Ejemplo n.º 1
0
def main(args):
    env_info = get_sys_env()
    place = 'gpu' if env_info['Paddle compiled with cuda'] and env_info[
        'GPUs used'] else 'cpu'

    paddle.set_device(place)
    if not args.cfg:
        raise RuntimeError('No configuration file specified.')

    cfg = Config(args.cfg)
    # Only support for the DeepLabv3+ model
    if args.data_format == 'NHWC':
        if cfg.dic['model']['type'] != 'DeepLabV3P':
            raise ValueError(
                'The "NHWC" data format only support the DeepLabV3P model!')
        cfg.dic['model']['data_format'] = args.data_format
        cfg.dic['model']['backbone']['data_format'] = args.data_format
        loss_len = len(cfg.dic['loss']['types'])
        for i in range(loss_len):
            cfg.dic['loss']['types'][i]['data_format'] = args.data_format

    val_dataset = cfg.val_dataset
    if val_dataset is None:
        raise RuntimeError(
            'The verification dataset is not specified in the configuration file.'
        )
    elif len(val_dataset) == 0:
        raise ValueError(
            'The length of val_dataset is 0. Please check if your dataset is valid'
        )

    msg = '\n---------------Config Information---------------\n'
    msg += str(cfg)
    msg += '------------------------------------------------'
    logger.info(msg)

    model = cfg.model

    skip_quant(model)
    quantizer = QAT(config=quant_config)
    quant_model = quantizer.quantize(model)
    logger.info('Quantize the model successfully')

    if args.model_path:
        utils.load_entire_model(quant_model, args.model_path)
        logger.info('Loaded trained params of model successfully')

    test_config = get_test_config(cfg, args)
    config_check(cfg, val_dataset=val_dataset)

    evaluate(quant_model,
             val_dataset,
             num_workers=args.num_workers,
             **test_config)
def main(args):
    env_info = get_sys_env()
    place = 'gpu' if env_info['Paddle compiled with cuda'] and env_info[
        'GPUs used'] else 'cpu'

    paddle.set_device(place)
    if not args.cfg:
        raise RuntimeError('No configuration file specified.')

    cfg = Config(args.cfg)
    val_dataset = cfg.val_dataset
    cfg_1 = Config(args.cfg_1)
    cfg_crop = Config(args.cfg_crop)
    val_dataset_crop = cfg_crop.val_dataset

    if not val_dataset:
        raise RuntimeError(
            'The verification dataset is not specified in the configuration file.'
        )

    msg = '\n---------------Config Information---------------\n'
    msg += str(cfg)
    msg += '------------------------------------------------'
    logger.info(msg)

    model = cfg.model
    model_1 = cfg_1.model
    model_crop = cfg_crop.model
    transforms = val_dataset.transforms
    transforms_crop = val_dataset_crop.transforms
    image_list, image_dir = get_image_list(args.image_path)
    logger.info('Number of predict images = {}'.format(len(image_list)))
    predictEnsembleThree(
        model,
        model_1,
        model_crop,
        model_path=args.model_path,
        model_path_1=args.model_path_1,
        model_path_crop=args.model_path_crop,
        transforms=transforms,
        transforms_crop=transforms_crop,
        image_list=image_list,
        image_dir=image_dir,
        save_dir=args.save_dir,
        aug_pred=args.aug_pred,
        scales=args.scales,
        flip_horizontal=args.flip_horizontal,
        flip_vertical=args.flip_vertical,
        is_slide=args.is_slide,
        crop_size=args.crop_size,
        stride=args.stride,
    )
Ejemplo n.º 3
0
def main(args):
    os.environ['PADDLESEG_EXPORT_STAGE'] = 'True'
    cfg = Config(args.cfg)
    net = cfg.model

    if args.model_path:
        para_state_dict = paddle.load(args.model_path)
        net.set_dict(para_state_dict)
        logger.info('Loaded trained params of model successfully.')

