def main(args): env_info = get_sys_env() place = 'gpu' if env_info['Paddle compiled with cuda'] and env_info[ 'GPUs used'] else 'cpu' paddle.set_device(place) if not args.cfg: raise RuntimeError('No configuration file specified.') cfg = Config(args.cfg) # Only support for the DeepLabv3+ model if args.data_format == 'NHWC': if cfg.dic['model']['type'] != 'DeepLabV3P': raise ValueError( 'The "NHWC" data format only support the DeepLabV3P model!') cfg.dic['model']['data_format'] = args.data_format cfg.dic['model']['backbone']['data_format'] = args.data_format loss_len = len(cfg.dic['loss']['types']) for i in range(loss_len): cfg.dic['loss']['types'][i]['data_format'] = args.data_format val_dataset = cfg.val_dataset if val_dataset is None: raise RuntimeError( 'The verification dataset is not specified in the configuration file.' ) elif len(val_dataset) == 0: raise ValueError( 'The length of val_dataset is 0. Please check if your dataset is valid' ) msg = '\n---------------Config Information---------------\n' msg += str(cfg) msg += '------------------------------------------------' logger.info(msg) model = cfg.model skip_quant(model) quantizer = QAT(config=quant_config) quant_model = quantizer.quantize(model) logger.info('Quantize the model successfully') if args.model_path: utils.load_entire_model(quant_model, args.model_path) logger.info('Loaded trained params of model successfully') test_config = get_test_config(cfg, args) config_check(cfg, val_dataset=val_dataset) evaluate(quant_model, val_dataset, num_workers=args.num_workers, **test_config)
def main(args): env_info = get_sys_env() place = 'gpu' if env_info['Paddle compiled with cuda'] and env_info[ 'GPUs used'] else 'cpu' paddle.set_device(place) if not args.cfg: raise RuntimeError('No configuration file specified.') cfg = Config(args.cfg) val_dataset = cfg.val_dataset cfg_1 = Config(args.cfg_1) cfg_crop = Config(args.cfg_crop) val_dataset_crop = cfg_crop.val_dataset if not val_dataset: raise RuntimeError( 'The verification dataset is not specified in the configuration file.' ) msg = '\n---------------Config Information---------------\n' msg += str(cfg) msg += '------------------------------------------------' logger.info(msg) model = cfg.model model_1 = cfg_1.model model_crop = cfg_crop.model transforms = val_dataset.transforms transforms_crop = val_dataset_crop.transforms image_list, image_dir = get_image_list(args.image_path) logger.info('Number of predict images = {}'.format(len(image_list))) predictEnsembleThree( model, model_1, model_crop, model_path=args.model_path, model_path_1=args.model_path_1, model_path_crop=args.model_path_crop, transforms=transforms, transforms_crop=transforms_crop, image_list=image_list, image_dir=image_dir, save_dir=args.save_dir, aug_pred=args.aug_pred, scales=args.scales, flip_horizontal=args.flip_horizontal, flip_vertical=args.flip_vertical, is_slide=args.is_slide, crop_size=args.crop_size, stride=args.stride, )
def main(args): os.environ['PADDLESEG_EXPORT_STAGE'] = 'True' cfg = Config(args.cfg) net = cfg.model if args.model_path: para_state_dict = paddle.load(args.model_path) net.set_dict(para_state_dict) logger.info('Loaded trained params of model successfully.') net.forward = paddle.jit.to_static(net.forward) in_shape = [1] + list(cfg.val_dataset[0][0].shape) in_var = paddle.ones(in_shape) out = net(in_var) save_path = os.path.join(args.save_dir, 'model') paddle.jit.save(net, save_path, input_spec=[in_var]) yml_file = os.path.join(args.save_dir, 'deploy.yaml') with open(yml_file, 'w') as file: transforms = cfg.dic['val_dataset']['transforms'] data = { 'Deploy': { 'transforms': transforms, 'model': 'model.pdmodel', 'params': 'model.pdiparams' } } yaml.dump(data, file) logger.info(f'Model is saved in {args.save_dir}.')
