def experiment_anomaly_detection(train, test, comb, num_train, anom_prob, labels): phi = calc_feature_vecs(comb.X) print phi.size # bayes classifier (DIMS, N) = phi.size w_bayes = co.matrix(1.0, (DIMS, 1)) pred = w_bayes.trans()*phi[:,num_train:] (fpr, tpr, thres) = metric.roc_curve(labels[num_train:], pred.trans()) bayes_auc = metric.auc(fpr, tpr) # train one-class svm kern = Kernel.get_kernel(phi[:,0:num_train], phi[:,0:num_train]) ocsvm = OCSVM(kern, C=1.0/(num_train*anom_prob)) ocsvm.train_dual() kern = Kernel.get_kernel(phi, phi) (oc_as, foo) = ocsvm.apply_dual(kern[num_train:,ocsvm.get_support_dual()]) (fpr, tpr, thres) = metric.roc_curve(labels[num_train:], oc_as) base_auc = metric.auc(fpr, tpr) if (base_auc<0.5): base_auc = 1.0-base_auc # train structured anomaly detection #sad = StructuredOCSVM(train, C=1.0/(num_train*anom_prob)) sad = StructuredOCSVM(train, C=1.0/(num_train*0.5)) (lsol, lats, thres) = sad.train_dc(max_iter=50) (pred_vals, pred_lats) = sad.apply(test) (fpr, tpr, thres) = metric.roc_curve(labels[num_train:], pred_vals) auc = metric.auc(fpr, tpr) if (auc<0.5): auc = 1.0-auc return (auc, base_auc, bayes_auc)
def test_ocsvm(phi, kern, train, test, num_train, anom_prob, labels): auc = 0.5 ocsvm = OCSVM(kern[:num_train, :num_train], C=1.0 / (num_train * anom_prob)) msg = ocsvm.train_dual() if not msg == OCSVM.MSG_ERROR: (oc_as, foo) = ocsvm.apply_dual(kern[num_train:, ocsvm.get_support_dual()]) (fpr, tpr, thres) = metric.roc_curve(labels[num_train:], oc_as) auc = metric.auc(fpr, tpr) return auc
def experiment_anomaly_detection(train, test, comb, num_train, anom_prob, labels): # train one-class svm phi = calc_feature_vecs(comb.X) kern = Kernel.get_kernel(phi[:,0:num_train], phi[:,0:num_train]) ocsvm = OCSVM(kern, C=1.0/(num_train*anom_prob)) ocsvm.train_dual() kern = Kernel.get_kernel(phi, phi) (oc_as, foo) = ocsvm.apply_dual(kern[num_train:,ocsvm.get_support_dual()]) (fpr, tpr, thres) = metric.roc_curve(labels[num_train:], oc_as) base_auc = metric.auc(fpr, tpr) # train structured anomaly detection sad = StructuredOCSVM(train, C=1.0/(num_train*anom_prob)) (lsol, lats, thres) = sad.train_dc(max_iter=40) (pred_vals, pred_lats) = sad.apply(test) (fpr, tpr, thres) = metric.roc_curve(labels[num_train:], pred_vals) auc = metric.auc(fpr, tpr) return (auc, base_auc)
def perf_ocsvm(phi, marker, train, test, anom_prob, ord=1): #phi = phi[phi_inds.tolist(),:] print('(a) normalize features...') phi = normalize_features(phi, ord=ord) print('(b) Build kernel...') kern = Kernel.get_kernel(phi, phi) print('(c) Train OCSVM...') ocsvm = OCSVM(kern[train, train], C=1.0 / (float(len(train)) * (1.0 - anom_prob))) ocsvm.train_dual() print('(d) Apply OCSVM...') (oc_as, foo) = ocsvm.apply_dual(kern[test, train[ocsvm.get_support_dual()]]) (fpr, tpr, thres) = metric.roc_curve(co.matrix(marker)[test], oc_as) auc = metric.auc(fpr, tpr) print('(e) Return AUC={0}...'.format(auc)) return auc
