Beispiel #1
0
				def circ(n): 
					pt  = cv.cvPoint(int(round(n[0,0])),int(round(n[1,0]))) 
					cv.cvCircle(self.disp.buffer, pt, size, 
							color_scalar, cv.CV_FILLED, cv.CV_AA) 
					pt2 = cv.cvPoint(pt.x + 2, pt.y + 2) 
					cv.cvPutText(self.disp.buffer, text, pt,  self.disp.font, cv.cvScalar(255,255,255)) 
					cv.cvPutText(self.disp.buffer, text, pt2, self.disp.font, cv.cvScalar(50,50,50)) 
Beispiel #2
0
    def clear(self):
        cv.cvRectangle(self.buffer, 
                cv.cvPoint(0,0), 
                cv.cvPoint(self.buffer.width, self.buffer.height), 
                cv.cvScalar(255,255,255),
                cv.CV_FILLED)

        if self.draw_grid:
            line_color = 230
            lc = cv.cvScalar(line_color,line_color,line_color)
            for i in xrange(1, as_int(self.meters_disp)+3):
                cv.cvCircle(self.buffer, cv.cvPoint(self.w/2,self.h), as_int(self.pixels_per_meter * (i-.5)), 
                        #lc, 1)
                        lc, 1, cv.CV_AA)
                cv.cvCircle(self.buffer, cv.cvPoint(self.w/2,self.h), as_int(self.pixels_per_meter * i), 
                        #lc, 1)
                        lc, 1, cv.CV_AA)

            for i in xrange(360/30):
                x = (self.w/2) + math.cos(math.radians(i*30)) * self.pixels_per_meter * (self.meters_disp+2)
                y = self.h     + math.sin(math.radians(i*30)) * self.pixels_per_meter * (self.meters_disp+2)
                cv.cvLine(self.buffer, cv.cvPoint(self.w/2,self.h), cv.cvPoint(as_int(x),as_int(y)), lc, 1, cv.CV_AA)

        if self.draw_center:
            cv.cvCircle(self.buffer, cv.cvPoint(self.w/2,self.h), 3, 
                    cv.cvScalar(0,0,200), cv.CV_FILLED, cv.CV_AA)
Beispiel #3
0
def draw_weighted_Pose2D(display, max_weight, particles):
    for p in particles:
        if type(p) is types.TupleType:
            part, weight = p
            rpos = part.pos
        else:
            part = p
            rpos = p.pos

        x = mt.cos(part.angle) * .07
        y = mt.sin(part.angle) * .07

        dir  = rpos.copy()
        dir[0,0] = dir[0,0] + x
        dir[1,0] = dir[1,0] + y

        pos  = display.to_screen(rpos)
        dirp = display.to_screen(dir)

        if type(p) is types.TupleType:
            color = round(255.0 * (weight/max_weight))
            cv.cvCircle(display.buffer, cv.cvPoint((int) (pos[0,0]), (int) (pos[1,0])), 
                        2, cv.cvScalar(255, 255-color, 255), cv.CV_FILLED, cv.CV_AA)
            cv.cvCircle(display.buffer, cv.cvPoint((int) (pos[0,0]), (int) (pos[1,0])), 
                        2, cv.cvScalar(200, 200, 200), 8, cv.CV_AA)
        else:
            cv.cvCircle(display.buffer, cv.cvPoint((int) (pos[0,0]), (int) (pos[1,0])), 
                        2, cv.cvScalar(150, 150, 150), cv.CV_FILLED, cv.CV_AA)

        cv.cvLine(display.buffer, cv.cvPoint((int) (pos[0,0]), (int) (pos[1,0])),
                                  cv.cvPoint((int) (dirp[0,0]), (int) (dirp[1,0])),
                                  cv.cvScalar(100,200,100), 1, cv.CV_AA, 0)
Beispiel #4
0
 def __findContour(self, filename): #find the contour of images, and save all points in self.vKeyPoints
     self.img = highgui.cvLoadImage (filename)
     self.grayimg = cv.cvCreateImage(cv.cvSize(self.img.width, self.img.height), 8,1)
     self.drawimg = cv.cvCreateImage(cv.cvSize(self.img.width, self.img.height), 8,3)
     cv.cvCvtColor (self.img, self.grayimg, cv.CV_BGR2GRAY)
     cv.cvSmooth(self.grayimg, self.grayimg, cv.CV_BLUR, 9)
     cv.cvSmooth(self.grayimg, self.grayimg, cv.CV_BLUR, 9)
     cv.cvSmooth(self.grayimg, self.grayimg, cv.CV_BLUR, 9)
     cv.cvThreshold( self.grayimg, self.grayimg, self.threshold, self.threshold +100, cv.CV_THRESH_BINARY )
     cv.cvZero(self.drawimg)
     storage = cv.cvCreateMemStorage(0)
     nb_contours, cont = cv.cvFindContours (self.grayimg,
         storage,
         cv.sizeof_CvContour,
         cv.CV_RETR_LIST,
         cv.CV_CHAIN_APPROX_NONE,
         cv.cvPoint (0,0))
         
     cv.cvDrawContours (self.drawimg, cont, cv.cvScalar(255,255,255,0), cv.cvScalar(255,255,255,0), 1, 1, cv.CV_AA, cv.cvPoint (0, 0))
     self.allcurve = []
     idx = 0
     for c in cont.hrange():
         PointArray = cv.cvCreateMat(1, c.total  , cv.CV_32SC2)
         PointArray2D32f= cv.cvCreateMat( 1, c.total  , cv.CV_32FC2)
         cv.cvCvtSeqToArray(c, PointArray, cv.cvSlice(0, cv.CV_WHOLE_SEQ_END_INDEX))
         fpoints = []
         for i in range(c.total):
             kp = myPoint()
             kp.x = cv.cvGet2D(PointArray,0, i)[0]
             kp.y = cv.cvGet2D(PointArray,0, i)[1]
             kp.index = idx
             idx += 1
             fpoints.append(kp)
         self.allcurve.append(fpoints)
     self.curvelength = idx
Beispiel #5
0
 def circ(n):
     pt = cv.cvPoint(int(round(n[0, 0])), int(round(n[1, 0])))
     cv.cvCircle(self.disp.buffer, pt, size, color_scalar,
                 cv.CV_FILLED, cv.CV_AA)
     pt2 = cv.cvPoint(pt.x + 2, pt.y + 2)
     cv.cvPutText(self.disp.buffer, text, pt, self.disp.font,
                  cv.cvScalar(255, 255, 255))
     cv.cvPutText(self.disp.buffer, text, pt2, self.disp.font,
                  cv.cvScalar(50, 50, 50))
Beispiel #6
0
def draw_weighted_Pose2D(display, max_weight, particles):
    for p in particles:
        if type(p) is types.TupleType:
            part, weight = p
            rpos = part.pos
        else:
            part = p
            rpos = p.pos

        x = mt.cos(part.angle) * 0.07
        y = mt.sin(part.angle) * 0.07

        dir = rpos.copy()
        dir[0, 0] = dir[0, 0] + x
        dir[1, 0] = dir[1, 0] + y

        pos = display.to_screen(rpos)
        dirp = display.to_screen(dir)

        if type(p) is types.TupleType:
            color = round(255.0 * (weight / max_weight))
            cv.cvCircle(
                display.buffer,
                cv.cvPoint((int)(pos[0, 0]), (int)(pos[1, 0])),
                2,
                cv.cvScalar(255, 255 - color, 255),
                cv.CV_FILLED,
                cv.CV_AA,
            )
            cv.cvCircle(
                display.buffer,
                cv.cvPoint((int)(pos[0, 0]), (int)(pos[1, 0])),
                2,
                cv.cvScalar(200, 200, 200),
                8,
                cv.CV_AA,
            )
        else:
            cv.cvCircle(
                display.buffer,
                cv.cvPoint((int)(pos[0, 0]), (int)(pos[1, 0])),
                2,
                cv.cvScalar(150, 150, 150),
                cv.CV_FILLED,
                cv.CV_AA,
            )

        cv.cvLine(
            display.buffer,
            cv.cvPoint((int)(pos[0, 0]), (int)(pos[1, 0])),
            cv.cvPoint((int)(dirp[0, 0]), (int)(dirp[1, 0])),
            cv.cvScalar(100, 200, 100),
            1,
            cv.CV_AA,
            0,
        )
Beispiel #7
0
    def DrawKeyPoints(self):
        if (not self.drawimg):
            self.drawimg = cv.cvCloneImage(self.img)

        myfont = cv.cvInitFont(cv.CV_FONT_HERSHEY_SIMPLEX, 0.5, 0.5)
        ic = 0
        for c in self.points:
            cv.cvPutText(self.drawimg, str(ic), cv.cvPoint(int(c.x), int(c.y)),
                         myfont, cv.cvScalar(255, 255, 0, 0))
            ic += 1
            cv.cvDrawCircle(self.drawimg, c, 4, cv.cvScalar(255, 255, 0, 0))
Beispiel #8
0
def get_nearest_feature( image, this_point, n=2000 ):
	"""
	Get the n-nearest features to a specified image coordinate.
	Features are determined using cvGoodFeaturesToTrack.
	"""

	_red = cv.cvScalar (0, 0, 255, 0);
	_green = cv.cvScalar (0, 255, 0, 0);
	_blue = cv.cvScalar (255,0,0,0);
	_white = cv.cvRealScalar (255)
	_black = cv.cvRealScalar (0)

	quality = 0.01
	min_distance = 4
	N_best = n
	win_size = 11

	grey = cv.cvCreateImage (cv.cvGetSize (image), 8, 1)
	eig = cv.cvCreateImage (cv.cvGetSize (image), 32, 1)
	temp = cv.cvCreateImage (cv.cvGetSize (image), 32, 1)

