Esempio n. 1
0
def experiment_anomaly_detection(train, test, comb, num_train, anom_prob, labels):
	phi = calc_feature_vecs(comb.X)
	print phi.size

	# bayes classifier
	(DIMS, N) = phi.size
	w_bayes = co.matrix(1.0, (DIMS, 1))
	pred = w_bayes.trans()*phi[:,num_train:]
	(fpr, tpr, thres) = metric.roc_curve(labels[num_train:], pred.trans())
	bayes_auc = metric.auc(fpr, tpr)

	# train one-class svm
	kern = Kernel.get_kernel(phi[:,0:num_train], phi[:,0:num_train])
	ocsvm = OCSVM(kern, C=1.0/(num_train*anom_prob))
	ocsvm.train_dual()
	kern = Kernel.get_kernel(phi, phi)
	(oc_as, foo) = ocsvm.apply_dual(kern[num_train:,ocsvm.get_support_dual()])
	(fpr, tpr, thres) = metric.roc_curve(labels[num_train:], oc_as)
	base_auc = metric.auc(fpr, tpr)
	if (base_auc<0.5):
	    base_auc = 1.0-base_auc

	# train structured anomaly detection
	#sad = StructuredOCSVM(train, C=1.0/(num_train*anom_prob))
	sad = StructuredOCSVM(train, C=1.0/(num_train*0.5))
	(lsol, lats, thres) = sad.train_dc(max_iter=50)
	(pred_vals, pred_lats) = sad.apply(test)
	(fpr, tpr, thres) = metric.roc_curve(labels[num_train:], pred_vals)
	auc = metric.auc(fpr, tpr)
	if (auc<0.5):
	    auc = 1.0-auc

	return (auc, base_auc, bayes_auc)
Esempio n. 2
0
def test_ocsvm(phi, kern, train, test, num_train, anom_prob, labels):
    auc = 0.5
    ocsvm = OCSVM(kern[:num_train, :num_train], C=1.0 / (num_train * anom_prob))
    msg = ocsvm.train_dual()
    if not msg == OCSVM.MSG_ERROR:
        (oc_as, foo) = ocsvm.apply_dual(kern[num_train:, ocsvm.get_support_dual()])
        (fpr, tpr, thres) = metric.roc_curve(labels[num_train:], oc_as)
        auc = metric.auc(fpr, tpr)
    return auc
Esempio n. 3
0
def experiment_anomaly_detection(train, test, comb, num_train, anom_prob, labels):
	# train one-class svm
	phi = calc_feature_vecs(comb.X)
	kern = Kernel.get_kernel(phi[:,0:num_train], phi[:,0:num_train])
	ocsvm = OCSVM(kern, C=1.0/(num_train*anom_prob))
	ocsvm.train_dual()
	kern = Kernel.get_kernel(phi, phi)
	(oc_as, foo) = ocsvm.apply_dual(kern[num_train:,ocsvm.get_support_dual()])
	(fpr, tpr, thres) = metric.roc_curve(labels[num_train:], oc_as)
	base_auc = metric.auc(fpr, tpr)

	# train structured anomaly detection
	sad = StructuredOCSVM(train, C=1.0/(num_train*anom_prob))
	(lsol, lats, thres) = sad.train_dc(max_iter=40)
	(pred_vals, pred_lats) = sad.apply(test)
	(fpr, tpr, thres) = metric.roc_curve(labels[num_train:], pred_vals)
	auc = metric.auc(fpr, tpr)

	return (auc, base_auc)
Esempio n. 4
0
def perf_ocsvm(phi, marker, train, test, anom_prob, ord=1):
    #phi = phi[phi_inds.tolist(),:]
    print('(a) normalize features...')
    phi = normalize_features(phi, ord=ord)
    print('(b) Build kernel...')
    kern = Kernel.get_kernel(phi, phi)
    print('(c) Train OCSVM...')
    ocsvm = OCSVM(kern[train, train],
                  C=1.0 / (float(len(train)) * (1.0 - anom_prob)))
    ocsvm.train_dual()
    print('(d) Apply OCSVM...')
    (oc_as, foo) = ocsvm.apply_dual(kern[test,
                                         train[ocsvm.get_support_dual()]])
    (fpr, tpr, thres) = metric.roc_curve(co.matrix(marker)[test], oc_as)
    auc = metric.auc(fpr, tpr)
    print('(e) Return AUC={0}...'.format(auc))
    return auc
Esempio n. 5
0
def experiment_anomaly_detection(train, test, comb, num_train, anom_prob,
                                 labels):
    # train one-class svm
    phi = calc_feature_vecs(comb.X)
    kern = Kernel.get_kernel(phi[:, 0:num_train], phi[:, 0:num_train])
    ocsvm = OCSVM(kern, C=1.0 / (num_train * anom_prob))
    ocsvm.train_dual()
    kern = Kernel.get_kernel(phi, phi)
    (oc_as, foo) = ocsvm.apply_dual(kern[num_train:, ocsvm.get_support_dual()])
    (fpr, tpr, thres) = metric.roc_curve(labels[num_train:], oc_as)
    base_auc = metric.auc(fpr, tpr)

