def setUp(self):
        self.factor1 = Factor(['a', 'b'], [2, 2], np.random.rand(4))
        self.factor2 = Factor(['b', 'c'], [2, 2], np.random.rand(4))
        self.factor3 = Factor(['d', 'e'], [2, 2], np.random.rand(4))
        self.factor4 = Factor(['e', 'f'], [2, 2], np.random.rand(4))
        self.factor5 = Factor(['a', 'b', 'e'], [2, 2, 2], np.random.rand(8))

        self.graph1 = JunctionTree()
        self.graph1.add_edge(('a', 'b'), ('b', 'c'))
        self.graph1.add_factors(self.factor1, self.factor2)

        self.graph2 = JunctionTree()
        self.graph2.add_nodes_from([('a', 'b'), ('b', 'c'), ('d', 'e')])
        self.graph2.add_edge(('a', 'b'), ('b', 'c'))
        self.graph2.add_factors(self.factor1, self.factor2, self.factor3)

        self.graph3 = JunctionTree()
        self.graph3.add_edges_from([(('a', 'b'), ('b', 'c')),
                                    (('d', 'e'), ('e', 'f'))])
        self.graph3.add_factors(self.factor1, self.factor2, self.factor3,
                                self.factor4)

        self.graph4 = JunctionTree()
        self.graph4.add_edges_from([(('a', 'b', 'e'), ('b', 'c')),
                                    (('a', 'b', 'e'), ('e', 'f')),
                                    (('d', 'e'), ('e', 'f'))])
        self.graph4.add_factors(self.factor5, self.factor2, self.factor3,
                                self.factor4)
    def setUp(self):
        self.factor1 = DiscreteFactor(["a", "b"], [2, 2], np.random.rand(4))
        self.factor2 = DiscreteFactor(["b", "c"], [2, 2], np.random.rand(4))
        self.factor3 = DiscreteFactor(["d", "e"], [2, 2], np.random.rand(4))
        self.factor4 = DiscreteFactor(["e", "f"], [2, 2], np.random.rand(4))
        self.factor5 = DiscreteFactor(["a", "b", "e"], [2, 2, 2],
                                      np.random.rand(8))

        self.graph1 = JunctionTree()
        self.graph1.add_edge(("a", "b"), ("b", "c"))
        self.graph1.add_factors(self.factor1, self.factor2)

        self.graph2 = JunctionTree()
        self.graph2.add_nodes_from([("a", "b"), ("b", "c"), ("d", "e")])
        self.graph2.add_edge(("a", "b"), ("b", "c"))
        self.graph2.add_factors(self.factor1, self.factor2, self.factor3)

        self.graph3 = JunctionTree()
        self.graph3.add_edges_from([(("a", "b"), ("b", "c")),
                                    (("d", "e"), ("e", "f"))])
        self.graph3.add_factors(self.factor1, self.factor2, self.factor3,
                                self.factor4)

        self.graph4 = JunctionTree()
        self.graph4.add_edges_from([
            (("a", "b", "e"), ("b", "c")),
            (("a", "b", "e"), ("e", "f")),
            (("d", "e"), ("e", "f")),
        ])
        self.graph4.add_factors(self.factor5, self.factor2, self.factor3,
                                self.factor4)
Beispiel #3
0
    def setUp(self):
        self.junction_tree = JunctionTree([(("A", "B"), ("B", "C")),
                                           (("B", "C"), ("C", "D"))])
        phi1 = DiscreteFactor(["A", "B"], [2, 3], range(6))
        phi2 = DiscreteFactor(["B", "C"], [3, 2], range(6))
        phi3 = DiscreteFactor(["C", "D"], [2, 2], range(4))
        self.junction_tree.add_factors(phi1, phi2, phi3)