	# create a grey version of the image
	cv.cvCvtColor ( image, grey, cv.CV_BGR2GRAY)

	points = cv.cvGoodFeaturesToTrack ( 
		grey, eig, temp,
		N_best,
		quality, min_distance, None, 3, 0, 0.04)

	# refine the corner locations
	better_points = cv.cvFindCornerSubPix (
		grey,
		points,
		cv.cvSize (win_size, win_size), cv.cvSize (-1, -1),
		cv.cvTermCriteria (cv.CV_TERMCRIT_ITER | cv.CV_TERMCRIT_EPS,
						   20, 0.03))

	eigs = []
	for i in range(len(points)):
		eigs.append(cv.cvGetMat(eig)[int(points[i].y)][int(points[i].x)])

	mypoints = np.matrix(np.zeros((len(points)*2),dtype=float)).reshape(len(points),2)
	dists = []
	for i,point in enumerate(points):
		mypoints[i,0]=point.x
		mypoints[i,1]=point.y
		dists.append( np.linalg.norm(mypoints[i,:]-this_point) )

	dists = np.array(dists)
	sorteddists = dists.argsort()

	cv.cvDrawCircle ( image, points[ sorteddists[0] ], 5, _green, 2, 8, 0 )

	return better_points[ sorteddists[0] ]
Beispiel #9
0
 def DrawKeyPoints(self):
     ic = 0
     myfont = cv.cvInitFont(cv.CV_FONT_HERSHEY_SIMPLEX, 0.5, 0.5)
     for ic, c in enumerate(self.mss.seqs):
       cnt = 0
       for k in c.points:
         cnt += 1
         if (int(cnt/2) * 2 != cnt): continue
         cv.cvDrawCircle(self.drawimg, cv.cvPoint(int(k.x), int(k.y)), 4, cv.cvScalar(255,255,255,0))
         if (self.bDrawNumber and (cnt > self.start) and cnt < self.start + 8*4 and len(c.points) > 30):
             #cv.cvPutText(self.drawimg, str(cnt), cv.cvPoint(int(k.x) + 5, int(k.y)), myfont, cv.cvScalar(255, 255, 0,0))
             cv.cvDrawCircle(self.drawimg, cv.cvPoint(int(k.x), int(k.y)), 4, cv.cvScalar(255,0, 255,0))
Beispiel #10
0
def get_nearest_feature(image, this_point, n=2000):
    """
	Get the n-nearest features to a specified image coordinate.
	Features are determined using cvGoodFeaturesToTrack.
	"""

    _red = cv.cvScalar(0, 0, 255, 0)
    _green = cv.cvScalar(0, 255, 0, 0)
    _blue = cv.cvScalar(255, 0, 0, 0)
    _white = cv.cvRealScalar(255)
    _black = cv.cvRealScalar(0)

    quality = 0.01
    min_distance = 4
    N_best = n
    win_size = 11

    grey = cv.cvCreateImage(cv.cvGetSize(image), 8, 1)
    eig = cv.cvCreateImage(cv.cvGetSize(image), 32, 1)
    temp = cv.cvCreateImage(cv.cvGetSize(image), 32, 1)

    # create a grey version of the image
    cv.cvCvtColor(image, grey, cv.CV_BGR2GRAY)

    points = cv.cvGoodFeaturesToTrack(grey, eig, temp, N_best, quality,
                                      min_distance, None, 3, 0, 0.04)

    # refine the corner locations
    better_points = cv.cvFindCornerSubPix(
        grey, points, cv.cvSize(win_size, win_size), cv.cvSize(-1, -1),
        cv.cvTermCriteria(cv.CV_TERMCRIT_ITER | cv.CV_TERMCRIT_EPS, 20, 0.03))

    eigs = []
    for i in range(len(points)):
        eigs.append(cv.cvGetMat(eig)[int(points[i].y)][int(points[i].x)])

    mypoints = np.matrix(np.zeros((len(points) * 2),
                                  dtype=float)).reshape(len(points), 2)
    dists = []
    for i, point in enumerate(points):
        mypoints[i, 0] = point.x
        mypoints[i, 1] = point.y
        dists.append(np.linalg.norm(mypoints[i, :] - this_point))

    dists = np.array(dists)
    sorteddists = dists.argsort()

    cv.cvDrawCircle(image, points[sorteddists[0]], 5, _green, 2, 8, 0)

    return better_points[sorteddists[0]]
Beispiel #11
0
        def process_node(tup):
            node, color, size, text = tup
            color_scalar = cv.cvScalar(color[0], color[1], color[2])
            node_val = node.val(t)

            if node_val.__class__ != tuple:
                if node_val != None:
                    v_cv = self.disp.to_screen(node.val(t))

                def circ(n):
                    pt = cv.cvPoint(int(round(n[0, 0])), int(round(n[1, 0])))
                    cv.cvCircle(self.disp.buffer, pt, size, color_scalar,
                                cv.CV_FILLED, cv.CV_AA)
                    pt2 = cv.cvPoint(pt.x + 2, pt.y + 2)
                    cv.cvPutText(self.disp.buffer, text, pt, self.disp.font,
                                 cv.cvScalar(255, 255, 255))
                    cv.cvPutText(self.disp.buffer, text, pt2, self.disp.font,
                                 cv.cvScalar(50, 50, 50))

                map(circ, fun.points_of_mat(v_cv))
            else:
                start_pts, end_pts = node_val
                for idx in range(start_pts.shape[1]):
                    start_pt = cvpoint_of_pt(
                        self.disp.to_screen(start_pts[:, idx]))[0]
                    end_pt = cvpoint_of_pt(self.disp.to_screen(
                        end_pts[:, idx]))[0]
                    cv.cvLine(self.disp.buffer, start_pt, end_pt, color_scalar,
                              size, cv.CV_AA)
Beispiel #12
0
 def __GetCrossDist(self, p1, dx, dy, iPointIndex):
     bFound = 0
     fDist = 0
     bestPoint = cv.cvPoint(0, 0)
     bestLength = 1e10
     bigLength = -1
     nPoints = len(self.keypoints)
     for k in range(nPoints):
         if (k == iPointIndex or k == iPointIndex + 1):
             continue
         q1 = self.keypoints[(k - 1 + nPoints) % nPoints]
         q2 = self.keypoints[k]
         du = q2.x - q1.x
         dv = q2.y - q1.y
         dd = (dy * du - dx * dv)
         if (dd == 0):
             continue
         t =  (dy * (p1.x - q1.x) - dx * (p1.y - q1.y)) / dd
         if (t >= -0.0001 and t <= 1.0001): # found it
             ptt =  cv.cvPoint(int(q1.x + t * du), int(q1.y + t * dv))
             l = math.sqrt((ptt.x - p1.x ) * (ptt.x - p1.x ) + (ptt.y - p1.y ) * (ptt.y - p1.y))
             l2 = ((dv * q1.x - du * q1.y) - (dv * p1.x - du * p1.y)) / ( dv * dx - du * dy)
             bFound = 1
             if (l <= bestLength and l2 > 0):
                 bestPoint = ptt
                 bestLength = l
     fDist = bestLength
     if (not bFound):
         fDist = 0
     if (self.img):
         cv.cvLine(self.img, cv.cvPoint(int(p1.x), int(p1.y)), bestPoint, cv.cvScalar(255, 255, 255, 0))
     return fDist
Beispiel #13
0
 def __GetCrossDist(self, p1, dx, dy, iPointIndex):
     bFound = 0
     fDist = 0
     bestPoint = cv.cvPoint(0, 0)
     bestLength = 1e10
     bigLength = -1
     nPoints = len(self.keypoints)
     for k in range(nPoints):
         if (k == iPointIndex or k == iPointIndex + 1):
             continue
         q1 = self.keypoints[(k - 1 + nPoints) % nPoints]
         q2 = self.keypoints[k]
         du = q2.x - q1.x
         dv = q2.y - q1.y
         dd = (dy * du - dx * dv)
         if (dd == 0):
             continue
         t = (dy * (p1.x - q1.x) - dx * (p1.y - q1.y)) / dd
         if (t >= -0.0001 and t <= 1.0001):  # found it
             ptt = cv.cvPoint(int(q1.x + t * du), int(q1.y + t * dv))
             l = math.sqrt((ptt.x - p1.x) * (ptt.x - p1.x) +
                           (ptt.y - p1.y) * (ptt.y - p1.y))
             l2 = ((dv * q1.x - du * q1.y) -
                   (dv * p1.x - du * p1.y)) / (dv * dx - du * dy)
             bFound = 1
             if (l <= bestLength and l2 > 0):
                 bestPoint = ptt
                 bestLength = l
     fDist = bestLength
     if (not bFound):
         fDist = 0
     if (self.img):
         cv.cvLine(self.img, cv.cvPoint(int(p1.x), int(p1.y)), bestPoint,
                   cv.cvScalar(255, 255, 255, 0))
     return fDist
Beispiel #14
0
 def __link(self):
     myfont = cv.cvInitFont(cv.CV_FONT_HERSHEY_SIMPLEX, 0.5, 0.5)
     kkk = 0
     self.edges = []
     for curve in self.allcurve:
         showpt = []
         state = 0
         currentPoint = None
         currentPointIdx = -1
         cumulate = 0
         dcurve = curve + curve
         curlen = len(curve)
         ptcount = 0
         pointseq = []
         for c in dcurve:
             if (ptcount > curlen): break
             cumulate += 1
             for kk in range(len(self.points)):
                 k = self.points[kk]
                 if (abs(c.x - k.x) + abs(c.y - k.y) < 15):
                     if (currentPoint != k or cumulate > 40):
                         state += 1
                         currentPoint = k
                         currentPointIdx = kk
                         cumulate = 0
                         pointseq.append(kk)
             if (state > 0):
                 showpt.append([c, state, currentPointIdx])
                 ptcount += 1
         if (state > 1):
             kkk += 1
             cnt = 0
             pret = -1
             e = None
             for s, t, cp in showpt:
                 if (cp != pret):
                     if e != None:
                         e.end = cp
                     e = Edge()
                     self.edges.append(e)
                     e.start = cp
                     pret = cp
                 cnt += 1
                 if (t < state):
                     e.addPoint(s)
                     #print  "%d\t%3.2f\t%3.2f\t%d\t%d\t%d" % (kkk, s.x, s.y, cnt, pointseq[t - 1], pointseq[t])
             e.end = showpt[-1][2]
     print >> OUT, "seq\tptn\tx\ty\t"
     #        self.__edgededup()
     self.__evenSample(self.npoints)
     for ie, e in enumerate(self.edges):
         print "P(%d) <-> P(%d) length %d, selected %d" % (
             e.start, e.end, len(e.points), len(e.selected))
         for d in e.points:
             cv.cvSet2D(self.drawimg, int(d.y), int(d.x), color[3])
         for ip, p in enumerate(e.selected):
             cv.cvDrawCircle(self.drawimg, p, 2,
                             cv.cvScalar(255, 255, 0, 0))
             print >> OUT, "%d\t%d\t%d\t%d" % (ie, ip, p.x, p.y)
Beispiel #15
0
def draw_weighted_2D(display, max_weight, particles):
    for p in particles:
        if type(p) is types.TupleType:
            rpos, weight = p
        else:
            rpos = p