    # train structured anomaly detection
    sad = StructuredOCSVM(train, C=1.0 / (num_train * anom_prob))
    (lsol, lats, thres) = sad.train_dc(max_iter=40)
    (pred_vals, pred_lats) = sad.apply(test)
    (fpr, tpr, thres) = metric.roc_curve(labels[num_train:], pred_vals)
    auc = metric.auc(fpr, tpr)

    return (auc, base_auc)
Esempio n. 6
0
    def train_dc(self, zero_shot=False, max_iter=50, hotstart=matrix([])):
        """ Solve the optimization problem with a
            sequential convex programming/DC-programming
            approach:
            Iteratively, find the most likely configuration of
            the latent variables and then, optimize for the
            model parameter using fixed latent states.
        """
        N = self.sobj.get_num_samples()
        DIMS = self.sobj.get_num_dims()

        # intermediate solutions
        # latent variables
        latent = [0.0]*N

        #setseed(0)
        sol = self.sobj.get_hotstart_sol()
        #sol[0:4] *= 0.01
        if hotstart.size==(DIMS,1):
            print('New hotstart position defined.')
            sol = hotstart

        psi = matrix(0.0, (DIMS,N)) # (dim x exm)
        old_psi = matrix(0.0, (DIMS,N)) # (dim x exm)
        threshold = 0

        obj = -1
        iter = 0
        allobjs = []

        restarts = 0

        # terminate if objective function value doesn't change much
        while iter < max_iter and (iter < 2 or sum(sum(abs(np.array(psi-old_psi)))) >= 0.001):
            print('Starting iteration {0}.'.format(iter))
            print(sum(sum(abs(np.array(psi-old_psi)))))
            iter += 1
            old_psi = matrix(psi)
            old_sol = sol

            # 1. linearize
            # for the current solution compute the
            # most likely latent variable configuration
            for i in range(N):
                (foo, latent[i], psi[:,i]) = self.sobj.argmax(sol, i, add_prior=True)
                #print psi[:,i]
                #psi[:4,i] /= 600.0
                #psi[:,i] /= 600.0
                #psi[:4,i] = psi[:4,i]/np.linalg.norm(psi[:4,i],ord=2)
                #psi[4:,i] = psi[4:,i]/np.linalg.norm(psi[4:,i],ord=2)
                psi[:,i] /= np.linalg.norm(psi[:, i], ord=self.norm_ord)
                #psi[:,i] /= np.max(np.abs(psi[:,i]))
                #psi[:,i] /= 600.0
                #if i>10:
                #	(foo, latent[i], psi[:,i]) = self.sobj.argmax(sol,i)
                #else:
                #	psi[:,i] = self.sobj.get_joint_feature_map(i)
                #	latent[i] = self.sobj.y[i]
            print psi

            # 2. solve the intermediate convex optimization problem
            kernel = Kernel.get_kernel(psi, psi)
            svm = OCSVM(kernel, self.C)
            svm.train_dual()
            threshold = svm.get_threshold()
            #inds = svm.get_support_dual()
            #alphas = svm.get_support_dual_values()
            #sol = phi[:,inds]*alphas

            self.svs_inds = svm.get_support_dual()
            #alphas = svm.get_support_dual_values()
            sol = psi*svm.get_alphas()
            print matrix([sol.trans(), old_sol.trans()]).trans()
            if len(self.svs_inds) == N and self.C > (1.0 / float(N)):
                print('###################################')
                print('Degenerate solution.')
                print('###################################')

                restarts += 1
                if (restarts>10):
                    print('###################################')
                    print 'Too many restarts...'
                    print('###################################')
                    # calculate objective
                    self.threshold = threshold
                    slacks = [max([0.0, np.single(threshold - sol.trans()*psi[:,i]) ]) for i in xrange(N)]
                    obj = 0.5*np.single(sol.trans()*sol) - np.single(threshold) + self.C*sum(slacks)
                    print("Iter {0}: Values (Threshold-Slacks-Objective) = {1}-{2}-{3}".format(int(iter),np.single(threshold),np.single(sum(slacks)),np.single(obj)))
                    allobjs.append(float(np.single(obj)))
                    break