def main(args): env_info = get_sys_env() place = 'gpu' if env_info['Paddle compiled with cuda'] and env_info[ 'GPUs used'] else 'cpu' paddle.set_device(place) if not args.cfg: raise RuntimeError('No configuration file specified.') cfg = Config(args.cfg) val_dataset = cfg.val_dataset if not val_dataset: raise RuntimeError( 'The verification dataset is not specified in the configuration file.' ) msg = '\n---------------Config Information---------------\n' msg += str(cfg) msg += '------------------------------------------------' logger.info(msg) model = cfg.model image_list, image_dir = get_image_list(args.image_path) logger.info('Number of predict images = {}'.format(len(image_list))) test_config = get_test_config(cfg, args) config_check(cfg, val_dataset=val_dataset) predict(model, model_path=args.model_path, val_dataset=val_dataset, image_list=image_list, image_dir=image_dir, save_dir=args.save_dir, **test_config)
def main(args): env_info = get_sys_env() place = 'gpu' if env_info['Paddle compiled with cuda'] and env_info[ 'GPUs used'] else 'cpu' paddle.set_device(place) if not args.cfg: raise RuntimeError('No configuration file specified.') cfg = Config(args.cfg) val_dataset = cfg.val_dataset if not val_dataset: raise RuntimeError( 'The verification dataset is not specified in the configuration file.' ) msg = '\n---------------Config Information---------------\n' msg += str(cfg) msg += '------------------------------------------------' logger.info(msg) model = cfg.model transforms = val_dataset.transforms image_list, image_dir = get_image_list(args.image_path) predict(model, model_path=args.model_path, transforms=transforms, image_list=image_list, image_dir=image_dir, save_dir=args.save_dir)
def main(args): env_info = get_sys_env() place = 'gpu' if env_info['Paddle compiled with cuda'] and env_info[ 'GPUs used'] else 'cpu' paddle.set_device(place) if not args.cfg: raise RuntimeError('No configuration file specified.') cfg = Config(args.cfg) msg = '\n---------------Config Information---------------\n' msg += str(cfg) msg += '------------------------------------------------' logger.info(msg) model = cfg.model transforms = Compose(cfg.val_transforms) print(transforms) image_list, image_dir = get_image_list(args.image_path) logger.info('Number of predict images = {}'.format(len(image_list))) test_config = get_test_config(cfg, args) predict(model, model_path=args.model_path, transforms=transforms, image_list=image_list, image_dir=image_dir, save_dir=args.save_dir, **test_config)
def main(args): os.environ['PADDLESEG_EXPORT_STAGE'] = 'True' cfg = Config(args.cfg) net = cfg.model if args.model_path: para_state_dict = paddle.load(args.model_path) net.set_dict(para_state_dict) logger.info('Loaded trained params of model successfully.') net.eval() net = paddle.jit.to_static(net, input_spec=[ paddle.static.InputSpec( shape=[None, 3, None, None], dtype='float32') ]) save_path = os.path.join(args.save_dir, 'model') paddle.jit.save(net, save_path) yml_file = os.path.join(args.save_dir, 'deploy.yaml') with open(yml_file, 'w') as file: transforms = cfg.export_config.get('transforms', [{ 'type': 'Normalize' }]) data = { 'Deploy': { 'transforms': transforms, 'model': 'model.pdmodel', 'params': 'model.pdiparams' } } yaml.dump(data, file) logger.info(f'Model is saved in {args.save_dir}.')