        pos  = display.to_screen(rpos)

        if type(p) is types.TupleType:
            color = round(255.0 * (weight/max_weight))
            cv.cvCircle(display.buffer, cv.cvPoint((int) (pos[0,0]), (int) (pos[1,0])), 
                        3, cv.cvScalar(255, 255-color, 255), cv.CV_FILLED, cv.CV_AA)
            cv.cvCircle(display.buffer, cv.cvPoint((int) (pos[0,0]), (int) (pos[1,0])), 
                        3, cv.cvScalar(200, 200, 200), 1, cv.CV_AA)
        else:
            cv.cvCircle(display.buffer, cv.cvPoint((int) (pos[0,0]), (int) (pos[1,0])), 
                        2, cv.cvScalar(150, 150, 150), cv.CV_FILLED, cv.CV_AA)
Beispiel #16
0
    def __link(self):
        myfont = cv.cvInitFont(cv.CV_FONT_HERSHEY_SIMPLEX, 0.5, 0.5)
        kkk = 0
        self.edges = []
        for curve in self.allcurve:
            showpt = []
            state = 0  
            currentPoint = None 
            currentPointIdx = -1
            cumulate = 0
            dcurve = curve + curve
            curlen = len(curve)
            ptcount = 0
            pointseq = []
            for c in dcurve:
                if (ptcount > curlen): break
                cumulate += 1
                for kk in range(len(self.points)):
                     k = self.points[kk]
                     if (abs(c.x - k.x) + abs(c.y - k.y) < 15):
                          if (currentPoint != k or cumulate > 40):
                              state += 1
                              currentPoint = k
                              currentPointIdx = kk
                              cumulate = 0
                              pointseq.append(kk)
                if (state > 0):
                     showpt.append([c, state, currentPointIdx])
                     ptcount += 1
            if (state > 1):
                kkk += 1
                cnt = 0
                pret = -1
                e = None 
                for s,t, cp in showpt:
                    if (cp != pret):
                        if e != None:
                             e.end = cp
                        e = Edge()
                        self.edges.append(e)
                        e.start = cp 
                        pret = cp 
                    cnt += 1
                    if (t < state):
                         e.addPoint(s)
                         #print  "%d\t%3.2f\t%3.2f\t%d\t%d\t%d" % (kkk, s.x, s.y, cnt, pointseq[t - 1], pointseq[t])
                e.end = showpt[-1][2]
        print >> OUT, "seq\tptn\tx\ty\t" 
#        self.__edgededup()
        self.__evenSample(self.npoints)
        for ie, e in enumerate(self.edges):
            print  "P(%d) <-> P(%d) length %d, selected %d" % (e.start, e.end, len(e.points), len(e.selected))
            for d in e.points:
                cv.cvSet2D(self.drawimg, int(d.y), int(d.x), color[3])
            for ip, p in enumerate(e.selected):
                cv.cvDrawCircle(self.drawimg, p, 2, cv.cvScalar(255,255,0,0))
                print >> OUT, "%d\t%d\t%d\t%d" % (ie, ip, p.x, p.y) 
Beispiel #17
0
    def DrawKeyPoints(self):
        if (not self.drawimg):
            self.drawimg = cv.cvCloneImage(self.img) 

        myfont = cv.cvInitFont(cv.CV_FONT_HERSHEY_SIMPLEX, 0.5, 0.5)
        ic = 0
        for c in self.points:
            cv.cvPutText(self.drawimg, str(ic), cv.cvPoint(int(c.x), int(c.y)), myfont, cv.cvScalar(255, 255, 0,0))
            ic += 1
            cv.cvDrawCircle(self.drawimg, c, 4, cv.cvScalar(255,255,0,0))
Beispiel #18
0
 def DrawKeyPoints(self):
     ic = 0
     myfont = cv.cvInitFont(cv.CV_FONT_HERSHEY_SIMPLEX, 0.5, 0.5)
     for ic, c in enumerate(self.mss.seqs):
         for k in c.points:
             if self.bDrawNumber:
                 cv.cvPutText(
                     self.drawimg, str(ic), cv.cvPoint(int(k.x), int(k.y)), myfont, cv.cvScalar(255, 255, 0, 0)
                 )
             cv.cvDrawCircle(self.drawimg, cv.cvPoint(int(k.x), int(k.y)), 4, cv.cvScalar(255, 0, 255, 0))
Beispiel #19
0
 def np2cv(im):
     print 'WARNING: np2cv is not reliable or well tested (it is a bit flakey...)'
     #raise AssertionError('np2cv does not work :-(')
     if len(im.shape) == 3:
         shp = im.shape
         channels = shp[2]
         height = shp[0]
         width = shp[1]
         #height, width, channels = im.shape
     elif len(im.shape) == 2:
         height, width = im.shape
         channels = 1
     else:
         raise AssertionError(
             "unrecognized shape for the input image. should be 3 or 2, but was %d."
             % len(im.shape))
     key = str(im.dtype)
     cv_type = np2cv_type_dict[key]
     print 'attempt to create opencv image with (key, width, height, channels) =', (
         key, width, height, channels)
     cv_im = cv.cvCreateImage(cv.cvSize(width, height), cv_type, channels)
     #cv_im.imageData = im.tostring()
     if True:
         if len(im.shape) == 3:
             for y in xrange(height):
                 for x in xrange(width):
                     pix = [float(v) for v in im[y, x]]
                     scalar = cv.cvScalar(*pix)
                     #print scalar
                     cv_im[y, x] = scalar
         else:
             for y in xrange(height):
                 for x in xrange(width):
                     pix = float(im[y, x])
                     cv_im[y, x] = cv.cvScalar(pix, pix, pix)
                     #print 'im[y,x], cv_im[y,x] =', im[y,x], cv_im[y,x]
     print 'resulted in an image openCV image with the following properties:'
     numpy_type, nchannels = cv2np_type_dict[cv.cvGetElemType(cv_im)]
     print '(numpy_type, nchannels, cvmat.width, cvmat.height) =', (
         numpy_type, nchannels, cv_im.width, cv_im.height)
     return cv_im
Beispiel #20
0
    def clear(self):
        cv.cvRectangle(self.buffer, cv.cvPoint(0, 0),
                       cv.cvPoint(self.buffer.width, self.buffer.height),
                       cv.cvScalar(255, 255, 255), cv.CV_FILLED)

        if self.draw_grid:
            line_color = 230
            lc = cv.cvScalar(line_color, line_color, line_color)
            for i in xrange(1, as_int(self.meters_disp) + 3):
                cv.cvCircle(
                    self.buffer,
                    cv.cvPoint(self.w / 2, self.h),
                    as_int(self.pixels_per_meter * (i - .5)),
                    #lc, 1)
                    lc,
                    1,
                    cv.CV_AA)
                cv.cvCircle(
                    self.buffer,
                    cv.cvPoint(self.w / 2, self.h),
                    as_int(self.pixels_per_meter * i),
                    #lc, 1)
                    lc,
                    1,
                    cv.CV_AA)

            for i in xrange(360 / 30):
                x = (self.w / 2) + math.cos(math.radians(
                    i * 30)) * self.pixels_per_meter * (self.meters_disp + 2)
                y = self.h + math.sin(math.radians(
                    i * 30)) * self.pixels_per_meter * (self.meters_disp + 2)
                cv.cvLine(self.buffer, cv.cvPoint(self.w / 2, self.h),
                          cv.cvPoint(as_int(x), as_int(y)), lc, 1, cv.CV_AA)