                # intermediate solutions
                # latent variables
                latent = [0.0]*N

                #setseed(0)
                sol = self.sobj.get_hotstart_sol()
                #sol[0:4] *= 0.01
                if hotstart.size==(DIMS,1):
                    print('New hotstart position defined.')
                    sol = hotstart

                psi = matrix(0.0, (DIMS,N)) # (dim x exm)
                old_psi = matrix(0.0, (DIMS,N)) # (dim x exm)
                threshold = 0

                obj = -1
                iter = 0
                allobjs = []

            # calculate objective
            self.threshold = threshold
            slacks = [max([0.0, np.single(threshold - sol.trans()*psi[:,i]) ]) for i in xrange(N)]
            obj = 0.5*np.single(sol.trans()*sol) - np.single(threshold) + self.C*sum(slacks)
            print("Iter {0}: Values (Threshold-Slacks-Objective) = {1}-{2}-{3}".format(int(iter),np.single(threshold),np.single(sum(slacks)),np.single(obj)))
            allobjs.append(float(np.single(obj)))

            # zero shot learning: single iteration, hence random
            # structure coefficient
            if zero_shot:
                print('LatentOcSvm: Zero shot learning.')
                break


        print '+++++++++'
        print threshold
        print slacks
        print obj
        print '+++++++++'
        self.slacks = slacks

        print allobjs
        print(sum(sum(abs(np.array(psi-old_psi)))))
        print '+++++++++ SAD END'
        self.sol = sol
        self.latent = latent
        return sol, latent, threshold
Esempio n. 7
0
def test_ocsvm(phi, kern, train, test, num_train, anom_prob, labels):
    startTime = timer.time()
    ocsvm = OCSVM(kern[:num_train, :num_train],
                  C=1.0 / (num_train * anom_prob))
    msg = ocsvm.train_dual()
    return timer.time() - startTime
Esempio n. 8
0
from ocsvm import OCSVM
from kernel import Kernel

if __name__ == '__main__':
	# kernel parameter and type
	kparam = 0.1
	ktype = 'rbf'

	# generate raw training data
	Dtrain = co.normal(2,100)
	# build kernel
	kernel = Kernel.get_kernel(Dtrain,Dtrain,ktype,kparam)
	# train svdd

	svm = OCSVM(kernel,0.1)
	svm.train_dual()

	delta = 0.07
	x = np.arange(-4.0, 4.0, delta)
	y = np.arange(-4.0, 4.0, delta)
	X, Y = np.meshgrid(x, y)
	(sx,sy) = X.shape
	Xf = np.reshape(X,(1,sx*sy))
	Yf = np.reshape(Y,(1,sx*sy))
	Dtest = np.append(Xf,Yf,axis=0)
	print(Dtest.shape)
	print('halloooo')
	foo = 3 * delta

	# build test kernel
Esempio n. 9
0
	plt.figure()
	scores = []
	for i in range(train.samples):
	 	LENS = len(train.y[i])
	 	(anom_score, scores_exm) = train.get_scores(lsol, i, lats[i])
	 	scores.append(anom_score)
	 	plt.plot(range(LENS),scores_exm.trans() + i*8,'-g')

	 	plt.plot(range(LENS),train.y[i].trans() + i*8,'-b')
	 	plt.plot(range(LENS),lats[i].trans() + i*8,'-r')

	 	if i==0:
		 	plt.plot(range(LENS),train.X[i][0,:].trans() + i*8,'-k')


	(fpr, tpr, thres) = metric.roc_curve(label, co.matrix(scores))
	auc = metric.auc(fpr, tpr)
	print auc

	# train one-class svm
	kern = Kernel.get_kernel(phi, phi)
	ocsvm = OCSVM(kern, C=1.0/(EXMS_TRAIN*0.1))
	ocsvm.train_dual()
	(oc_as, foo) = ocsvm.apply_dual(kern[:,ocsvm.get_support_dual()])
	(fpr, tpr, thres) = metric.roc_curve(label[0:EXMS_TRAIN], oc_as)
	base_auc = metric.auc(fpr, tpr)
	print base_auc

	plt.show()

	print('finished')
new_data = data[data[:,2] == 2]

new_data = new_data[:, [0,1]]
# only reserve unique elements here
new_data = np.unique(new_data, axis=0)

