Beispiel #1
0
    def _dataframe_changed(self, old, new):
        ''' Handles how updates occur when dataframe changes.  Evaluates if columns or columnlabels
        have been changed.  Provides entry condition as well.

        Note: New automatically sets self.dataframe, so when I refer to new, I am actually
        referring to self.dataframe.  Using "new" instead of self.dataframe is just for readability'''

        ### Initialize plot first time dataframe is passed into the class.  Boolean listeners
        ### for dataframe behave oddly, so uses self.plotdata for entry condition.
        if not self.plotdata:
            self.plotdata = PandasPlotData(df=new)

            self.originaldata = new

            ### Try to infer plot title from dataframe name ###
            try:
                self.plot_title = new.name
            except AttributeError:
                pass

            ### Draw barebones of plot
            self.draw_plot()
            ### Draw lines
            self._draw_lines()

            return

        ### Decide to update columns or completely redraw dataframe.
        else:
            labelold = self._getlabelarray(old)
            labelnew = self._getlabelarray(new)

            ### Have columns been added or removed?
            if len(labelold) != len(labelnew):
                self._overwrite_plotdata

            ### Has index along primaryaxis changed any?
            ### Pandas index comparison is a bit tricky so just list conver
            elif list(labelold) != list(labelnew):
                self._overwrite_plotdata
            else:
                print 'updating frame'
                self.plotdata.set_df(new)
Beispiel #2
0
    def _dataframe_changed(self, old, new):
        ''' Handles how updates occur when dataframe changes.  Evaluates if columns or columnlabels
        have been changed.  Provides entry condition as well.

        Note: New automatically sets self.dataframe, so when I refer to new, I am actually
        referring to self.dataframe.  Using "new" instead of self.dataframe is just for readability'''

        ### Initialize plot first time dataframe is passed into the class.  Boolean listeners
        ### for dataframe behave oddly, so uses self.plotdata for entry condition.
        if not self.plotdata:
            self.plotdata=PandasPlotData(df=new)
            
            self.originaldata=new

            ### Try to infer plot title from dataframe name ###	    
            try: 
                self.plot_title=new.name
            except AttributeError:
                pass

            ### Draw barebones of plot
            self.draw_plot()
            ### Draw lines
            self._draw_lines() 

            return
        
        
        ### Decide to update columns or completely redraw dataframe.  
        else:
            labelold=self._getlabelarray(old)	    
            labelnew=self._getlabelarray(new)

            ### Have columns been added or removed?	    
            if len(labelold) != len(labelnew):
                self._overwrite_plotdata

            ### Has index along primaryaxis changed any?
            ### Pandas index comparison is a bit tricky so just list conver
            elif list(labelold) != list(labelnew):
                self._overwrite_plotdata
            else:
                print 'updating frame'
                self.plotdata.set_df(new)
Beispiel #3
0
class PandasPlot(HasTraits):
    '''Plot to interface a pandas dataframe'''
    ### Actually
    originaldata = Instance(DataFrame)
    dataframe = Instance(DataFrame)
    primaryaxis = Enum(0, 1, 'index',
                       'columns')  #Integer or string, defaults to 0
    _primaryaxis = Property(Enum(0, 1), depends_on='primaryaxis')  #0,1
    indexname = Str('Index')
    columnname = Str('Column')

    ### Traits of the actual plot and plotdatasource handler ###
    plot = Instance(Plot)
    plotdata = Instance(
        PandasPlotData)  #Data stored at any given time in the plot

    ### Aesthetic traits
    plot_title = Str('')  #Defaults from dataframe name
    linecolor = Str('black')
    pointcolor = Str('red')
    linestyle = Enum('line', 'scatter', 'both')
    markersize = Range(low=1, high=5)

    ### Traits for testing
    df_new = Button
    df_change = Button
    re_bin = Range(1, 100)

    def _dataframe_changed(self, old, new):
        ''' Handles how updates occur when dataframe changes.  Evaluates if columns or columnlabels
        have been changed.  Provides entry condition as well.