        if self.draw_center:
            cv.cvCircle(self.buffer, cv.cvPoint(self.w / 2, self.h), 3,
                        cv.cvScalar(0, 0, 200), cv.CV_FILLED, cv.CV_AA)
Beispiel #21
0
	def np2cv(im):
		print 'WARNING: np2cv is not reliable or well tested (it is a bit flakey...)'
		#raise AssertionError('np2cv does not work :-(')
		if len(im.shape) == 3:
			shp = im.shape
			channels = shp[2]
			height = shp[0]
			width = shp[1]
			#height, width, channels = im.shape
		elif len(im.shape) == 2:
			height, width = im.shape
			channels = 1
		else:
			raise AssertionError("unrecognized shape for the input image. should be 3 or 2, but was %d." % len(im.shape))
		key = str(im.dtype)
		cv_type = np2cv_type_dict[key]
		print 'attempt to create opencv image with (key, width, height, channels) =', (key, width, height, channels)
		cv_im = cv.cvCreateImage(cv.cvSize(width, height), cv_type, channels)
		#cv_im.imageData = im.tostring()
		if True:
			if len(im.shape) == 3:
				for y in xrange(height):
					for x in xrange(width):
						pix = [float(v) for v in im[y,x]]
						scalar = cv.cvScalar(*pix)
						#print scalar
						cv_im[y,x] = scalar
			else:
				for y in xrange(height):
					for x in xrange(width):
						pix = float(im[y,x])
						cv_im[y,x] = cv.cvScalar(pix, pix, pix)
						#print 'im[y,x], cv_im[y,x] =', im[y,x], cv_im[y,x]
		print 'resulted in an image openCV image with the following properties:'
		numpy_type, nchannels = cv2np_type_dict[cv.cvGetElemType(cv_im)]
		print '(numpy_type, nchannels, cvmat.width, cvmat.height) =', (numpy_type, nchannels, cv_im.width, cv_im.height)
		return cv_im
Beispiel #22
0
def hsv2rgb(hue):
    # convert the hue value to the corresponding rgb value

    sector_data = [[0, 2, 1], [1, 2, 0], [1, 0, 2], [2, 0, 1], [2, 1, 0], [0, 1, 2]]
    hue *= 0.1 / 3
    sector = cv.cvFloor(hue)
    p = cv.cvRound(255 * (hue - sector))
    if sector & 1:
        p ^= 255

    rgb = {}
    rgb[sector_data[sector][0]] = 255
    rgb[sector_data[sector][1]] = 0
    rgb[sector_data[sector][2]] = p

    return cv.cvScalar(rgb[2], rgb[1], rgb[0], 0)
Beispiel #23
0
def removeErrantPoints(frame):
    size = cv.cvGetSize(frame)
    
    for x in range(size.width):
        for y in range(size.height):
            if(cv.cvGetReal2D(frame, y, x) > 0):
                count = 0
                count += same2ndValue(frame, x-1, y)
                count += same2ndValue(frame, x+1, y)
                count += same2ndValue(frame, x, y-1)
                count += same2ndValue(frame, x, y+1)
                count += same2ndValue(frame, x-1, y-1)
                count += same2ndValue(frame, x-1, y+1)
                count += same2ndValue(frame, x+1, y-1)
                count += same2ndValue(frame, x+1, y+1)
                if count == 0:
                    cv.cvSet2D(frame, y, x, cv.cvScalar(0, 0, 0, 0))
Beispiel #24
0
def hsv2rgb(hue):
    # convert the hue value to the corresponding rgb value

    sector_data = [[0, 2, 1], [1, 2, 0], [1, 0, 2], [2, 0, 1], [2, 1, 0],
                   [0, 1, 2]]
    hue *= 0.1 / 3
    sector = cv.cvFloor(hue)
    p = cv.cvRound(255 * (hue - sector))
    if sector & 1:
        p ^= 255

    rgb = {}
    rgb[sector_data[sector][0]] = 255
    rgb[sector_data[sector][1]] = 0
    rgb[sector_data[sector][2]] = p

    return cv.cvScalar(rgb[2], rgb[1], rgb[0], 0)
Beispiel #25
0
		def process_node(tup): 
			node, color, size, text = tup 
			color_scalar = cv.cvScalar(color[0], color[1], color[2]) 
			node_val     = node.val(t) 

			if node_val.__class__ != tuple: 
				if node_val != None: 
					v_cv = self.disp.to_screen(node.val(t)) 

				def circ(n): 
					pt  = cv.cvPoint(int(round(n[0,0])),int(round(n[1,0]))) 
					cv.cvCircle(self.disp.buffer, pt, size, 
							color_scalar, cv.CV_FILLED, cv.CV_AA) 
					pt2 = cv.cvPoint(pt.x + 2, pt.y + 2) 
					cv.cvPutText(self.disp.buffer, text, pt,  self.disp.font, cv.cvScalar(255,255,255)) 
					cv.cvPutText(self.disp.buffer, text, pt2, self.disp.font, cv.cvScalar(50,50,50)) 
				map(circ, fun.points_of_mat(v_cv))
			else: 
				start_pts, end_pts = node_val 
				for idx in range(start_pts.shape[1]): 
					start_pt = cvpoint_of_pt(self.disp.to_screen(start_pts[:,idx]))[0] 
					end_pt   = cvpoint_of_pt(self.disp.to_screen(  end_pts[:,idx]))[0] 
					cv.cvLine(self.disp.buffer, start_pt, end_pt, 
							color_scalar, size, cv.CV_AA)
Beispiel #26
0
 def draw_point(self, x, y):
     cv.cvCircle(self.__image, [x,y], 3, cv.cvScalar(0, 255, 0, 0), -1, 8, 0)
Beispiel #27
0
 def paint(self, img):
     for p in self.points:
         cv.cvDrawCircle(img, p.getCvPoint(), 2, cv.cvScalar(0, 0, 255,0))
     for i in range(len(self.points) - 1):
         cv.cvLine(img, self.points[i].getCvPoint(), self.points[i + 1].getCvPoint(), cv.cvScalar(255,255,255,0), 1)
Beispiel #28
0
import sys
from opencv import cv
from opencv import highgui
import opencv
from pygame.locals import *

hmin = 4
hmax = 18

vmin = 140
vmax = 255
smin = 147
smax = 255

hsv_min = cv.cvScalar(0, smin, vmin, 0)
hsv_max = cv.cvScalar(180, 256, vmax, 0)

capture = None


def change_hmin(p):
    global hmin
    hmin = p


def change_hmax(p):
    global hmax
    hmax = p

Beispiel #29
0
from opencv import highgui

#############################################################################
# definition of some constants

# how many bins we want for the histogram, and their ranges
hdims = 16
hranges = [[0, 180]]

# ranges for the limitation of the histogram
vmin = 10
vmax = 256
smin = 30

# the range we want to monitor
hsv_min = cv.cvScalar(0, smin, vmin, 0)
hsv_max = cv.cvScalar(180, 256, vmax, 0)

#############################################################################
# some useful functions


def hsv2rgb(hue):
    # convert the hue value to the corresponding rgb value

    sector_data = [[0, 2, 1], [1, 2, 0], [1, 0, 2], [2, 0, 1], [2, 1, 0],
                   [0, 1, 2]]
    hue *= 0.1 / 3
    sector = cv.cvFloor(hue)
    p = cv.cvRound(255 * (hue - sector))
    if sector & 1:
Beispiel #30
0
from contourFilters import areaFilter, rectangularAspectFilter, boxAreaFilter, perimeterFilter


MORPH_KERNEL_SIZE = 2
DILATE_ITER = 2
ERODE_ITER = 2

# Polygon Contour aproximation tolerance
PER_TOLERANCE = 50

# contour constants
CURRENT_CONTOUR = 3
CONTOUR_THICKNESS = 3

# color constants
_red = cv.cvScalar(0, 0, 255, 0)
_green = cv.cvScalar(0, 255, 0, 0)


def getPatchContour():
    frame = cvLoadImage("../images/colilla-patch2.png")
    src_hsvImage = cvCreateImage(cvGetSize(frame), frame.depth, 3)
    src_Himage = cvCreateImage(cvGetSize(frame), frame.depth, 1)
    src_Simage = cvCreateImage(cvGetSize(frame), frame.depth, 1)
    src_Vimage = cvCreateImage(cvGetSize(frame), frame.depth, 1)
    cvCvtColor(frame, src_hsvImage, CV_BGR2HSV)
    cvSplit(src_hsvImage, src_Himage, src_Simage, src_Vimage, None)
    cvShowImage("HSV", src_Simage)

    eqImage = cvClone(src_Simage)
    cvEqualizeHist(src_Simage, eqImage)
Beispiel #31
0
def main():

    ct1 = CntPoint()
    ct2 = CntPoint()
    agl = CntAngle()
    das = CntDAS()
    das.bDraw = 0

    try:
        opts, args = getopt.getopt(sys.argv[1:], "ho:dn:e",
                                   ["help", "output=", "draw", "num=", "even"])
    except getopt.GetoptError:
        usage()
        sys.exit(2)
    output = None
    bDraw = 0
    npoint = 100

    for o, a in opts:
        if o == "-v":
            ct.verbose = 1
        if o in ("-h", "--help"):
            usage()
            sys.exit()
        if o in ("-o", "--output"):
            output = a
        if o in ("-d", "--draw"):
            bDraw = 1
        if o in ("-n", "--num"):
            npoint = string.atoi(a)
        if o in ("-e", "--even"):
            ct.bEven = 1
    if (len(args)) != 2:
        usage()
        sys.exit(2)

    ct1.GetContour(args[0], npoint)

    agl.ExtractFeature(ct1.GetKeyPoints(), ct1.drawimg)
    das.ExtractFeature(ct1.GetKeyPoints(), ct1.drawimg)

    ct2.GetContour(args[1], npoint)
    agl.ExtractFeature(ct2.GetKeyPoints(), ct2.drawimg)
    das.ExtractFeature(ct2.GetKeyPoints(), ct2.drawimg)