    net.forward = paddle.jit.to_static(net.forward)
    in_shape = [1] + list(cfg.val_dataset[0][0].shape)
    in_var = paddle.ones(in_shape)
    out = net(in_var)
    save_path = os.path.join(args.save_dir, 'model')
    paddle.jit.save(net, save_path, input_spec=[in_var])

    yml_file = os.path.join(args.save_dir, 'deploy.yaml')
    with open(yml_file, 'w') as file:
        transforms = cfg.dic['val_dataset']['transforms']
        data = {
            'Deploy': {
                'transforms': transforms,
                'model': 'model.pdmodel',
                'params': 'model.pdiparams'
            }
        }
        yaml.dump(data, file)

    logger.info(f'Model is saved in {args.save_dir}.')
Ejemplo n.º 4
0
def main(args):
    env_info = get_sys_env()
    place = 'gpu' if env_info['Paddle compiled with cuda'] and env_info[
        'GPUs used'] else 'cpu'

    paddle.set_device(place)
    if not args.cfg:
        raise RuntimeError('No configuration file specified.')

    cfg = Config(args.cfg)
    val_dataset = cfg.val_dataset
    if not val_dataset:
        raise RuntimeError(
            'The verification dataset is not specified in the configuration file.'
        )

    msg = '\n---------------Config Information---------------\n'
    msg += str(cfg)
    msg += '------------------------------------------------'
    logger.info(msg)

    model = cfg.model
    image_list, image_dir = get_image_list(args.image_path)
    logger.info('Number of predict images = {}'.format(len(image_list)))

    test_config = get_test_config(cfg, args)
    config_check(cfg, val_dataset=val_dataset)

    predict(model,
            model_path=args.model_path,
            val_dataset=val_dataset,
            image_list=image_list,
            image_dir=image_dir,
            save_dir=args.save_dir,
            **test_config)
Ejemplo n.º 5
0
def main(args):
    env_info = get_sys_env()
    place = 'gpu' if env_info['Paddle compiled with cuda'] and env_info[
        'GPUs used'] else 'cpu'

    paddle.set_device(place)
    if not args.cfg:
        raise RuntimeError('No configuration file specified.')

    cfg = Config(args.cfg)
    val_dataset = cfg.val_dataset
    if not val_dataset:
        raise RuntimeError(
            'The verification dataset is not specified in the configuration file.'
        )

    msg = '\n---------------Config Information---------------\n'
    msg += str(cfg)
    msg += '------------------------------------------------'
    logger.info(msg)

    model = cfg.model
    transforms = val_dataset.transforms
    image_list, image_dir = get_image_list(args.image_path)

    predict(model,
            model_path=args.model_path,
            transforms=transforms,
            image_list=image_list,
            image_dir=image_dir,
            save_dir=args.save_dir)
Ejemplo n.º 6
0
def main(args):
    env_info = get_sys_env()
    place = 'gpu' if env_info['Paddle compiled with cuda'] and env_info[
        'GPUs used'] else 'cpu'

    paddle.set_device(place)
    if not args.cfg:
        raise RuntimeError('No configuration file specified.')

    cfg = Config(args.cfg)

    msg = '\n---------------Config Information---------------\n'
    msg += str(cfg)
    msg += '------------------------------------------------'
    logger.info(msg)

    model = cfg.model
    transforms = Compose(cfg.val_transforms)
    print(transforms)

    image_list, image_dir = get_image_list(args.image_path)
    logger.info('Number of predict images = {}'.format(len(image_list)))

    test_config = get_test_config(cfg, args)

    predict(model,
            model_path=args.model_path,
            transforms=transforms,
            image_list=image_list,
            image_dir=image_dir,
            save_dir=args.save_dir,
            **test_config)
Ejemplo n.º 7
0
def main(args):
    os.environ['PADDLESEG_EXPORT_STAGE'] = 'True'
    cfg = Config(args.cfg)
    net = cfg.model

    if args.model_path:
        para_state_dict = paddle.load(args.model_path)
        net.set_dict(para_state_dict)
        logger.info('Loaded trained params of model successfully.')