        Note: New automatically sets self.dataframe, so when I refer to new, I am actually
        referring to self.dataframe.  Using "new" instead of self.dataframe is just for readability'''

        ### Initialize plot first time dataframe is passed into the class.  Boolean listeners
        ### for dataframe behave oddly, so uses self.plotdata for entry condition.
        if not self.plotdata:
            self.plotdata = PandasPlotData(df=new)

            self.originaldata = new

            ### Try to infer plot title from dataframe name ###
            try:
                self.plot_title = new.name
            except AttributeError:
                pass

            ### Draw barebones of plot
            self.draw_plot()
            ### Draw lines
            self._draw_lines()

            return

        ### Decide to update columns or completely redraw dataframe.
        else:
            labelold = self._getlabelarray(old)
            labelnew = self._getlabelarray(new)

            ### Have columns been added or removed?
            if len(labelold) != len(labelnew):
                self._overwrite_plotdata

            ### Has index along primaryaxis changed any?
            ### Pandas index comparison is a bit tricky so just list conver
            elif list(labelold) != list(labelnew):
                self._overwrite_plotdata
            else:
                print 'updating frame'
                self.plotdata.set_df(new)

    ### Properties ###
    def _get__primaryaxis(self):
        ''' Converts 'columns' or 'index' to 0,1.  Mask basically'''
        if self.primaryaxis == 'columns' or self.primaryaxis == 0:
            return 0
        else:
            return 1

    def _getlabelarray(self, dataframe):
        ''' Conveience method to get label along working dimension of a dataframe.'''
        if self._primaryaxis == 0:
            return np.asarray(dataframe.columns)
        else:
            return np.asarray(dataframe.index)

    def _df_change_fired(self):
        ''' set data iteratively column by column'''
        self.dataframe = DataFrame((np.random.randn(100, 100)))

    def _df_new_fired(self):
        df2 = DataFrame((np.random.randn(100, 100)),
                        columns=[i * 5 for i in range(10)],
                        index=[i * 50 for i in range(10)])
        self.dataframe = df2
        self._draw_lines()

    def _re_bin_changed(self):
        ## Fix, squashing indicies
        #self.dataframe=rebin(self.dataframe, self.re_bin, axis=0, avg_fcn='mean')
        self.dataframe = rolling_mean(self.originaldata, self.re_bin)

    def _draw_lines(self):
        ''' Recasts plotdata and ties it to the plot object.'''
        for idx, name in enumerate(self.plotdata.list_data(as_strings=True)):
            #            if idx % 50==0:
            self.plot.plot((self.indexname, name))

    def draw_plot(self, toolbar=True, **pltkws):
        ''' Draw bare plot, including main plotting area, toolbar, etc...
         either at initialization or global redo'''
        if toolbar:
            plot = ToolbarPlot(self.plotdata, **pltkws)
        else:
            plot = Plot(self.plotdata, **pltkws)

#       plot.active_tool = RangeSelection(plot)
#       plot.overlays.append(RangeSelectionOverlay(component=plot))

        plot.title = self.plot_title
        plot.padding = 50
        plot.legend.visible = False

        plot.tools.append(PanTool(plot))
        zoom = BetterSelectingZoom(component=plot,
                                   tool_mode="box",
                                   always_on=False)
        plot.overlays.append(zoom)

        #indexlabels=[str(round(i,1)) for i in self.dataframe.index]

        #### If I do plot.index_axis, it actually removes the default values.

        #index_axis=LabelAxis(plot, orientation='top',
        ##              positions=range(int(float(indexlabels[0])),
        ##                             int(float(indexlabels[-1]))),
        #positions=range(0,1000,100),
        #labels=indexlabels,#, resizable='hv',
        #title=self.indexname)
        #plot.underlays.append(index_axis)

        #plot.value_axis= LabelAxis(plot, orientation='left',  positions=range(self.t_axis_samples),
        #mainlabels=['t1', 't2', 't3', 't4','t5', 't6'], resizable='hv',
        #title=self.t_axis_title)
        self.plot = plot
        return

    def _overwrite_plotdata(self):
        '''When a new instance of PandasPlotData is created, this overwrites the
        data source and updates the axis values.'''
        self.plotdata = PandasPlotData(dataframe=self.dataframe)
        #self.plot.index_axis=LabelAxis(self.plot, orientation='bottom', positions=[0,4,42],
        #labels=self.plotdata._rowmasks.keys(), resizable='hv',
        #title=self.indexname)