    seq1 = getdata(ct1.GetKeyPoints())
    seq2 = getdata(ct2.GetKeyPoints())
    matcher = SmithWaterman()
    cost, align, X, Y = matcher.Align(seq1, seq2)
    myfont = cv.cvInitFont(cv.CV_FONT_HERSHEY_SIMPLEX, 0.5, 0.5)
    if (bDraw):
        ct1.DrawKeyPoints()
        kpoints1 = ct1.GetKeyPoints()
        ct2.DrawKeyPoints()
        kpoints2 = ct2.GetKeyPoints()
        ptcount = 0
        for i in range(len(X)):
            xi = X[i]
            yi = Y[i]
            if (xi == -1):
                cv.cvPutText(
                    ct2.drawimg, 'O',
                    cv.cvPoint(int(kpoints2[yi].x), int(kpoints2[yi].y)),
                    myfont, cv.cvScalar(255, 0, 0, 0))
            if (yi == -1):
                cv.cvPutText(
                    ct1.drawimg, 'O',
                    cv.cvPoint(int(kpoints1[xi].x), int(kpoints1[xi].y)),
                    myfont, cv.cvScalar(255, 0, 0, 0))
            if (xi != -1 and yi != -1):
                ptcount += 1
                cv.cvPutText(
                    ct1.drawimg, str(ptcount),
                    cv.cvPoint(int(kpoints1[xi].x), int(kpoints1[xi].y)),
                    myfont, cv.cvScalar(255, 255, 0, 0))
                cv.cvPutText(
                    ct2.drawimg, str(ptcount),
                    cv.cvPoint(int(kpoints2[yi].x), int(kpoints2[yi].y)),
                    myfont, cv.cvScalar(255, 255, 0, 0))

        highgui.cvNamedWindow("contour1", 1)
        highgui.cvNamedWindow("contour2", 1)
        highgui.cvShowImage("contour1", ct1.drawimg)
        highgui.cvShowImage("contour2", ct2.drawimg)
        highgui.cvWaitKey(0)
Beispiel #32
0
                    if dx * dx + dy * dy <= 25:
                        # too close
                        add_remove_pt = 0
                        continue

                if not status [point_counter]:
                    # we will disable this point
                    continue

                # this point is a correct point
                new_points.append (the_point)

                # draw the current point
                cv.cvCircle (image,
                             cv.cvPointFrom32f(the_point),
                             3, cv.cvScalar (0, 255, 0, 0),
                             -1, 8, 0)

            # set back the points we keep
            points [1] = new_points
            
        if add_remove_pt:
            # we want to add a point
            points [1].append (cv.cvPointTo32f (pt))

            # refine the corner locations
            points [1][-1] = cv.cvFindCornerSubPix (
                grey,
                [points [1][-1]],
                cv.cvSize (win_size, win_size), cv.cvSize (-1, -1),
                cv.cvTermCriteria (cv.CV_TERMCRIT_ITER | cv.CV_TERMCRIT_EPS,
Beispiel #33
0
    def point(self, pts, size=1, color=cv.cvScalar(100,100,100)):
		def circ(n):
			pt  = cv.cvPoint(int(round(n[0,0])),int(round(n[1,0])))
			cv.cvCircle(self.buffer, pt, size,
					color, cv.CV_FILLED, cv.CV_AA)
		map(circ, fun.points_of_mat(pts))
Beispiel #34
0
def main():

    ct1 = CntPoint()
    ct2 = CntPoint()
    agl = CntAngle()
    das = CntDAS()
    das.bDraw = 0


    try:
        opts, args = getopt.getopt(sys.argv[1:], "ho:dn:e", ["help", "output=", "draw", "num=", "even"])
    except getopt.GetoptError:
        usage()
        sys.exit(2)
    output = None
    bDraw = 0
    npoint = 100
     
    for o, a in opts:
        if o == "-v":
            ct.verbose = 1
        if o in ("-h", "--help"):
            usage()
            sys.exit()
        if o in ("-o", "--output"):
            output = a
        if o in ("-d", "--draw"):
            bDraw = 1
        if o in ("-n", "--num"):
            npoint = string.atoi(a)
        if o in ("-e", "--even"):
            ct.bEven = 1
    if (len(args)) != 2:
        usage()
        sys.exit(2)
    
    ct1.GetContour(args[0], npoint)
    
    agl.ExtractFeature(ct1.GetKeyPoints(), ct1.drawimg)
    das.ExtractFeature(ct1.GetKeyPoints(), ct1.drawimg)
    
    ct2.GetContour(args[1], npoint)
    agl.ExtractFeature(ct2.GetKeyPoints(), ct2.drawimg)
    das.ExtractFeature(ct2.GetKeyPoints(), ct2.drawimg)

    
    seq1 = getdata(ct1.GetKeyPoints())
    seq2 = getdata(ct2.GetKeyPoints())
    matcher = SmithWaterman()
    cost,align,X,Y = matcher.Align(seq1, seq2)
    myfont = cv.cvInitFont(cv.CV_FONT_HERSHEY_SIMPLEX, 0.5, 0.5)
    if (bDraw):
        ct1.DrawKeyPoints()
        kpoints1 = ct1.GetKeyPoints()
        ct2.DrawKeyPoints()
        kpoints2 = ct2.GetKeyPoints()
        ptcount = 0
        for i in range(len(X)):
            xi = X[i]
            yi = Y[i]
            if (xi == -1):
                cv.cvPutText(ct2.drawimg, 'O', cv.cvPoint(int(kpoints2[yi].x), int(kpoints2[yi].y)), myfont, cv.cvScalar(255, 0, 0,0))
            if (yi == -1):
                cv.cvPutText(ct1.drawimg, 'O', cv.cvPoint(int(kpoints1[xi].x), int(kpoints1[xi].y)), myfont, cv.cvScalar(255, 0, 0,0))
            if (xi != -1 and yi != -1):
                ptcount  += 1
                cv.cvPutText(ct1.drawimg, str(ptcount), cv.cvPoint(int(kpoints1[xi].x), int(kpoints1[xi].y)), myfont, cv.cvScalar(255, 255, 0,0))
                cv.cvPutText(ct2.drawimg, str(ptcount), cv.cvPoint(int(kpoints2[yi].x), int(kpoints2[yi].y)), myfont, cv.cvScalar(255, 255, 0,0))
            
        highgui.cvNamedWindow ("contour1", 1)
        highgui.cvNamedWindow ("contour2", 1)
        highgui.cvShowImage ("contour1", ct1.drawimg)
        highgui.cvShowImage ("contour2", ct2.drawimg)
        highgui.cvWaitKey (0)       
Beispiel #35
0
#!/usr/bin/env python
import sys
import math

import string
import optparse
import fileinput
from CntPoint import *
from opencv import cv
from opencv import highgui

_red = cv.cvScalar (0, 0, 255, 0)
_green = cv.cvScalar (0, 255, 0, 0)
_white = cv.cvScalar (255,255,255,0)
_black = cv.cvScalar (0,0,0,0)

class Corner:

    def __FindCorner(self, filename): #find the corners of images, and save all corner points in self.vKeyPoints
        self.img = highgui.cvLoadImage (filename)
        greyimg = cv.cvCreateImage(cv.cvSize(self.img.width, self.img.height), 8,1)
        hsvimg = cv.cvCreateImage(cv.cvGetSize(self.img), 8, 3)
        cv.cvCvtColor(self.img, hsvimg, cv.CV_RGB2HSV)
        cv.cvCvtColor (hsvimg, greyimg, cv.CV_BGR2GRAY)
        
        eigImage = cv.cvCreateImage(cv.cvGetSize(greyimg), cv.IPL_DEPTH_32F, 1)
        tempImage = cv.cvCreateImage(cv.cvGetSize(greyimg), cv.IPL_DEPTH_32F, 1)
        self.points = cv.cvGoodFeaturesToTrack(greyimg, eigImage,tempImage, 2000, 0.01, 5, None, 3,0,0.01 )
        self.points2 = cv.cvFindCornerSubPix(greyimg, self.points,cv.cvSize(20, 20), 
                                             cv.cvSize(-1, -1), cv.cvTermCriteria(cv.CV_TERMCRIT_ITER |cv.CV_TERMCRIT_EPS, 20, 0.03))
        cv.cvReleaseImage(eigImage)
def harrisResponse(frame):
    """pyvision/point/DetectorHarris.py
    Runs at 10.5 fps...
    """
    #gray = cv.cvCreateImage( cv.cvGetSize(image), 8, 1 )
    #corners = cv.cvCreateImage( cv.cvGetSize(image), 32, 1 )
    #cv.cvCvtColor( image, gray, cv.CV_BGR2GRAY )

    #cv.cvCornerHarris(gray,corners,15)

    # This could be done in a persistant way
    # create the images we need
    image = cv.cvCreateImage(cv.cvGetSize(frame), 8, 3)
    grey = cv.cvCreateImage(cv.cvGetSize(frame), 8, 1)
    prev_grey = cv.cvCreateImage(cv.cvGetSize(frame), 8, 1)
    pyramid = cv.cvCreateImage(cv.cvGetSize(frame), 8, 1)
    prev_pyramid = cv.cvCreateImage(cv.cvGetSize(frame), 8, 1)
    eig = cv.cvCreateImage(cv.cvGetSize(frame), cv.IPL_DEPTH_32F, 1)
    temp = cv.cvCreateImage(cv.cvGetSize(frame), cv.IPL_DEPTH_32F, 1)
    points = [[], []]