def main(args): env_info = get_sys_env() place = 'gpu' if env_info['Paddle compiled with cuda'] and env_info[ 'GPUs used'] else 'cpu' paddle.set_device(place) if not args.cfg: raise RuntimeError('No configuration file specified.') cfg = Config(args.cfg) val_dataset = cfg.val_dataset if not val_dataset: raise RuntimeError( 'The verification dataset is not specified in the configuration file.' ) msg = '\n---------------Config Information---------------\n' msg += str(cfg) msg += '------------------------------------------------' logger.info(msg) model = cfg.model if args.model_path: para_state_dict = paddle.load(args.model_path) model.set_dict(para_state_dict) logger.info('Loaded trained params of model successfully') evaluate(model, val_dataset)
def main(args): if args.seed is not None: paddle.seed(args.seed) np.random.seed(args.seed) random.seed(args.seed) env_info = get_sys_env() info = ['{}: {}'.format(k, v) for k, v in env_info.items()] info = '\n'.join(['', format('Environment Information', '-^48s')] + info + ['-' * 48]) logger.info(info) place = 'gpu' if env_info['Paddle compiled with cuda'] and env_info[ 'GPUs used'] else 'cpu' paddle.set_device(place) if not args.cfg: raise RuntimeError('No configuration file specified.') cfg = Config( args.cfg, learning_rate=args.learning_rate, iters=args.iters, batch_size=args.batch_size) train_dataset = cfg.train_dataset if train_dataset is None: raise RuntimeError( 'The training dataset is not specified in the configuration file.') elif len(train_dataset) == 0: raise ValueError( 'The length of train_dataset is 0. Please check if your dataset is valid' ) val_dataset = cfg.val_dataset if args.do_eval else None losses = cfg.loss msg = '\n---------------Config Information---------------\n' msg += str(cfg) msg += '------------------------------------------------' logger.info(msg) config_check(cfg, train_dataset=train_dataset, val_dataset=val_dataset) train( cfg.model, train_dataset, val_dataset=val_dataset, optimizer=cfg.optimizer, save_dir=args.save_dir, iters=cfg.iters, batch_size=cfg.batch_size, resume_model=args.resume_model, save_interval=args.save_interval, log_iters=args.log_iters, num_workers=args.num_workers, use_vdl=args.use_vdl, losses=losses, keep_checkpoint_max=args.keep_checkpoint_max)
def prepare_config(args): """ Create and check the config of student and teacher model. Note: we only use the dataset generated by the student config. """ if args.teather_config is None or args.student_config is None: raise RuntimeError('No configuration file specified.') t_cfg = Config(args.teather_config) s_cfg = Config(args.student_config, learning_rate=args.learning_rate, iters=args.iters, batch_size=args.batch_size) train_dataset = s_cfg.train_dataset val_dataset = s_cfg.val_dataset if args.do_eval else None if train_dataset is None: raise RuntimeError( 'The training dataset is not specified in the configuration file.') elif len(train_dataset) == 0: raise ValueError( 'The length of train_dataset is 0. Please check if your dataset is valid' ) msg = '\n---------------Teacher Config Information---------------\n' msg += str(t_cfg) msg += '------------------------------------------------' logger.info(msg) msg = '\n---------------Student Config Information---------------\n' msg += str(s_cfg) msg += '------------------------------------------------' logger.info(msg) config_check(t_cfg, train_dataset=train_dataset, val_dataset=val_dataset) config_check(s_cfg, train_dataset=train_dataset, val_dataset=val_dataset) return t_cfg, s_cfg, train_dataset, val_dataset
def analyze(args): env_info = get_sys_env() info = ['{}: {}'.format(k, v) for k, v in env_info.items()] info = '\n'.join(['', format('Environment Information', '-^48s')] + info + ['-' * 48]) logger.info(info) paddle.set_device('cpu') cfg = Config(args.config) custom_ops = {paddle.nn.SyncBatchNorm: op_flops_funs.count_syncbn} inputs = paddle.randn(args.input_size) _dynamic_flops(cfg.model, inputs, custom_ops=custom_ops, print_detail=True)
def main(args): env_info = get_sys_env() place = 'gpu' if env_info['Paddle compiled with cuda'] and env_info[ 'GPUs used'] else 'cpu' paddle.set_device(place) if not args.cfg: raise RuntimeError('No configuration file specified.') cfg = Config(args.cfg) val_dataset = cfg.val_dataset if val_dataset is None: raise RuntimeError( 'The verification dataset is not specified in the configuration file.' ) elif len(val_dataset) == 0: raise ValueError( 'The length of val_dataset is 0. Please check if your dataset is valid' ) msg = '\n---------------Config Information---------------\n' msg += str(cfg) msg += '------------------------------------------------' logger.info(msg) model = cfg.model if args.model_path: utils.load_entire_model(model, args.model_path) logger.info('Loaded trained params of model successfully') config_check(cfg, val_dataset=val_dataset) evaluate( model, val_dataset, aug_eval=args.aug_eval, scales=args.scales, flip_horizontal=args.flip_horizontal, flip_vertical=args.flip_vertical, is_slide=args.is_slide, crop_size=args.crop_size, stride=args.stride, num_workers=args.num_workers, )