    net.eval()
    net = paddle.jit.to_static(net,
                               input_spec=[
                                   paddle.static.InputSpec(
                                       shape=[None, 3, None, None],
                                       dtype='float32')
                               ])
    save_path = os.path.join(args.save_dir, 'model')
    paddle.jit.save(net, save_path)

    yml_file = os.path.join(args.save_dir, 'deploy.yaml')
    with open(yml_file, 'w') as file:
        transforms = cfg.export_config.get('transforms', [{
            'type': 'Normalize'
        }])
        data = {
            'Deploy': {
                'transforms': transforms,
                'model': 'model.pdmodel',
                'params': 'model.pdiparams'
            }
        }
        yaml.dump(data, file)

    logger.info(f'Model is saved in {args.save_dir}.')
Ejemplo n.º 8
0
def main(args):
    env_info = get_sys_env()
    place = 'gpu' if env_info['Paddle compiled with cuda'] and env_info[
        'GPUs used'] else 'cpu'

    paddle.set_device(place)
    if not args.cfg:
        raise RuntimeError('No configuration file specified.')

    cfg = Config(args.cfg)
    val_dataset = cfg.val_dataset
    if not val_dataset:
        raise RuntimeError(
            'The verification dataset is not specified in the configuration file.'
        )

    msg = '\n---------------Config Information---------------\n'
    msg += str(cfg)
    msg += '------------------------------------------------'
    logger.info(msg)

    model = cfg.model
    if args.model_path:
        para_state_dict = paddle.load(args.model_path)
        model.set_dict(para_state_dict)
        logger.info('Loaded trained params of model successfully')
    evaluate(model, val_dataset)
Ejemplo n.º 9
0
def main(args):

    if args.seed is not None:
        paddle.seed(args.seed)
        np.random.seed(args.seed)
        random.seed(args.seed)

    env_info = get_sys_env()
    info = ['{}: {}'.format(k, v) for k, v in env_info.items()]
    info = '\n'.join(['', format('Environment Information', '-^48s')] + info +
                     ['-' * 48])
    logger.info(info)

    place = 'gpu' if env_info['Paddle compiled with cuda'] and env_info[
        'GPUs used'] else 'cpu'

    paddle.set_device(place)
    if not args.cfg:
        raise RuntimeError('No configuration file specified.')

    cfg = Config(
        args.cfg,
        learning_rate=args.learning_rate,
        iters=args.iters,
        batch_size=args.batch_size)

    train_dataset = cfg.train_dataset
    if train_dataset is None:
        raise RuntimeError(
            'The training dataset is not specified in the configuration file.')
    elif len(train_dataset) == 0:
        raise ValueError(
            'The length of train_dataset is 0. Please check if your dataset is valid'
        )
    val_dataset = cfg.val_dataset if args.do_eval else None
    losses = cfg.loss

    msg = '\n---------------Config Information---------------\n'
    msg += str(cfg)
    msg += '------------------------------------------------'
    logger.info(msg)

    config_check(cfg, train_dataset=train_dataset, val_dataset=val_dataset)

    train(
        cfg.model,
        train_dataset,
        val_dataset=val_dataset,
        optimizer=cfg.optimizer,
        save_dir=args.save_dir,
        iters=cfg.iters,
        batch_size=cfg.batch_size,
        resume_model=args.resume_model,
        save_interval=args.save_interval,
        log_iters=args.log_iters,
        num_workers=args.num_workers,
        use_vdl=args.use_vdl,
        losses=losses,
        keep_checkpoint_max=args.keep_checkpoint_max)
Ejemplo n.º 10
0
def prepare_config(args):
    """
    Create and check the config of student and teacher model.
    Note: we only use the dataset generated by the student config.
    """
    if args.teather_config is None or args.student_config is None:
        raise RuntimeError('No configuration file specified.')

    t_cfg = Config(args.teather_config)
    s_cfg = Config(args.student_config,
                   learning_rate=args.learning_rate,
                   iters=args.iters,
                   batch_size=args.batch_size)

    train_dataset = s_cfg.train_dataset
    val_dataset = s_cfg.val_dataset if args.do_eval else None
    if train_dataset is None:
        raise RuntimeError(
            'The training dataset is not specified in the configuration file.')
    elif len(train_dataset) == 0:
        raise ValueError(
            'The length of train_dataset is 0. Please check if your dataset is valid'
        )

    msg = '\n---------------Teacher Config Information---------------\n'
    msg += str(t_cfg)
    msg += '------------------------------------------------'
    logger.info(msg)

    msg = '\n---------------Student Config Information---------------\n'
    msg += str(s_cfg)
    msg += '------------------------------------------------'
    logger.info(msg)

    config_check(t_cfg, train_dataset=train_dataset, val_dataset=val_dataset)
    config_check(s_cfg, train_dataset=train_dataset, val_dataset=val_dataset)

