test_data = util.batch_data(pickle['test'], time_batch_len = 1, max_time_batches = -1, softmax = True) else: raise Exception("Other datasets not yet implemented") print(config) with tf.Graph().as_default(), tf.Session() as session: with tf.variable_scope("model", reuse=None): test_model = model_class(config, training=False) saver = tf.train.Saver(tf.global_variables()) model_path = os.path.join(os.path.dirname(args.config_file), config.model_name) saver.restore(session, model_path) test_loss, test_probs = util.run_epoch(session, test_model, test_data, training=False, testing=True) print('Testing Loss: {}'.format(test_loss)) if config.dataset == 'softmax': if args.seperate: nottingham_util.seperate_accuracy(test_probs, test_data, num_samples=args.num_samples) else: nottingham_util.accuracy(test_probs, test_data, num_samples=args.num_samples) else: util.accuracy(test_probs, test_data, num_samples=50) sys.exit(1)
test_data = util.batch_data(pickle['test'], time_batch_len = 1, max_time_batches = -1, softmax = True) else: raise Exception("Other datasets not yet implemented") print config with tf.Graph().as_default(), tf.Session() as session: with tf.variable_scope("model", reuse=None): test_model = model_class(config, training=False) saver = tf.train.Saver(tf.all_variables()) model_path = os.path.join(os.path.dirname(args.config_file), config.model_name) saver.restore(session, model_path) test_loss, test_probs = util.run_epoch(session, test_model, test_data, training=False, testing=True) print 'Testing Loss: {}'.format(test_loss) if config.dataset == 'softmax': if args.seperate: nottingham_util.seperate_accuracy(test_probs, test_data, num_samples=args.num_samples) else: nottingham_util.accuracy(test_probs, test_data, num_samples=args.num_samples) else: util.accuracy(test_probs, test_data, num_samples=50) sys.exit(1)