def main(args): env_info = get_sys_env() place = 'gpu' if env_info['Paddle compiled with cuda'] and env_info[ 'GPUs used'] else 'cpu' paddle.set_device(place) if not args.cfg: raise RuntimeError('No configuration file specified.') cfg = Config(args.cfg) val_dataset = cfg.val_dataset if val_dataset is None: raise RuntimeError( 'The verification dataset is not specified in the configuration file.' ) elif len(val_dataset) == 0: raise ValueError( 'The length of val_dataset is 0. Please check if your dataset is valid' ) msg = '\n---------------Config Information---------------\n' msg += str(cfg) msg += '------------------------------------------------' logger.info(msg) model = cfg.model transforms = val_dataset.transforms alpha = predict(model, model_path=args.model_path, transforms=transforms, image_list=[args.image_path], trimap_list=[args.trimap_path], save_dir=args.save_dir) img_ori = cv2.imread(args.image_path) bg = get_bg(args.bg_path, img_ori.shape) alpha = alpha / 255 alpha = alpha[:, :, np.newaxis] com = alpha * img_ori + (1 - alpha) * bg com = com.astype('uint8') com_save_path = os.path.join(args.save_dir, os.path.basename(args.image_path)) cv2.imwrite(com_save_path, com)
def main(args): env_info = get_sys_env() place = 'gpu' if env_info['Paddle compiled with cuda'] and env_info[ 'GPUs used'] else 'cpu' paddle.set_device(place) if not args.cfg: raise RuntimeError('No configuration file specified.') cfg = Config(args.cfg) val_dataset = cfg.val_dataset if val_dataset is None: raise RuntimeError( 'The verification dataset is not specified in the configuration file.' ) elif len(val_dataset) == 0: raise ValueError( 'The length of val_dataset is 0. Please check if your dataset is valid' ) msg = '\n---------------Config Information---------------\n' msg += str(cfg) msg += '------------------------------------------------' logger.info(msg) model = cfg.model transforms = val_dataset.transforms image_list, image_dir = get_image_list(args.image_path) if args.trimap_path is None: trimap_list = None else: trimap_list, _ = get_image_list(args.trimap_path) logger.info('Number of predict images = {}'.format(len(image_list))) predict(model, model_path=args.model_path, transforms=transforms, image_list=image_list, image_dir=image_dir, trimap_list=trimap_list, save_dir=args.save_dir)
def main(args): os.environ['PADDLESEG_EXPORT_STAGE'] = 'True' cfg = Config(args.cfg) net = cfg.model net.eval() if args.model_path: para_state_dict = paddle.load(args.model_path) net.set_dict(para_state_dict) logger.info('Loaded trained params of model successfully.') if args.input_shape is None: shape = [None, 3, None, None] else: shape = args.input_shape input_spec = [{"img": paddle.static.InputSpec(shape=shape, name='img')}] if args.trimap: shape[1] = 1 input_spec[0]['trimap'] = paddle.static.InputSpec(shape=shape, name='trimap') net = paddle.jit.to_static(net, input_spec=input_spec) save_path = os.path.join(args.save_dir, 'model') paddle.jit.save(net, save_path) yml_file = os.path.join(args.save_dir, 'deploy.yaml') with open(yml_file, 'w') as file: transforms = cfg.val_dataset_config.get('transforms', [{ 'type': 'Normalize' }]) data = { 'Deploy': { 'transforms': transforms, 'model': 'model.pdmodel', 'params': 'model.pdiparams' } } yaml.dump(data, file) logger.info(f'Model is saved in {args.save_dir}.')
def main(args): os.environ['PADDLESEG_EXPORT_STAGE'] = 'True' cfg = Config(args.cfg) net = cfg.model skip_quant(net) quantizer = QAT(config=quant_config) quant_net = quantizer.quantize(net) logger.info('Quantize the model successfully') if args.model_path: utils.load_entire_model(quant_net, args.model_path) logger.info('Loaded trained params of model successfully') if not args.without_argmax or args.with_softmax: new_net = SavedSegmentationNet(quant_net, args.without_argmax, args.with_softmax) else: new_net = net new_net.eval() save_path = os.path.join(args.save_dir, 'model') input_spec = [ paddle.static.InputSpec(shape=[None, 3, None, None], dtype='float32') ] quantizer.save_quantized_model(new_net, save_path, input_spec=input_spec) yml_file = os.path.join(args.save_dir, 'deploy.yaml') with open(yml_file, 'w') as file: transforms = cfg.export_config.get('transforms', [{ 'type': 'Normalize' }]) data = { 'Deploy': { 'transforms': transforms, 'model': 'model.pdmodel', 'params': 'model.pdiparams' } } yaml.dump(data, file) logger.info(f'Model is saved in {args.save_dir}.')