    return t_cfg, s_cfg, train_dataset, val_dataset
Ejemplo n.º 11
0
def analyze(args):
    env_info = get_sys_env()
    info = ['{}: {}'.format(k, v) for k, v in env_info.items()]
    info = '\n'.join(['', format('Environment Information', '-^48s')] + info +
                     ['-' * 48])
    logger.info(info)

    paddle.set_device('cpu')

    cfg = Config(args.config)

    custom_ops = {paddle.nn.SyncBatchNorm: op_flops_funs.count_syncbn}
    inputs = paddle.randn(args.input_size)
    _dynamic_flops(cfg.model, inputs, custom_ops=custom_ops, print_detail=True)
Ejemplo n.º 12
0
def main(args):
    env_info = get_sys_env()
    place = 'gpu' if env_info['Paddle compiled with cuda'] and env_info[
        'GPUs used'] else 'cpu'

    paddle.set_device(place)
    if not args.cfg:
        raise RuntimeError('No configuration file specified.')

    cfg = Config(args.cfg)
    val_dataset = cfg.val_dataset
    if val_dataset is None:
        raise RuntimeError(
            'The verification dataset is not specified in the configuration file.'
        )
    elif len(val_dataset) == 0:
        raise ValueError(
            'The length of val_dataset is 0. Please check if your dataset is valid'
        )

    msg = '\n---------------Config Information---------------\n'
    msg += str(cfg)
    msg += '------------------------------------------------'
    logger.info(msg)

    model = cfg.model
    if args.model_path:
        utils.load_entire_model(model, args.model_path)
        logger.info('Loaded trained params of model successfully')

    config_check(cfg, val_dataset=val_dataset)

    evaluate(
        model,
        val_dataset,
        aug_eval=args.aug_eval,
        scales=args.scales,
        flip_horizontal=args.flip_horizontal,
        flip_vertical=args.flip_vertical,
        is_slide=args.is_slide,
        crop_size=args.crop_size,
        stride=args.stride,
        num_workers=args.num_workers,
    )
Ejemplo n.º 13
0
def main(args):
    env_info = get_sys_env()
    place = 'gpu' if env_info['Paddle compiled with cuda'] and env_info[
        'GPUs used'] else 'cpu'
    paddle.set_device(place)
    if not args.cfg:
        raise RuntimeError('No configuration file specified.')

    cfg = Config(args.cfg)
    val_dataset = cfg.val_dataset
    if val_dataset is None:
        raise RuntimeError(
            'The verification dataset is not specified in the configuration file.'
        )
    elif len(val_dataset) == 0:
        raise ValueError(
            'The length of val_dataset is 0. Please check if your dataset is valid'
        )

    msg = '\n---------------Config Information---------------\n'
    msg += str(cfg)
    msg += '------------------------------------------------'
    logger.info(msg)

    model = cfg.model
    transforms = val_dataset.transforms

    alpha = predict(model,
                    model_path=args.model_path,
                    transforms=transforms,
                    image_list=[args.image_path],
                    trimap_list=[args.trimap_path],
                    save_dir=args.save_dir)

    img_ori = cv2.imread(args.image_path)
    bg = get_bg(args.bg_path, img_ori.shape)
    alpha = alpha / 255
    alpha = alpha[:, :, np.newaxis]
    com = alpha * img_ori + (1 - alpha) * bg
    com = com.astype('uint8')
    com_save_path = os.path.join(args.save_dir,
                                 os.path.basename(args.image_path))
    cv2.imwrite(com_save_path, com)
Ejemplo n.º 14
0
def main(args):
    env_info = get_sys_env()
    place = 'gpu' if env_info['Paddle compiled with cuda'] and env_info[
        'GPUs used'] else 'cpu'

    paddle.set_device(place)
    if not args.cfg:
        raise RuntimeError('No configuration file specified.')