def experiment_anomaly_detection(train, test, comb, num_train, anom_prob, labels): # train one-class svm phi = calc_feature_vecs(comb.X) kern = Kernel.get_kernel(phi[:, 0:num_train], phi[:, 0:num_train]) ocsvm = OCSVM(kern, C=1.0 / (num_train * anom_prob)) ocsvm.train_dual() kern = Kernel.get_kernel(phi, phi) (oc_as, foo) = ocsvm.apply_dual(kern[num_train:, ocsvm.get_support_dual()]) (fpr, tpr, thres) = metric.roc_curve(labels[num_train:], oc_as) base_auc = metric.auc(fpr, tpr) # train structured anomaly detection sad = StructuredOCSVM(train, C=1.0 / (num_train * anom_prob)) (lsol, lats, thres) = sad.train_dc(max_iter=40) (pred_vals, pred_lats) = sad.apply(test) (fpr, tpr, thres) = metric.roc_curve(labels[num_train:], pred_vals) auc = metric.auc(fpr, tpr) return (auc, base_auc)
def train_dc(self, zero_shot=False, max_iter=50, hotstart=matrix([])): """ Solve the optimization problem with a sequential convex programming/DC-programming approach: Iteratively, find the most likely configuration of the latent variables and then, optimize for the model parameter using fixed latent states. """ N = self.sobj.get_num_samples() DIMS = self.sobj.get_num_dims() # intermediate solutions # latent variables latent = [0.0]*N #setseed(0) sol = self.sobj.get_hotstart_sol() #sol[0:4] *= 0.01 if hotstart.size==(DIMS,1): print('New hotstart position defined.') sol = hotstart psi = matrix(0.0, (DIMS,N)) # (dim x exm) old_psi = matrix(0.0, (DIMS,N)) # (dim x exm) threshold = 0 obj = -1 iter = 0 allobjs = [] restarts = 0 # terminate if objective function value doesn't change much while iter < max_iter and (iter < 2 or sum(sum(abs(np.array(psi-old_psi)))) >= 0.001): print('Starting iteration {0}.'.format(iter)) print(sum(sum(abs(np.array(psi-old_psi))))) iter += 1 old_psi = matrix(psi) old_sol = sol # 1. linearize # for the current solution compute the # most likely latent variable configuration for i in range(N): (foo, latent[i], psi[:,i]) = self.sobj.argmax(sol, i, add_prior=True) #print psi[:,i] #psi[:4,i] /= 600.0 #psi[:,i] /= 600.0 #psi[:4,i] = psi[:4,i]/np.linalg.norm(psi[:4,i],ord=2) #psi[4:,i] = psi[4:,i]/np.linalg.norm(psi[4:,i],ord=2) psi[:,i] /= np.linalg.norm(psi[:, i], ord=self.norm_ord) #psi[:,i] /= np.max(np.abs(psi[:,i])) #psi[:,i] /= 600.0 #if i>10: # (foo, latent[i], psi[:,i]) = self.sobj.argmax(sol,i) #else: # psi[:,i] = self.sobj.get_joint_feature_map(i) # latent[i] = self.sobj.y[i] print psi # 2. solve the intermediate convex optimization problem kernel = Kernel.get_kernel(psi, psi) svm = OCSVM(kernel, self.C) svm.train_dual() threshold = svm.get_threshold() #inds = svm.get_support_dual() #alphas = svm.get_support_dual_values() #sol = phi[:,inds]*alphas self.svs_inds = svm.get_support_dual() #alphas = svm.get_support_dual_values() sol = psi*svm.get_alphas() print matrix([sol.trans(), old_sol.trans()]).trans() if len(self.svs_inds) == N and self.C > (1.0 / float(N)): print('###################################') print('Degenerate solution.') print('###################################') restarts += 1 if (restarts>10): print('###################################') print 'Too many restarts...' print('###################################') # calculate objective self.threshold = threshold slacks = [max([0.0, np.single(threshold - sol.trans()*psi[:,i]) ]) for i in xrange(N)] obj = 0.5*np.single(sol.trans()*sol) - np.single(threshold) + self.C*sum(slacks) print("Iter {0}: Values (Threshold-Slacks-Objective) = {1}-{2}-{3}".format(int(iter),np.single(threshold),np.single(sum(slacks)),np.single(obj))) allobjs.append(float(np.single(obj))) break # intermediate solutions # latent variables latent = [0.0]*N #setseed(0) sol = self.sobj.get_hotstart_sol() #sol[0:4] *= 0.01 if hotstart.size==(DIMS,1): print('New hotstart position defined.') sol = hotstart psi = matrix(0.0, (DIMS,N)) # (dim x exm) old_psi = matrix(0.0, (DIMS,N)) # (dim x exm) threshold = 0 obj = -1 iter = 0 allobjs = [] # calculate objective self.threshold = threshold slacks = [max([0.0, np.single(threshold - sol.trans()*psi[:,i]) ]) for i in xrange(N)] obj = 0.5*np.single(sol.trans()*sol) - np.single(threshold) + self.C*sum(slacks) print("Iter {0}: Values (Threshold-Slacks-Objective) = {1}-{2}-{3}".format(int(iter),np.single(threshold),np.single(sum(slacks)),np.single(obj))) allobjs.append(float(np.single(obj))) # zero shot learning: single iteration, hence random # structure coefficient if zero_shot: print('LatentOcSvm: Zero shot learning.') break print '+++++++++' print threshold print slacks print obj print '+++++++++' self.slacks = slacks print allobjs print(sum(sum(abs(np.array(psi-old_psi))))) print '+++++++++ SAD END' self.sol = sol self.latent = latent return sol, latent, threshold
def test_ocsvm(phi, kern, train, test, num_train, anom_prob, labels): startTime = timer.time() ocsvm = OCSVM(kern[:num_train, :num_train], C=1.0 / (num_train * anom_prob)) msg = ocsvm.train_dual() return timer.time() - startTime
from ocsvm import OCSVM from kernel import Kernel if __name__ == '__main__': # kernel parameter and type kparam = 0.1 ktype = 'rbf' # generate raw training data Dtrain = co.normal(2,100) # build kernel kernel = Kernel.get_kernel(Dtrain,Dtrain,ktype,kparam) # train svdd svm = OCSVM(kernel,0.1) svm.train_dual() delta = 0.07 x = np.arange(-4.0, 4.0, delta) y = np.arange(-4.0, 4.0, delta) X, Y = np.meshgrid(x, y) (sx,sy) = X.shape Xf = np.reshape(X,(1,sx*sy)) Yf = np.reshape(Y,(1,sx*sy)) Dtest = np.append(Xf,Yf,axis=0) print(Dtest.shape) print('halloooo') foo = 3 * delta # build test kernel
plt.figure() scores = [] for i in range(train.samples): LENS = len(train.y[i]) (anom_score, scores_exm) = train.get_scores(lsol, i, lats[i]) scores.append(anom_score) plt.plot(range(LENS),scores_exm.trans() + i*8,'-g') plt.plot(range(LENS),train.y[i].trans() + i*8,'-b') plt.plot(range(LENS),lats[i].trans() + i*8,'-r') if i==0: plt.plot(range(LENS),train.X[i][0,:].trans() + i*8,'-k') (fpr, tpr, thres) = metric.roc_curve(label, co.matrix(scores)) auc = metric.auc(fpr, tpr) print auc # train one-class svm kern = Kernel.get_kernel(phi, phi) ocsvm = OCSVM(kern, C=1.0/(EXMS_TRAIN*0.1)) ocsvm.train_dual() (oc_as, foo) = ocsvm.apply_dual(kern[:,ocsvm.get_support_dual()]) (fpr, tpr, thres) = metric.roc_curve(label[0:EXMS_TRAIN], oc_as) base_auc = metric.auc(fpr, tpr) print base_auc plt.show() print('finished')