# generate artificial outlier and target datasets
data_shifting = Data_Shifting(new_data)
pseudo_outliers = data_shifting.outlier_generation()
pseudo_targets = data_shifting.target_generation()

# initialization for error calculations
nu_list = [0.01, 0.02, 0.05, 0.08, 0.1]
gamma_list = [2,5,8,10,15]

ocsvm = OCSVM()
error_array = np.zeros((len(nu_list),len(gamma_list)))
full_err_array = np.zeros((len(nu_list),len(gamma_list), 2))
grid_size = len(nu_list)*len(gamma_list)
err_min = 1.0
best_err = [0.0, 0.0]
best_param = [0.0,0.0]

training_time_sum = 0.0
predicting_time_outliers = 0.0
predicting_time_targets = 0.0

# grid search
for index, i in enumerate(nu_list):
    for jndex, j in enumerate(gamma_list):
        print("nu=%r, gamma=%r"%(i,j))
Esempio n. 11
0
	def train_dc(self, max_iter=50, hotstart=matrix([])):
		""" Solve the optimization problem with a  
		    sequential convex programming/DC-programming
		    approach: 
		    Iteratively, find the most likely configuration of
		    the latent variables and then, optimize for the
		    model parameter using fixed latent states.
		"""
		N = self.sobj.get_num_samples()
		DIMS = self.sobj.get_num_dims()
		
		# intermediate solutions
		# latent variables
		latent = [0.0]*N

		#setseed(0)
		sol = self.sobj.get_hotstart_sol()
		#sol[0:4] *= 0.01
		if hotstart.size==(DIMS,1):
			print('New hotstart position defined.')
			sol = hotstart

		psi = matrix(0.0, (DIMS,N)) # (dim x exm)
		old_psi = matrix(0.0, (DIMS,N)) # (dim x exm)
		threshold = 0

		obj = -1
		iter = 0 
		allobjs = []

		# terminate if objective function value doesn't change much
		while iter<max_iter and (iter<3 or sum(sum(abs(np.array(psi-old_psi))))>=0.001):
			print('Starting iteration {0}.'.format(iter))
			print(sum(sum(abs(np.array(psi-old_psi)))))
			iter += 1
			old_psi = matrix(psi)
			old_sol = sol
			
			# 1. linearize
			# for the current solution compute the 
			# most likely latent variable configuration
			for i in range(N):
				(foo, latent[i], psi[:,i]) = self.sobj.argmax(sol, i, add_prior=True)
				norm = np.linalg.norm(psi[:,i],2)
				psi[:,i] /= norm
				#if i>10:
				#	(foo, latent[i], psi[:,i]) = self.sobj.argmax(sol,i)
				#else:
				#	psi[:,i] = self.sobj.get_joint_feature_map(i)
				#	latent[i] = self.sobj.y[i]

			# 2. solve the intermediate convex optimization problem 
			psi_star = matrix(psi)
			#psi_star[0:7,:] *= 4.0
			#psi_star[0:3,:] *= 0.01
			#psi_star[0,:] *= 1.2
			#psi_star[2,:] *= 2.4
			
			kernel = Kernel.get_kernel(psi_star, psi_star)
			svm = OCSVM(kernel, self.C)
			svm.train_dual()
			threshold = svm.get_threshold()
			#inds = svm.get_support_dual()
			#alphas = svm.get_support_dual_values()
			#sol = phi[:,inds]*alphas

			#inds = svm.get_support_dual()
			#alphas = svm.get_support_dual_values()
			sol = psi_star*svm.get_alphas()
			print matrix([sol.trans(), old_sol.trans()]).trans()

			# calculate objective
			slacks = [max([0.0, np.single(threshold - sol.trans()*psi[:,i]) ]) for i in xrange(N)]
			obj = 0.5*np.single(sol.trans()*sol) - np.single(threshold) + self.C*sum(slacks)
			print("Iter {0}: Values (Threshold-Slacks-Objective) = {1}-{2}-{3}".format(int(iter),np.single(threshold),np.single(sum(slacks)),np.single(obj)))
			allobjs.append(float(np.single(obj)))

		print '+++++++++'
		print threshold
		print slacks
		print obj
		print '+++++++++'

		print allobjs
		print(sum(sum(abs(np.array(psi-old_psi)))))
		print '+++++++++ SAD END'		
		self.sol = sol
		self.latent = latent
		return (sol, latent, threshold)
    def train_dc(self, max_iter=50, hotstart=matrix([])):
        """ Solve the optimization problem with a  
		    sequential convex programming/DC-programming
		    approach: 
		    Iteratively, find the most likely configuration of
		    the latent variables and then, optimize for the
		    model parameter using fixed latent states.
		"""
        N = self.sobj.get_num_samples()
        DIMS = self.sobj.get_num_dims()