    # copy the frame, so we can draw on it
    cv.cvCopy(frame, image)

    # create a grey version of the image
    cv.cvCvtColor(image, grey, cv.CV_BGR2GRAY)

    # search the good points
    points[1] = cv.cvGoodFeaturesToTrack(grey, eig, temp, MAX_COUNT, quality,
                                         min_distance, None, 3, 0, 0.04)

    # refine the corner locations
    cv.cvFindCornerSubPix(
        grey, points[1], cv.cvSize(win_size, win_size), cv.cvSize(-1, -1),
        cv.cvTermCriteria(cv.CV_TERMCRIT_ITER | cv.CV_TERMCRIT_EPS, 20, 0.03))

    if len(points[0]) > 0:
        # we have points, so display them

        # calculate the optical flow
        [points[1], status], something = cv.cvCalcOpticalFlowPyrLK(
            prev_grey, grey, prev_pyramid, pyramid, points[0], len(points[0]),
            (win_size, win_size), 3, len(points[0]), None,
            cv.cvTermCriteria(cv.CV_TERMCRIT_ITER | cv.CV_TERMCRIT_EPS, 20,
                              0.03), flags)

        # initializations
        point_counter = -1
        new_points = []

        for the_point in points[1]:
            # go trough all the points

            # increment the counter
            point_counter += 1

            if add_remove_pt:
                # we have a point to add, so see if it is close to
                # another one. If yes, don't use it
                dx = pt.x - the_point.x
                dy = pt.y - the_point.y
                if dx * dx + dy * dy <= 25:
                    # too close
                    add_remove_pt = 0
                    continue

            if not status[point_counter]:
                # we will disable this point
                continue

            # this point is a correct point
            new_points.append(the_point)

            # draw the current point
            cv.cvCircle(image, cv.cvPointFrom32f(the_point), 3,
                        cv.cvScalar(0, 255, 0, 0), -1, 8, 0)

        # set back the points we keep
        points[1] = new_points

    # swapping
    prev_grey, grey = grey, prev_grey
    prev_pyramid, pyramid = pyramid, prev_pyramid
    points[0], points[1] = points[1], points[0]

    return image
Beispiel #37
0
    def point(self, pts, size=1, color=cv.cvScalar(100, 100, 100)):
        def circ(n):
            pt = cv.cvPoint(int(round(n[0, 0])), int(round(n[1, 0])))
            cv.cvCircle(self.buffer, pt, size, color, cv.CV_FILLED, cv.CV_AA)

        map(circ, fun.points_of_mat(pts))
                              random.randrange (0, 100) * 0.05 + 0.01,
                              random.randrange (0, 5) * 0.1,
                              random.randrange (0, 10),
                              line_type)

        cv.cvPutText (image, "Testing text rendering!",
                      pt1, font,
                      random_color (random))
        
        highgui.cvShowImage (window_name, image)
        highgui.cvWaitKey (delay)

    # prepare a text, and get it's properties
    font = cv.cvInitFont (cv.CV_FONT_HERSHEY_COMPLEX,
                          3, 3, 0.0, 5, line_type)
    text_size, ymin = cv.cvGetTextSize ("OpenCV forever!", font)
    pt1.x = (width - text_size.width) / 2
    pt1.y = (height + text_size.height) / 2
    image2 = cv.cvCloneImage(image)

    # now, draw some OpenCV pub ;-)
    for i in range (255):
        cv.cvSubS (image2, cv.cvScalarAll (i), image, None)
        cv.cvPutText (image, "OpenCV forever!",
                      pt1, font, cv.cvScalar (255, i, i))
        highgui.cvShowImage (window_name, image)
        highgui.cvWaitKey (delay)

    # wait some key to end
    highgui.cvWaitKey (0)
Beispiel #39
0
            # generate a random point
            points.append (cv.cvPoint (
                my_random.randrange (0, image.width / 2) + image.width / 4,
                my_random.randrange (0, image.width / 2) + image.width / 4
                ))

        # compute the convex hull
        hull = cv.cvConvexHull2 (points, cv.CV_CLOCKWISE, 0)

        # start with an empty image
        cv.cvSetZero (image)

        for i in range (count):
            # draw all the points
            cv.cvCircle (image, points [i], 2,
                         cv.cvScalar (0, 0, 255, 0),
                         cv.CV_FILLED, cv.CV_AA, 0)

        # start the line from the last point
        pt0 = points [hull [-1]]
        
        for point_index in hull:
            # connect the previous point to the current one

            # get the current one
            pt1 = points [point_index]

            # draw
            cv.cvLine (image, pt0, pt1,
                       cv.cvScalar (0, 255, 0, 0),
                       1, cv.CV_AA, 0)
Beispiel #40
0
        cv.cvCvtColor(image, hsv, cv.CV_BGR2HSV)

        cv.cvLine(image, cv.cvPoint(0, image.height / 2),
                  cv.cvPoint(image.width, image.height / 2),
                  cv.CV_RGB(0, 255, 0), 2, 8, 0)

        cv.cvLine(image, cv.cvPoint(image.width / 2, 0),
                  cv.cvPoint(image.width / 2, image.height),
                  cv.CV_RGB(0, 255, 0), 2, 8, 0)

        if track_object:
            _vmin = vmin
            _vmax = vmax

            cv.cvInRangeS(hsv, cv.cvScalar(0, smin, min(_vmin, _vmax), 0),
                          cv.cvScalar(180, 256, max(_vmin, _vmax), 0), mask)

            cv.cvSplit(hsv, hue, None, None, None)

            if track_object < 0:
                max_val = 0.0
                subhue = cv.cvGetSubRect(hue, selection)
                submask = cv.cvGetSubRect(mask, selection)
                cv.cvCalcHist(subhue, hist, 0, submask)

                # extract the min and max value of the histogram
                min_val, max_val, min_idx, max_idx = cv.cvGetMinMaxHistValue(
                    hist)

                if (max_val):
                    dy = pt.y - the_point.y
                    if dx * dx + dy * dy <= 25:
                        # too close
                        add_remove_pt = 0
                        continue

                if not status[point_counter]:
                    # we will disable this point
                    continue

                # this point is a correct point
                new_points.append(the_point)

                # draw the current point
                cv.cvCircle(image, [the_point.x, the_point.y], 3,
                            cv.cvScalar(0, 255, 0, 0), -1, 8, 0)

            # set back the points we keep
            points[1] = new_points

        if add_remove_pt:
            # we want to add a point
            points[1].append(cv.cvPointTo32f(pt))

            # refine the corner locations
            points[1][-1] = cv.cvFindCornerSubPix(
                grey, [points[1][-1]], cv.cvSize(win_size, win_size),
                cv.cvSize(-1, -1),
                cv.cvTermCriteria(cv.CV_TERMCRIT_ITER | cv.CV_TERMCRIT_EPS, 20,
                                  0.03))[0]
Beispiel #42
0
#ERODE_ITER=2
DILATE_ITER = 1
ERODE_ITER = 1

#Polygon Contour aproximation tolerance
PER_TOLERANCE = 50

#contour constants
CURRENT_CONTOUR = 2
CONTOUR_THICKNESS = 2

#threshold values
THRESHOLD_VALUE = 240

#color constants
_red = cv.cvScalar(0, 0, 255, 0)
_green = cv.cvScalar(0, 255, 0, 0)


def isValidRect(rect, fullFrame):
    if rect.x < 0 or rect.y < 0:
        return False
    if rect.x > fullFrame.width or rect.y > fullFrame.height:
        return False
    if rect.x + rect.width > fullFrame.width or rect.y + rect.height > fullFrame.height:
        return False

    return True


def biggerRect(rect, percent, fullFrame):
Beispiel #43
0
                              random.randrange (0, 5) * 0.1,
                              random.randrange (0, 10),
                              line_type)

        cv.cvPutText (image, "Testing text rendering!",
                      pt1, font,
                      random_color (random))
        
        highgui.cvShowImage (window_name, image)
        highgui.cvWaitKey (delay)

    # prepare a text, and get it's properties
    font = cv.cvInitFont (cv.CV_FONT_HERSHEY_COMPLEX,
                          3, 3, 0.0, 5, line_type)
    text_size, ymin = cv.cvGetTextSize ("OpenCV forever!", font)
    pt1.x = (width - text_size.width) / 2
    pt1.y = (height + text_size.height) / 2
    image2 = cv.cvCloneImage(image)

    # now, draw some OpenCV pub ;-)
    for i in range (255):
        cv.cvSubS (image2, cv.cvScalarAll (i), image, None)
        cv.cvPutText (image, "OpenCV forever!",
                      pt1, font, cv.cvScalar (255, i, i))
        highgui.cvShowImage (window_name, image)
        highgui.cvWaitKey (delay)

    # wait some key to end
    highgui.cvWaitKey (0)

def random_color (random):
    """
    Return a random color
    """
    icolor = random.randint (0, 0xFFFFFF)
    return cv.cvScalar (icolor & 0xff, (icolor >> 8) & 0xff, (icolor >> 16) & 0xff)
                    dx = pt.x - the_point.x
                    dy = pt.y - the_point.y
                    if dx * dx + dy * dy <= 25:
                        # too close
                        add_remove_pt = 0
                        continue

                if not status[point_counter]:
                    # we will disable this point
                    continue

                # this point is a correct point
                new_points.append(the_point)

                # draw the current point
                cv.cvCircle(image, [the_point.x, the_point.y], 3, cv.cvScalar(0, 255, 0, 0), -1, 8, 0)

            # set back the points we keep
            points[1] = new_points

        if add_remove_pt:
            # we want to add a point
            points[1].append(cv.cvPointTo32f(pt))

