss, test_probs = util.run_epoch(session, test_model, test_data, 
            training=False, testing=True)
        print 'Testing Loss: {}'.format(test_loss)

        if config.dataset == 'softmax':
            if args.seperate:
                nottingham_util.seperate_accuracy(test_probs, test_data, num_samples=args.num_samples)
            else:
                nottingham_util.accuracy(test_probs, test_data, num_samples=args.num_samples)

        else:
            util.accuracy(test_probs, test_data, num_samples=50)

    sys.exit(1)