new_data = data[data[:,2] == 2] new_data = new_data[:, [0,1]] # only reserve unique elements here new_data = np.unique(new_data, axis=0) # generate artificial outlier and target datasets data_shifting = Data_Shifting(new_data) pseudo_outliers = data_shifting.outlier_generation() pseudo_targets = data_shifting.target_generation() # initialization for error calculations nu_list = [0.01, 0.02, 0.05, 0.08, 0.1] gamma_list = [2,5,8,10,15] ocsvm = OCSVM() error_array = np.zeros((len(nu_list),len(gamma_list))) full_err_array = np.zeros((len(nu_list),len(gamma_list), 2)) grid_size = len(nu_list)*len(gamma_list) err_min = 1.0 best_err = [0.0, 0.0] best_param = [0.0,0.0] training_time_sum = 0.0 predicting_time_outliers = 0.0 predicting_time_targets = 0.0 # grid search for index, i in enumerate(nu_list): for jndex, j in enumerate(gamma_list): print("nu=%r, gamma=%r"%(i,j))
def train_dc(self, max_iter=50, hotstart=matrix([])): """ Solve the optimization problem with a sequential convex programming/DC-programming approach: Iteratively, find the most likely configuration of the latent variables and then, optimize for the model parameter using fixed latent states. """ N = self.sobj.get_num_samples() DIMS = self.sobj.get_num_dims() # intermediate solutions # latent variables latent = [0.0]*N #setseed(0) sol = self.sobj.get_hotstart_sol() #sol[0:4] *= 0.01 if hotstart.size==(DIMS,1): print('New hotstart position defined.') sol = hotstart psi = matrix(0.0, (DIMS,N)) # (dim x exm) old_psi = matrix(0.0, (DIMS,N)) # (dim x exm) threshold = 0 obj = -1 iter = 0 allobjs = [] # terminate if objective function value doesn't change much while iter<max_iter and (iter<3 or sum(sum(abs(np.array(psi-old_psi))))>=0.001): print('Starting iteration {0}.'.format(iter)) print(sum(sum(abs(np.array(psi-old_psi))))) iter += 1 old_psi = matrix(psi) old_sol = sol # 1. linearize # for the current solution compute the # most likely latent variable configuration for i in range(N): (foo, latent[i], psi[:,i]) = self.sobj.argmax(sol, i, add_prior=True) norm = np.linalg.norm(psi[:,i],2) psi[:,i] /= norm #if i>10: # (foo, latent[i], psi[:,i]) = self.sobj.argmax(sol,i) #else: # psi[:,i] = self.sobj.get_joint_feature_map(i) # latent[i] = self.sobj.y[i] # 2. solve the intermediate convex optimization problem psi_star = matrix(psi) #psi_star[0:7,:] *= 4.0 #psi_star[0:3,:] *= 0.01 #psi_star[0,:] *= 1.2 #psi_star[2,:] *= 2.4 kernel = Kernel.get_kernel(psi_star, psi_star) svm = OCSVM(kernel, self.C) svm.train_dual() threshold = svm.get_threshold() #inds = svm.get_support_dual() #alphas = svm.get_support_dual_values() #sol = phi[:,inds]*alphas #inds = svm.get_support_dual() #alphas = svm.get_support_dual_values() sol = psi_star*svm.get_alphas() print matrix([sol.trans(), old_sol.trans()]).trans() # calculate objective slacks = [max([0.0, np.single(threshold - sol.trans()*psi[:,i]) ]) for i in xrange(N)] obj = 0.5*np.single(sol.trans()*sol) - np.single(threshold) + self.C*sum(slacks) print("Iter {0}: Values (Threshold-Slacks-Objective) = {1}-{2}-{3}".format(int(iter),np.single(threshold),np.single(sum(slacks)),np.single(obj))) allobjs.append(float(np.single(obj))) print '+++++++++' print threshold print slacks print obj print '+++++++++' print allobjs print(sum(sum(abs(np.array(psi-old_psi))))) print '+++++++++ SAD END' self.sol = sol self.latent = latent return (sol, latent, threshold)