        # intermediate solutions
        # latent variables
        latent = [0.0] * N

        #setseed(0)
        sol = self.sobj.get_hotstart_sol()
        #sol[0:4] *= 0.01
        if hotstart.size == (DIMS, 1):
            print('New hotstart position defined.')
            sol = hotstart

        psi = matrix(0.0, (DIMS, N))  # (dim x exm)
        old_psi = matrix(0.0, (DIMS, N))  # (dim x exm)
        threshold = 0

        obj = -1
        iter = 0
        allobjs = []

        # terminate if objective function value doesn't change much
        while iter < max_iter and (
                iter < 3 or sum(sum(abs(np.array(psi - old_psi)))) >= 0.001):
            print('Starting iteration {0}.'.format(iter))
            print(sum(sum(abs(np.array(psi - old_psi)))))
            iter += 1
            old_psi = matrix(psi)
            old_sol = sol

            # 1. linearize
            # for the current solution compute the
            # most likely latent variable configuration
            for i in range(N):
                (foo, latent[i], psi[:, i]) = self.sobj.argmax(sol,
                                                               i,
                                                               add_prior=True)
                norm = np.linalg.norm(psi[:, i], 2)
                psi[:, i] /= norm
                #if i>10:
                #	(foo, latent[i], psi[:,i]) = self.sobj.argmax(sol,i)
                #else:
                #	psi[:,i] = self.sobj.get_joint_feature_map(i)
                #	latent[i] = self.sobj.y[i]

            # 2. solve the intermediate convex optimization problem
            psi_star = matrix(psi)
            #psi_star[0:7,:] *= 4.0
            #psi_star[0:3,:] *= 0.01
            #psi_star[0,:] *= 1.2
            #psi_star[2,:] *= 2.4

            kernel = Kernel.get_kernel(psi_star, psi_star)
            svm = OCSVM(kernel, self.C)
            svm.train_dual()
            threshold = svm.get_threshold()
            #inds = svm.get_support_dual()
            #alphas = svm.get_support_dual_values()
            #sol = phi[:,inds]*alphas

            #inds = svm.get_support_dual()
            #alphas = svm.get_support_dual_values()
            sol = psi_star * svm.get_alphas()
            print matrix([sol.trans(), old_sol.trans()]).trans()

            # calculate objective
            slacks = [
                max([0.0, np.single(threshold - sol.trans() * psi[:, i])])
                for i in xrange(N)
            ]
            obj = 0.5 * np.single(sol.trans() * sol) - np.single(
                threshold) + self.C * sum(slacks)
            print(
                "Iter {0}: Values (Threshold-Slacks-Objective) = {1}-{2}-{3}".
                format(int(iter), np.single(threshold), np.single(sum(slacks)),
                       np.single(obj)))
            allobjs.append(float(np.single(obj)))

        print '+++++++++'
        print threshold
        print slacks
        print obj
        print '+++++++++'

        print allobjs
        print(sum(sum(abs(np.array(psi - old_psi)))))
        print '+++++++++ SAD END'
        self.sol = sol
        self.latent = latent
        return (sol, latent, threshold)
Esempio n. 13
0
from ocsvm import OCSVM
from kernel import Kernel

if __name__ == '__main__':
    # kernel parameter and type
    kparam = 0.1
    ktype = 'rbf'

    # generate raw training data
    Dtrain = co.normal(2, 100)
    # build kernel
    kernel = Kernel.get_kernel(Dtrain, Dtrain, ktype, kparam)
    # train svdd

    svm = OCSVM(kernel, 0.1)
    svm.train_dual()

    delta = 0.07
    x = np.arange(-4.0, 4.0, delta)
    y = np.arange(-4.0, 4.0, delta)
    X, Y = np.meshgrid(x, y)
    (sx, sy) = X.shape
    Xf = np.reshape(X, (1, sx * sy))
    Yf = np.reshape(Y, (1, sx * sy))
    Dtest = np.append(Xf, Yf, axis=0)
    print(Dtest.shape)
    print('halloooo')
    foo = 3 * delta

    # build test kernel