        #plot.value_axis= LabelAxis(plot, orientation='left',  positions=range(self.t_axis_samples),
        #mainlabels=['t1', 't2', 't3', 't4','t5', 't6'], resizable='hv',
        #title=self.t_axis_title)

    #axis_traits_group=VGroup(
    #HGroup(
    #Item('x_axis_title'), Item('t_axis_title'), Item('plot_title'),
    #),
    #HGroup(
    #Item('markersize'),Item('linestyle'),
    #),
    #)

    #sample_group=Group(
    #HGroup(Item('spacing'), Item('samp_style') )
    #)

    main_group = Group(
        Item('plot', editor=ComponentEditor(), show_label=False),
        #   Item('df_new'), Item('df_change'),
        Item('re_bin', style='simple'),
        #Include('sample_group'),
        #Include('axis_traits_group')
    )

    traits_view = View(Include('main_group'))
Beispiel #4
0
 def _overwrite_plotdata(self):
     '''When a new instance of PandasPlotData is created, this overwrites the
     data source and updates the axis values.'''
     self.plotdata = PandasPlotData(dataframe=self.dataframe)
Beispiel #5
0
class PandasPlot(HasTraits):
    '''Plot to interface a pandas dataframe'''
    ### Actually   
    originaldata=Instance(DataFrame)
    dataframe=Instance(DataFrame)  
    primaryaxis=Enum(0,1,'index','columns') #Integer or string, defaults to 0
    _primaryaxis=Property(Enum(0,1), depends_on='primaryaxis') #0,1
    indexname=Str('Index')
    columnname=Str('Column')

    ### Traits of the actual plot and plotdatasource handler ###
    plot=Instance(Plot)  
    plotdata=Instance(PandasPlotData) #Data stored at any given time in the plot

    ### Aesthetic traits
    plot_title=Str('') #Defaults from dataframe name
    linecolor=Str('black')
    pointcolor=Str('red')
    linestyle=Enum('line', 'scatter', 'both')
    markersize=Range(low=1, high=5)

    ### Traits for testing    
    df_new=Button
    df_change=Button    
    re_bin=Range(1,100)

    def _dataframe_changed(self, old, new):
        ''' Handles how updates occur when dataframe changes.  Evaluates if columns or columnlabels
        have been changed.  Provides entry condition as well.

        Note: New automatically sets self.dataframe, so when I refer to new, I am actually
        referring to self.dataframe.  Using "new" instead of self.dataframe is just for readability'''

        ### Initialize plot first time dataframe is passed into the class.  Boolean listeners
        ### for dataframe behave oddly, so uses self.plotdata for entry condition.
        if not self.plotdata:
            self.plotdata=PandasPlotData(dataframe=new, primaryaxis=self.primaryaxis, primaryname=self.columnname,\
                                         secondaryname=self.indexname, add_labels_to_extras=True)
            
            self.originaldata=new

            ### Try to infer plot title from dataframe name ###	    
            try: 
                self.plot_title=new.name
            except AttributeError:
                pass

            ### Draw barebones of plot
            self.draw_plot()
            ### Draw lines
            self._draw_lines() 

            return
        ### Decide to update columns or completely redraw dataframe.  
        else:
            labelold=self._getlabelarray(old)	    
            labelnew=self._getlabelarray(new)

            ### Have columns been added or removed?	    
            if len(labelold) != len(labelnew):
                self._overwrite_plotdata

            ### Has index along primaryaxis changed any?
            ### Pandas index comparison is a bit tricky so just list conver
            elif list(labelold) != list(labelnew):
                self._overwrite_plotdata
            else:
                print 'updating frame'
                self.plotdata.update_dataframe(new)