    cfg = Config(args.cfg)
    val_dataset = cfg.val_dataset
    if val_dataset is None:
        raise RuntimeError(
            'The verification dataset is not specified in the configuration file.'
        )
    elif len(val_dataset) == 0:
        raise ValueError(
            'The length of val_dataset is 0. Please check if your dataset is valid'
        )

    msg = '\n---------------Config Information---------------\n'
    msg += str(cfg)
    msg += '------------------------------------------------'
    logger.info(msg)

    model = cfg.model
    transforms = val_dataset.transforms

    image_list, image_dir = get_image_list(args.image_path)
    if args.trimap_path is None:
        trimap_list = None
    else:
        trimap_list, _ = get_image_list(args.trimap_path)
    logger.info('Number of predict images = {}'.format(len(image_list)))

    predict(model,
            model_path=args.model_path,
            transforms=transforms,
            image_list=image_list,
            image_dir=image_dir,
            trimap_list=trimap_list,
            save_dir=args.save_dir)
Ejemplo n.º 15
0
def main(args):
    os.environ['PADDLESEG_EXPORT_STAGE'] = 'True'
    cfg = Config(args.cfg)

    net = cfg.model
    net.eval()
    if args.model_path:
        para_state_dict = paddle.load(args.model_path)
        net.set_dict(para_state_dict)
        logger.info('Loaded trained params of model successfully.')

    if args.input_shape is None:
        shape = [None, 3, None, None]
    else:
        shape = args.input_shape

    input_spec = [{"img": paddle.static.InputSpec(shape=shape, name='img')}]
    if args.trimap:
        shape[1] = 1
        input_spec[0]['trimap'] = paddle.static.InputSpec(shape=shape,
                                                          name='trimap')

    net = paddle.jit.to_static(net, input_spec=input_spec)
    save_path = os.path.join(args.save_dir, 'model')
    paddle.jit.save(net, save_path)

    yml_file = os.path.join(args.save_dir, 'deploy.yaml')
    with open(yml_file, 'w') as file:
        transforms = cfg.val_dataset_config.get('transforms',
                                                [{
                                                    'type': 'Normalize'
                                                }])
        data = {
            'Deploy': {
                'transforms': transforms,
                'model': 'model.pdmodel',
                'params': 'model.pdiparams'
            }
        }
        yaml.dump(data, file)

    logger.info(f'Model is saved in {args.save_dir}.')
Ejemplo n.º 16
0
def main(args):
    os.environ['PADDLESEG_EXPORT_STAGE'] = 'True'
    cfg = Config(args.cfg)
    net = cfg.model

    skip_quant(net)
    quantizer = QAT(config=quant_config)
    quant_net = quantizer.quantize(net)
    logger.info('Quantize the model successfully')

    if args.model_path:
        utils.load_entire_model(quant_net, args.model_path)
        logger.info('Loaded trained params of model successfully')

    if not args.without_argmax or args.with_softmax:
        new_net = SavedSegmentationNet(quant_net, args.without_argmax,
                                       args.with_softmax)
    else:
        new_net = net

    new_net.eval()
    save_path = os.path.join(args.save_dir, 'model')
    input_spec = [
        paddle.static.InputSpec(shape=[None, 3, None, None], dtype='float32')
    ]
    quantizer.save_quantized_model(new_net, save_path, input_spec=input_spec)

    yml_file = os.path.join(args.save_dir, 'deploy.yaml')
    with open(yml_file, 'w') as file:
        transforms = cfg.export_config.get('transforms', [{
            'type': 'Normalize'
        }])
        data = {
            'Deploy': {
                'transforms': transforms,
                'model': 'model.pdmodel',
                'params': 'model.pdiparams'
            }
        }
        yaml.dump(data, file)

    logger.info(f'Model is saved in {args.save_dir}.')
Ejemplo n.º 17
0
def main(args):
    env_info = get_sys_env()
    place = 'gpu' if env_info['Paddle compiled with cuda'] and env_info[
        'GPUs used'] else 'cpu'

    paddle.set_device(place)
    if not args.cfg:
        raise RuntimeError('No configuration file specified.')