def main(args): env_info = get_sys_env() place = 'gpu' if env_info['Paddle compiled with cuda'] and env_info[ 'GPUs used'] else 'cpu' paddle.set_device(place) if not args.cfg: raise RuntimeError('No configuration file specified.') cfg = Config(args.cfg) val_dataset = cfg.val_dataset if not val_dataset: raise RuntimeError( 'The verification dataset is not specified in the configuration file.' ) msg = '\n---------------Config Information---------------\n' msg += str(cfg) msg += '------------------------------------------------' logger.info(msg) model = cfg.model transforms = val_dataset.transforms image_list, image_dir = get_image_list(args.image_path) logger.info('Number of predict images = {}'.format(len(image_list))) config_check(cfg, val_dataset=val_dataset) predict(model, model_path=args.model_path, transforms=transforms, thing_list=val_dataset.thing_list, label_divisor=val_dataset.label_divisor, stuff_area=val_dataset.stuff_area, ignore_index=val_dataset.ignore_index, image_list=image_list, image_dir=image_dir, save_dir=args.save_dir, threshold=args.threshold, nms_kernel=args.nms_kernel, top_k=args.top_k)
def main(args): env_info = get_sys_env() place = 'gpu' if env_info['Paddle compiled with cuda'] and env_info[ 'GPUs used'] else 'cpu' paddle.set_device(place) if not args.cfg: raise RuntimeError('No configuration file specified.') cfg = Config(args.cfg) val_dataset = cfg.val_dataset if val_dataset is None: raise RuntimeError( 'The verification dataset is not specified in the configuration file.' ) elif len(val_dataset) == 0: raise ValueError( 'The length of val_dataset is 0. Please check if your dataset is valid' ) msg = '\n---------------Config Information---------------\n' msg += str(cfg) msg += '------------------------------------------------' logger.info(msg) model = cfg.model if args.model_path: paddleseg.utils.utils.load_entire_model(model, args.model_path) logger.info('Loaded trained params of model successfully') config_check(cfg, val_dataset=val_dataset) evaluate( model, val_dataset, threshold=args.threshold, nms_kernel=args.nms_kernel, top_k=args.top_k, num_workers=args.num_workers, )
def main(args): if args.seed is not None: paddle.seed(args.seed) np.random.seed(args.seed) random.seed(args.seed) env_info = get_sys_env() info = ['{}: {}'.format(k, v) for k, v in env_info.items()] info = '\n'.join(['', format('Environment Information', '-^48s')] + info + ['-' * 48]) logger.info(info) place = 'gpu' if env_info['Paddle compiled with cuda'] and env_info[ 'GPUs used'] else 'cpu' paddle.set_device(place) if not args.cfg: raise RuntimeError('No configuration file specified.') cfg = Config(args.cfg, learning_rate=args.learning_rate, iters=args.iters, batch_size=args.batch_size) # Only support for the DeepLabv3+ model if args.data_format == 'NHWC': if cfg.dic['model']['type'] != 'DeepLabV3P': raise ValueError( 'The "NHWC" data format only support the DeepLabV3P model!') cfg.dic['model']['data_format'] = args.data_format cfg.dic['model']['backbone']['data_format'] = args.data_format loss_len = len(cfg.dic['loss']['types']) for i in range(loss_len): cfg.dic['loss']['types'][i]['data_format'] = args.data_format train_dataset = cfg.train_dataset if train_dataset is None: raise RuntimeError( 'The training dataset is not specified in the configuration file.') elif len(train_dataset) == 0: raise ValueError( 'The length of train_dataset is 0. Please check if your dataset is valid' ) val_dataset = cfg.val_dataset if args.do_eval else None losses = cfg.loss msg = '\n---------------Config Information---------------\n' msg += str(cfg) msg += '------------------------------------------------' logger.info(msg) config_check(cfg, train_dataset=train_dataset, val_dataset=val_dataset) train(cfg.model, train_dataset, val_dataset=val_dataset, optimizer=cfg.optimizer, save_dir=args.save_dir, iters=cfg.iters, batch_size=cfg.batch_size, resume_model=args.resume_model, save_interval=args.save_interval, log_iters=args.log_iters, num_workers=args.num_workers, use_vdl=args.use_vdl, losses=losses, keep_checkpoint_max=args.keep_checkpoint_max, test_config=cfg.test_config, fp16=args.fp16, profiler_options=args.profiler_options)