            # refine the corner locations
            points[1][-1] = cv.cvFindCornerSubPix(
                grey,
                [points[1][-1]],
                cv.cvSize(win_size, win_size),
                cv.cvSize(-1, -1),
                cv.cvTermCriteria(cv.CV_TERMCRIT_ITER | cv.CV_TERMCRIT_EPS, 20, 0.03),
Beispiel #46
0
def random_color (random):
    """
    Return a random color
    """
    icolor = random.randint (0, 0xFFFFFF)
    return cv.cvScalar (icolor & 0xff, (icolor >> 8) & 0xff, (icolor >> 16) & 0xff)
Beispiel #47
0
red_hmin = 127
red_hmax = 180
green_hmin = 38
green_hmax = 100

vmin = 125
vmax = 255 

# global statistics variables
stats = True
frameCount = 0
redFailCount = 0
greenFailCount = 0
startTime = time()

hsv_min = cv.cvScalar(0, 0, vmin, 0)
hsv_max = cv.cvScalar(180, 255, vmax, 0)

capture = None

def change_hmin(p):
	global hmin
	hmin = p

def change_hmax(p):
	global hmax
	hmax = p

def change_red_hmin(p):
	global red_hmin
	red_hmin = p
Beispiel #48
0
def segment_center_object(image,
                          display_on=False,
                          nsamp=10000, iter_limit=30,
                          use_texture=True, use_hsv=True, set_v_to_zero=True,
                          use_mask=True, remove_saturation=False, remove_boundary = True, prior_gmm=None, 
						  use_flip_heuristic=True):
    """
    segment the input image (OpenCV image) and return an ellipse fit to the center object (foreground) and a binary image mask for this foreground object
    
    nsamp : number of pixels to be used when fitting the Gaussian mixture model (impacts speed and accuracy)
    iter_limit : maximum number of iterations when fitting the texture model
    use_texture : use texture features
    use_hsv : use hsv color space for features
    set_v_to_zero : effectively remove the value (brightness) component of the hsv features
    use_mask : mask out areas of the image prior to training the appearance model and segmenting
    remove_saturation : if use_mask, then remove saturated pixels (RGB values = 255 = max value)
    remove_boundary : if use_mask, then remove the borders of the image prior to segmenting it

    returns a segmentation object (SegmentObject)

    """
    
    #remove_low_freq = True

    if use_hsv:
        hsv_image = cv.cvCreateImage(cv.cvSize(image.width, image.height),
                                     cv.IPL_DEPTH_8U, 3)
        cv.cvCvtColor(image, hsv_image, cv.CV_RGB2HSV) #cv.CV_BGR2HSV)
        if set_v_to_zero:
            #cvSet(hsv_image, cvScalarAll(0), )
            for y in xrange(hsv_image.height):
                for x in xrange(hsv_image.width):
                    pix = hsv_image[y,x]
                    hsv_image[y,x] = cv.cvScalar(pix[0], pix[1], 0.0)
        image = hsv_image


    if display_on: 
        image_list = []
    else:
        image_list = None
        
    imf = ImageFeatures(image, use_texture=use_texture)
    #imf.texture_features()
    if use_mask:
        #test_mask = np.zeros([image.height, image.width])
        #test_mask[0:200, 0:200] = 1.0
        #test_mask = test_mask > 0.0
        # select saturation mask
        nim = ut.cv2np(image)

        if remove_saturation:
            # remove saturated pixels
            #saturation_mask = ~np.alltrue(nim > 255, axis=2)
            saturation_mask = ~np.any(nim >= 255, axis=2)
            #saturation_mask = np.sum(nim >= 255, axis=2) < 2

        if remove_boundary:
            # remove boundaries beyond the possible object size
            border_y = 50
            border_x = 100
            too_big_mask = np.zeros(nim.shape[:2], dtype=np.bool)
            w = nim.shape[1]
            h = nim.shape[0]
            too_big_mask[border_y : h - border_y, border_x : w - border_x] = True

        if remove_saturation and remove_boundary:
            feature_mask = saturation_mask & too_big_mask
        elif remove_saturation:
            feature_mask = saturation_mask
        else:
            feature_mask = too_big_mask
        disp_mask = feature_mask.copy()

        features = imf.select_subset(nsamp, mask_image=feature_mask)
        cv_mask = ut.np2cv(disp_mask.astype(np.uint8) * 255)
        if image_list is not None:
            image_list.append(cv_mask)
    else:
        features = imf.select_subset(nsamp)
    #sego = SegmentObject(image, features, iter_limit=iter_limit)

    sego = SegmentObject(image, imf, iter_limit=iter_limit, prior_gmm=prior_gmm)
    sego.classify_image(use_flip_heuristic)
    sego.clean_classified_image()
    #sego.find_largest_object()
    sego.find_best_object()
    sego.fit_to_largest_object()
    if image_list is not None:
        image_list.extend(sego.get_images_for_display())
        ut.display_images(image_list)
    return sego
Beispiel #49
0
def main(args):
	global capture
	global hmax, hmin
	global stats, startTime

	highgui.cvNamedWindow('Camera', highgui.CV_WINDOW_AUTOSIZE)
	highgui.cvNamedWindow('Red Hue', highgui.CV_WINDOW_AUTOSIZE)
	highgui.cvNamedWindow('Green Hue', highgui.CV_WINDOW_AUTOSIZE)
	highgui.cvNamedWindow('Value', highgui.CV_WINDOW_AUTOSIZE)
	highgui.cvNamedWindow('Red Laser', highgui.CV_WINDOW_AUTOSIZE)
	highgui.cvNamedWindow('Green Laser', highgui.CV_WINDOW_AUTOSIZE)
	highgui.cvMoveWindow('Camera', 0, 10)
	highgui.cvMoveWindow('Value', 10, 420)
	highgui.cvMoveWindow('Red Laser', 360, 10)
	highgui.cvMoveWindow('Green Laser', 360, 360)
	highgui.cvMoveWindow('Red Hue',700, 10 )
	highgui.cvMoveWindow('Green Hue',700, 420) 

	highgui.cvCreateTrackbar("Brightness Trackbar","Camera",0,255, change_brightness);
	highgui.cvCreateTrackbar("vmin Trackbar","Value",vmin,255, change_vmin);
	highgui.cvCreateTrackbar("vmax Trackbar","Value",vmax,255, change_vmax);
	highgui.cvCreateTrackbar("red hmin Trackbar","Red Hue",red_hmin,180, change_red_hmin);
	highgui.cvCreateTrackbar("red hmax Trackbar","Red Hue",red_hmax,180, change_red_hmax);
	highgui.cvCreateTrackbar("green hmin Trackbar","Green Hue",green_hmin,180, change_green_hmin);
	highgui.cvCreateTrackbar("green hmax Trackbar","Green Hue",green_hmax,180, change_green_hmax);

	print "grabbing camera"
	capture = highgui.cvCreateCameraCapture(0)
	print "found camera"
	highgui.cvSetCaptureProperty(capture,highgui.CV_CAP_PROP_FRAME_WIDTH, iwidth)
	highgui.cvSetCaptureProperty(capture,highgui.CV_CAP_PROP_FRAME_HEIGHT, iheight)

	frame = highgui.cvQueryFrame(capture)
	frameSize = cv.cvGetSize(frame)

	hsv = cv.cvCreateImage(frameSize,8,3)
	mask = cv.cvCreateImage(frameSize,8,1)
	red_hue = cv.cvCreateImage(frameSize,8,1)
	green_hue = cv.cvCreateImage(frameSize,8,1)
	saturation = cv.cvCreateImage(frameSize,8,1)
	value = cv.cvCreateImage(frameSize,8,1)
	red_laser = cv.cvCreateImage(frameSize,8,1)
	green_laser = cv.cvCreateImage(frameSize,8,1)
	turret = FuzzyController(frameSize.width,frameSize.height,True)	
	
	while 1:
		frame = highgui.cvQueryFrame(capture)

		cv.cvCvtColor(frame, hsv, cv.CV_BGR2HSV)	
		cv.cvSplit(hsv,red_hue,saturation,value,None)
		cv.cvSplit(hsv,green_hue,saturation,value,None)
	
		cv.cvInRangeS(red_hue, cv.cvScalar(red_hmin), cv.cvScalar(red_hmax), red_hue)
		cv.cvInRangeS(green_hue, cv.cvScalar(green_hmin), cv.cvScalar(green_hmax), green_hue)
		cv.cvInRangeS(value, cv.cvScalar(vmin), cv.cvScalar(vmax), value)

		cv.cvAnd(red_hue, value, red_laser)
		cv.cvAnd(green_hue, value, green_laser)

		green_cenX,green_cenY =  averageWhitePoints(green_laser)
		draw_target(frame, green_cenX, green_cenY, "GREEN")
		red_cenX, red_cenY = averageWhitePoints(red_laser)
		draw_target(frame, red_cenX, red_cenY, "RED")
		
		if(green_cenX >= 0 and green_cenY >= 0):# and move_count <= 0):
			turret.update(green_cenX,green_cenY)
		
		highgui.cvShowImage('Camera',frame)
		highgui.cvShowImage('Red Hue', red_hue)
		highgui.cvShowImage('Green Hue', green_hue)
		highgui.cvShowImage('Value',value)
		highgui.cvShowImage('Red Laser',red_laser)
		highgui.cvShowImage('Green Laser',green_laser)

		if stats:
			printRunningStats((green_cenX, green_cenY), (red_cenX, red_cenY))