    ### Properties ###	
    def _get__primaryaxis(self):
        ''' Converts 'columns' or 'index' to 0,1.  Mask basically'''
        if self.primaryaxis=='columns' or self.primaryaxis==0:
            return 0
        else:
            return 1

    def _getlabelarray(self, dataframe):
        ''' Conveience method to get label along working dimension of a dataframe.'''
        if self._primaryaxis==0:
            return np.asarray(dataframe.columns)
        else:
            return np.asarray(dataframe.index)

    def _df_change_fired(self):
        ''' set data iteratively column by column'''
        self.dataframe=DataFrame((np.random.randn(100,100)))

    def _df_new_fired(self):
        df2=DataFrame((np.random.randn(100,100)), columns=[i*5 for i in range(10)], index=[i*50 for i in range(10)])
        self.dataframe=df2
        self._draw_lines()
        
    def _re_bin_changed(self):
        ## Fix, squashing indicies
        #self.dataframe=rebin(self.dataframe, self.re_bin, axis=0, avg_fcn='mean')
        self.dataframe=rolling_mean(self.originaldata, self.re_bin)

    def _draw_lines(self):
        ''' Recasts plotdata and ties it to the plot object.'''
        for idx, name in enumerate(self.plotdata.list_data(as_strings=True)):
#            if idx % 50==0:
            self.plot.plot((self.indexname, name))        

    def draw_plot(self, toolbar=True, **pltkws):
        ''' Draw bare plot, including main plotting area, toolbar, etc...
         either at initialization or global redo'''
        if toolbar:
            plot=ToolbarPlot(self.plotdata, **pltkws)
        else:
            plot=Plot(self.plotdata, **pltkws)
        plot.title = self.plot_title
        plot.padding = 50
        plot.legend.visible=False

        plot.tools.append(PanTool(plot))
        zoom=BetterSelectingZoom(component=plot, tool_mode="box", always_on=False)
        plot.overlays.append(zoom)
        
        #indexlabels=[str(round(i,1)) for i in self.dataframe.index]

        #### If I do plot.index_axis, it actually removes the default values.
    
        #index_axis=LabelAxis(plot, orientation='top', 
                    ##              positions=range(int(float(indexlabels[0])),
                     ##                             int(float(indexlabels[-1]))), 
                                   #positions=range(0,1000,100),
                                #labels=indexlabels,#, resizable='hv',
                                #title=self.indexname)
        #plot.underlays.append(index_axis)

        #plot.value_axis= LabelAxis(plot, orientation='left',  positions=range(self.t_axis_samples),
                                    #mainlabels=['t1', 't2', 't3', 't4','t5', 't6'], resizable='hv', 
                                    #title=self.t_axis_title)
        self.plot=plot
        return

    def _overwrite_plotdata(self):
        '''When a new instance of PandasPlotData is created, this overwrites the
        data source and updates the axis values.'''
        self.plotdata=PandasPlotData(dataframe=self.dataframe)
        #self.plot.index_axis=LabelAxis(self.plot, orientation='bottom', positions=[0,4,42], 
                                #labels=self.plotdata._rowmasks.keys(), resizable='hv',
                                #title=self.indexname)

        #plot.value_axis= LabelAxis(plot, orientation='left',  positions=range(self.t_axis_samples),
                                    #mainlabels=['t1', 't2', 't3', 't4','t5', 't6'], resizable='hv', 
                                    #title=self.t_axis_title)	


    #axis_traits_group=VGroup(
                            #HGroup(
                                    #Item('x_axis_title'), Item('t_axis_title'), Item('plot_title'), 
                                    #),
                            #HGroup(
                                    #Item('markersize'),Item('linestyle'),
                                    #),
                            #)

    #sample_group=Group(
                        #HGroup(Item('spacing'), Item('samp_style') )
                        #)

    main_group=Group(
        Item('plot', editor=ComponentEditor(), show_label=False),
     #   Item('df_new'), Item('df_change'), 
        Item('re_bin', style='simple'),
        #Include('sample_group'),
        #Include('axis_traits_group')
    )

    traits_view=View( Include('main_group') )
Beispiel #6
0
 def _overwrite_plotdata(self):
     '''When a new instance of PandasPlotData is created, this overwrites the
     data source and updates the axis values.'''
     self.plotdata=PandasPlotData(dataframe=self.dataframe)