    cfg = Config(args.cfg)
    val_dataset = cfg.val_dataset
    if not val_dataset:
        raise RuntimeError(
            'The verification dataset is not specified in the configuration file.'
        )

    msg = '\n---------------Config Information---------------\n'
    msg += str(cfg)
    msg += '------------------------------------------------'
    logger.info(msg)

    model = cfg.model
    transforms = val_dataset.transforms
    image_list, image_dir = get_image_list(args.image_path)
    logger.info('Number of predict images = {}'.format(len(image_list)))

    config_check(cfg, val_dataset=val_dataset)

    predict(model,
            model_path=args.model_path,
            transforms=transforms,
            thing_list=val_dataset.thing_list,
            label_divisor=val_dataset.label_divisor,
            stuff_area=val_dataset.stuff_area,
            ignore_index=val_dataset.ignore_index,
            image_list=image_list,
            image_dir=image_dir,
            save_dir=args.save_dir,
            threshold=args.threshold,
            nms_kernel=args.nms_kernel,
            top_k=args.top_k)
Ejemplo n.º 18
0
def main(args):
    env_info = get_sys_env()
    place = 'gpu' if env_info['Paddle compiled with cuda'] and env_info[
        'GPUs used'] else 'cpu'

    paddle.set_device(place)
    if not args.cfg:
        raise RuntimeError('No configuration file specified.')

    cfg = Config(args.cfg)
    val_dataset = cfg.val_dataset
    if val_dataset is None:
        raise RuntimeError(
            'The verification dataset is not specified in the configuration file.'
        )
    elif len(val_dataset) == 0:
        raise ValueError(
            'The length of val_dataset is 0. Please check if your dataset is valid'
        )

    msg = '\n---------------Config Information---------------\n'
    msg += str(cfg)
    msg += '------------------------------------------------'
    logger.info(msg)

    model = cfg.model
    if args.model_path:
        paddleseg.utils.utils.load_entire_model(model, args.model_path)
        logger.info('Loaded trained params of model successfully')

    config_check(cfg, val_dataset=val_dataset)

    evaluate(
        model,
        val_dataset,
        threshold=args.threshold,
        nms_kernel=args.nms_kernel,
        top_k=args.top_k,
        num_workers=args.num_workers,
    )
Ejemplo n.º 19
0
def main(args):

    if args.seed is not None:
        paddle.seed(args.seed)
        np.random.seed(args.seed)
        random.seed(args.seed)

    env_info = get_sys_env()
    info = ['{}: {}'.format(k, v) for k, v in env_info.items()]
    info = '\n'.join(['', format('Environment Information', '-^48s')] + info +
                     ['-' * 48])
    logger.info(info)

    place = 'gpu' if env_info['Paddle compiled with cuda'] and env_info[
        'GPUs used'] else 'cpu'

    paddle.set_device(place)
    if not args.cfg:
        raise RuntimeError('No configuration file specified.')

    cfg = Config(args.cfg,
                 learning_rate=args.learning_rate,
                 iters=args.iters,
                 batch_size=args.batch_size)

    # Only support for the DeepLabv3+ model
    if args.data_format == 'NHWC':
        if cfg.dic['model']['type'] != 'DeepLabV3P':
            raise ValueError(
                'The "NHWC" data format only support the DeepLabV3P model!')
        cfg.dic['model']['data_format'] = args.data_format
        cfg.dic['model']['backbone']['data_format'] = args.data_format
        loss_len = len(cfg.dic['loss']['types'])
        for i in range(loss_len):
            cfg.dic['loss']['types'][i]['data_format'] = args.data_format

    train_dataset = cfg.train_dataset
    if train_dataset is None:
        raise RuntimeError(
            'The training dataset is not specified in the configuration file.')
    elif len(train_dataset) == 0:
        raise ValueError(
            'The length of train_dataset is 0. Please check if your dataset is valid'
        )
    val_dataset = cfg.val_dataset if args.do_eval else None
    losses = cfg.loss

    msg = '\n---------------Config Information---------------\n'
    msg += str(cfg)
    msg += '------------------------------------------------'
    logger.info(msg)

    config_check(cfg, train_dataset=train_dataset, val_dataset=val_dataset)

    train(cfg.model,
          train_dataset,
          val_dataset=val_dataset,
          optimizer=cfg.optimizer,
          save_dir=args.save_dir,
          iters=cfg.iters,
          batch_size=cfg.batch_size,
          resume_model=args.resume_model,
          save_interval=args.save_interval,
          log_iters=args.log_iters,
          num_workers=args.num_workers,
          use_vdl=args.use_vdl,
          losses=losses,
          keep_checkpoint_max=args.keep_checkpoint_max,
          test_config=cfg.test_config,
          fp16=args.fp16,
          profiler_options=args.profiler_options)