def train_dc(self, max_iter=50, hotstart=matrix([])): """ Solve the optimization problem with a sequential convex programming/DC-programming approach: Iteratively, find the most likely configuration of the latent variables and then, optimize for the model parameter using fixed latent states. """ N = self.sobj.get_num_samples() DIMS = self.sobj.get_num_dims() # intermediate solutions # latent variables latent = [0.0] * N #setseed(0) sol = self.sobj.get_hotstart_sol() #sol[0:4] *= 0.01 if hotstart.size == (DIMS, 1): print('New hotstart position defined.') sol = hotstart psi = matrix(0.0, (DIMS, N)) # (dim x exm) old_psi = matrix(0.0, (DIMS, N)) # (dim x exm) threshold = 0 obj = -1 iter = 0 allobjs = [] # terminate if objective function value doesn't change much while iter < max_iter and ( iter < 3 or sum(sum(abs(np.array(psi - old_psi)))) >= 0.001): print('Starting iteration {0}.'.format(iter)) print(sum(sum(abs(np.array(psi - old_psi))))) iter += 1 old_psi = matrix(psi) old_sol = sol # 1. linearize # for the current solution compute the # most likely latent variable configuration for i in range(N): (foo, latent[i], psi[:, i]) = self.sobj.argmax(sol, i, add_prior=True) norm = np.linalg.norm(psi[:, i], 2) psi[:, i] /= norm #if i>10: # (foo, latent[i], psi[:,i]) = self.sobj.argmax(sol,i) #else: # psi[:,i] = self.sobj.get_joint_feature_map(i) # latent[i] = self.sobj.y[i] # 2. solve the intermediate convex optimization problem psi_star = matrix(psi) #psi_star[0:7,:] *= 4.0 #psi_star[0:3,:] *= 0.01 #psi_star[0,:] *= 1.2 #psi_star[2,:] *= 2.4 kernel = Kernel.get_kernel(psi_star, psi_star) svm = OCSVM(kernel, self.C) svm.train_dual() threshold = svm.get_threshold() #inds = svm.get_support_dual() #alphas = svm.get_support_dual_values() #sol = phi[:,inds]*alphas #inds = svm.get_support_dual() #alphas = svm.get_support_dual_values() sol = psi_star * svm.get_alphas() print matrix([sol.trans(), old_sol.trans()]).trans() # calculate objective slacks = [ max([0.0, np.single(threshold - sol.trans() * psi[:, i])]) for i in xrange(N) ] obj = 0.5 * np.single(sol.trans() * sol) - np.single( threshold) + self.C * sum(slacks) print( "Iter {0}: Values (Threshold-Slacks-Objective) = {1}-{2}-{3}". format(int(iter), np.single(threshold), np.single(sum(slacks)), np.single(obj))) allobjs.append(float(np.single(obj))) print '+++++++++' print threshold print slacks print obj print '+++++++++' print allobjs print(sum(sum(abs(np.array(psi - old_psi))))) print '+++++++++ SAD END' self.sol = sol self.latent = latent return (sol, latent, threshold)
from ocsvm import OCSVM from kernel import Kernel if __name__ == '__main__': # kernel parameter and type kparam = 0.1 ktype = 'rbf' # generate raw training data Dtrain = co.normal(2, 100) # build kernel kernel = Kernel.get_kernel(Dtrain, Dtrain, ktype, kparam) # train svdd svm = OCSVM(kernel, 0.1) svm.train_dual() delta = 0.07 x = np.arange(-4.0, 4.0, delta) y = np.arange(-4.0, 4.0, delta) X, Y = np.meshgrid(x, y) (sx, sy) = X.shape Xf = np.reshape(X, (1, sx * sy)) Yf = np.reshape(Y, (1, sx * sy)) Dtest = np.append(Xf, Yf, axis=0) print(Dtest.shape) print('halloooo') foo = 3 * delta # build test kernel