		k = highgui.cvWaitKey(10)
		if k == '\x1b' or k == 'q':
			sys.exit()
		if k == 'p':
			if stats:
				printTotalStats()
				stats = False
			else:
				startTime = time()
				stats = True
Beispiel #50
0
def main(args):
	global capture
	global hmax, hmin
	highgui.cvNamedWindow('Camera', highgui.CV_WINDOW_AUTOSIZE)
	highgui.cvNamedWindow('Hue', highgui.CV_WINDOW_AUTOSIZE)
	highgui.cvNamedWindow('Satuation', highgui.CV_WINDOW_AUTOSIZE)
	highgui.cvNamedWindow('Value', highgui.CV_WINDOW_AUTOSIZE)
	highgui.cvNamedWindow('Laser', highgui.CV_WINDOW_AUTOSIZE)
	highgui.cvMoveWindow('Camera', 0, 10)
	highgui.cvMoveWindow('Hue', 0, 350)
	highgui.cvMoveWindow('Satuation', 360, 10)
	highgui.cvMoveWindow('Value', 360, 350)
	highgui.cvMoveWindow('Laser', 700, 40)

	highgui.cvCreateTrackbar("Brightness Trackbar","Camera",0,255, change_brightness);
	highgui.cvCreateTrackbar("hmin Trackbar","Hue",hmin,180, change_hmin);
	highgui.cvCreateTrackbar("hmax Trackbar","Hue",hmax,180, change_hmax);
	highgui.cvCreateTrackbar("smin Trackbar","Satuation",smin,255, change_smin);
	highgui.cvCreateTrackbar("smax Trackbar","Satuation",smax,255, change_smax);
	highgui.cvCreateTrackbar("vmin Trackbar","Value",vmin,255, change_vmin);
	highgui.cvCreateTrackbar("vmax Trackbar","Value",vmax,255, change_vmax);

	print "grabbing camera"
	capture = highgui.cvCreateCameraCapture(0)
	print "found camera"
	highgui.cvSetCaptureProperty(capture,highgui.CV_CAP_PROP_FRAME_WIDTH, 320)
	highgui.cvSetCaptureProperty(capture,highgui.CV_CAP_PROP_FRAME_HEIGHT, 240)

	frame = highgui.cvQueryFrame(capture)
	frameSize = cv.cvGetSize(frame)

	hsv = cv.cvCreateImage(frameSize,8,3)
	mask = cv.cvCreateImage(frameSize,8,1)
	hue = cv.cvCreateImage(frameSize,8,1)
	satuation = cv.cvCreateImage(frameSize,8,1)
	value = cv.cvCreateImage(frameSize,8,1)
	laser = cv.cvCreateImage(frameSize,8,1)
	turret = FuzzyController(frameSize.width,frameSize.height,True)	
	move_count = 0
	while 1:
		frame = highgui.cvQueryFrame(capture)

		cv.cvCvtColor(frame, hsv, cv.CV_BGR2HSV)	
		#cv.cvInRangeS(hsv,hsv_min,hsv_max,mask)
		cv.cvSplit(hsv,hue,satuation,value,None)
	
		cv.cvInRangeS(hue,cv.cvScalar(hmin),cv.cvScalar(hmax),hue)
		cv.cvInRangeS(satuation,cv.cvScalar(smin),cv.cvScalar(smax),satuation)
		cv.cvInRangeS(value,cv.cvScalar(vmin),cv.cvScalar(vmax),value)
		#cv.cvInRangeS(hue,0,180,hue)

        	cv.cvAnd(hue, value, laser)
        	#cv.cvAnd(laser, value, laser)
		
		cenX,cenY =  averageWhitePoints(laser)
		#print cenX,cenY
		draw_target(frame,cenX,cenY)
	
		if(cenX != 0 and cenY != 0):# and move_count <= 0):
			turret.update(cenX,cenY,False)
		"""
			turret.reset()
			move_count = 3	
			if(cenX < 100):
				turret.left(20)
			elif(cenX > 200):
				turret.right(20)
		
			if(cenY < 80):
				turret.up(40)
			elif(cenY > 170):
				print "DOWN please.."
				turret.down(40)
			print cenY
		"""
		#move_count -= 1
		#draw_target(frame,200,1)
		
		highgui.cvShowImage('Camera',frame)
		highgui.cvShowImage('Hue',hue)
		highgui.cvShowImage('Satuation',satuation)
		highgui.cvShowImage('Value',value)
		highgui.cvShowImage('Laser',laser)

		k = highgui.cvWaitKey(10)
		if k == 'q':
			sys.exit()
Beispiel #51
0
#!/usr/bin/env python
#####################################################
# Longbin Chen
# ------------
# Created by [email protected]
#####################################################

import sys, math, string, optparse, fileinput, cStringIO, random

from opencv import cv
from opencv import highgui

from MSS import *
import NW

_red = cv.cvScalar(0, 0, 255, 0)
_green = cv.cvScalar(0, 255, 0, 0)
_white = cv.cvScalar(255, 255, 255, 0)
_black = cv.cvScalar(0, 0, 0, 0)
color = [
    _red, _green, _white,
    cv.cvScalar(128, 0, 128),
    cv.cvScalar(128, 128, 128),
    cv.cvScalar(128, 0, 0),
    cv.cvScalar(0, 0, 128)
]

OUT = cStringIO.StringIO()


class Edge:
from opencv import highgui

#############################################################################
# definition of some constants

# how many bins we want for the histogram, and their ranges
hdims = 16
hranges = [[0, 180]]

# ranges for the limitation of the histogram
vmin = 10
vmax = 256
smin = 30

# the range we want to monitor
hsv_min = cv.cvScalar (0, smin, vmin, 0)
hsv_max = cv.cvScalar (180, 256, vmax, 0)

#############################################################################
# some useful functions

def hsv2rgb (hue):
    # convert the hue value to the corresponding rgb value

    sector_data = [[0, 2, 1],
                   [1, 2, 0],
                   [1, 0, 2],
                   [2, 0, 1],
                   [2, 1, 0],
                   [0, 1, 2]]
    hue *= 0.1 / 3
Beispiel #53
0
def segment_center_object(image,
                          display_on=False,
                          nsamp=10000,
                          iter_limit=30,
                          use_texture=True,
                          use_hsv=True,
                          set_v_to_zero=True,
                          use_mask=True,
                          remove_saturation=False,
                          remove_boundary=True,
                          prior_gmm=None,
                          use_flip_heuristic=True):
    """
    segment the input image (OpenCV image) and return an ellipse fit to the center object (foreground) and a binary image mask for this foreground object
    
    nsamp : number of pixels to be used when fitting the Gaussian mixture model (impacts speed and accuracy)
    iter_limit : maximum number of iterations when fitting the texture model
    use_texture : use texture features
    use_hsv : use hsv color space for features
    set_v_to_zero : effectively remove the value (brightness) component of the hsv features
    use_mask : mask out areas of the image prior to training the appearance model and segmenting
    remove_saturation : if use_mask, then remove saturated pixels (RGB values = 255 = max value)
    remove_boundary : if use_mask, then remove the borders of the image prior to segmenting it

    returns a segmentation object (SegmentObject)

    """

    #remove_low_freq = True

    if use_hsv:
        hsv_image = cv.cvCreateImage(cv.cvSize(image.width, image.height),
                                     cv.IPL_DEPTH_8U, 3)
        cv.cvCvtColor(image, hsv_image, cv.CV_RGB2HSV)  #cv.CV_BGR2HSV)
        if set_v_to_zero:
            #cvSet(hsv_image, cvScalarAll(0), )
            for y in xrange(hsv_image.height):
                for x in xrange(hsv_image.width):
                    pix = hsv_image[y, x]
                    hsv_image[y, x] = cv.cvScalar(pix[0], pix[1], 0.0)
        image = hsv_image

    if display_on:
        image_list = []
    else:
        image_list = None

    imf = ImageFeatures(image, use_texture=use_texture)
    #imf.texture_features()
    if use_mask:
        #test_mask = np.zeros([image.height, image.width])
        #test_mask[0:200, 0:200] = 1.0
        #test_mask = test_mask > 0.0
        # select saturation mask
        nim = ut.cv2np(image)

        if remove_saturation:
            # remove saturated pixels
            #saturation_mask = ~np.alltrue(nim > 255, axis=2)
            saturation_mask = ~np.any(nim >= 255, axis=2)
            #saturation_mask = np.sum(nim >= 255, axis=2) < 2

        if remove_boundary:
            # remove boundaries beyond the possible object size
            border_y = 50
            border_x = 100
            too_big_mask = np.zeros(nim.shape[:2], dtype=np.bool)
            w = nim.shape[1]
            h = nim.shape[0]
            too_big_mask[border_y:h - border_y, border_x:w - border_x] = True

        if remove_saturation and remove_boundary:
            feature_mask = saturation_mask & too_big_mask
        elif remove_saturation:
            feature_mask = saturation_mask
        else:
            feature_mask = too_big_mask
        disp_mask = feature_mask.copy()

        features = imf.select_subset(nsamp, mask_image=feature_mask)
        cv_mask = ut.np2cv(disp_mask.astype(np.uint8) * 255)
        if image_list is not None:
            image_list.append(cv_mask)
    else:
        features = imf.select_subset(nsamp)
    #sego = SegmentObject(image, features, iter_limit=iter_limit)

    sego = SegmentObject(image,
                         imf,
                         iter_limit=iter_limit,
                         prior_gmm=prior_gmm)
    sego.classify_image(use_flip_heuristic)
    sego.clean_classified_image()
    #sego.find_largest_object()
    sego.find_best_object()
    sego.fit_to_largest_object()
    if image_list is not None:
        image_list.extend(sego.get_images_for_display())
        ut.display_images(image_list)
    return sego