        self.bayesian_model = BayesianModel([("A", "J"), ("R", "J"),
                                             ("J", "Q"), ("J", "L"),
                                             ("G", "L")])
        cpd_a = TabularCPD("A", 2, values=[[0.2], [0.8]])
        cpd_r = TabularCPD("R", 2, values=[[0.4], [0.6]])
        cpd_j = TabularCPD(
            "J",
            2,
            values=[[0.9, 0.6, 0.7, 0.1], [0.1, 0.4, 0.3, 0.9]],
            evidence=["A", "R"],
            evidence_card=[2, 2],
        )
        cpd_q = TabularCPD("Q",
                           2,
                           values=[[0.9, 0.2], [0.1, 0.8]],
                           evidence=["J"],
                           evidence_card=[2])
        cpd_l = TabularCPD(
            "L",
            2,
            values=[[0.9, 0.45, 0.8, 0.1], [0.1, 0.55, 0.2, 0.9]],
            evidence=["J", "G"],
            evidence_card=[2, 2],
        )
        cpd_g = TabularCPD("G", 2, values=[[0.6], [0.4]])
        self.bayesian_model.add_cpds(cpd_a, cpd_g, cpd_j, cpd_l, cpd_q, cpd_r)
    def setUp(self):
        self.junction_tree = JunctionTree([(('A', 'B'), ('B', 'C')),
                                           (('B', 'C'), ('C', 'D'))])
        phi1 = DiscreteFactor(['A', 'B'], [2, 3], range(6))
        phi2 = DiscreteFactor(['B', 'C'], [3, 2], range(6))
        phi3 = DiscreteFactor(['C', 'D'], [2, 2], range(4))
        self.junction_tree.add_factors(phi1, phi2, phi3)

        self.bayesian_model = BayesianModel([('A', 'J'), ('R', 'J'),
                                             ('J', 'Q'), ('J', 'L'),
                                             ('G', 'L')])
        cpd_a = TabularCPD('A', 2, values=[[0.2], [0.8]])
        cpd_r = TabularCPD('R', 2, values=[[0.4], [0.6]])
        cpd_j = TabularCPD('J',
                           2,
                           values=[[0.9, 0.6, 0.7, 0.1], [0.1, 0.4, 0.3, 0.9]],
                           evidence=['A', 'R'],
                           evidence_card=[2, 2])
        cpd_q = TabularCPD('Q',
                           2,
                           values=[[0.9, 0.2], [0.1, 0.8]],
                           evidence=['J'],
                           evidence_card=[2])
        cpd_l = TabularCPD('L',
                           2,
                           values=[[0.9, 0.45, 0.8, 0.1],
                                   [0.1, 0.55, 0.2, 0.9]],
                           evidence=['J', 'G'],
                           evidence_card=[2, 2])
        cpd_g = TabularCPD('G', 2, values=[[0.6], [0.4]])
        self.bayesian_model.add_cpds(cpd_a, cpd_g, cpd_j, cpd_l, cpd_q, cpd_r)
Beispiel #5
0
    def to_junction_tree(self):
        """
        Creates a junction tree (or clique tree) for a given markov model.

        For a given markov model (H) a junction tree (G) is a graph
        1. where each node in G corresponds to a maximal clique in H
        2. each sepset in G separates the variables strictly on one side of the
        edge to other.

        Examples
        --------
        >>> from pgmpy.models import MarkovModel
        >>> from pgmpy.factors import Factor
        >>> mm = MarkovModel()
        >>> mm.add_nodes_from(['x1', 'x2', 'x3', 'x4', 'x5', 'x6', 'x7'])
        >>> mm.add_edges_from([('x1', 'x3'), ('x1', 'x4'), ('x2', 'x4'),
        ...                    ('x2', 'x5'), ('x3', 'x6'), ('x4', 'x6'),
        ...                    ('x4', 'x7'), ('x5', 'x7')])
        >>> phi = [Factor(edge, [2, 2], np.random.rand(4)) for edge in mm.edges()]
        >>> mm.add_factors(*phi)
        >>> junction_tree = mm.to_junction_tree()
        """
        from pgmpy.models import JunctionTree

        # Check whether the model is valid or not
        self.check_model()

        # Triangulate the graph to make it chordal
        triangulated_graph = self.triangulate()

        # Find maximal cliques in the chordal graph
        cliques = list(map(tuple, nx.find_cliques(triangulated_graph)))

        # If there is only 1 clique, then the junction tree formed is just a
        # clique tree with that single clique as the node
        if len(cliques) == 1:
            clique_trees = JunctionTree()
            clique_trees.add_node(cliques[0])

        # Else if the number of cliques is more than 1 then create a complete
        # graph with all the cliques as nodes and weight of the edges being
        # the length of sepset between two cliques
        elif len(cliques) >= 2:
            complete_graph = UndirectedGraph()
            edges = list(itertools.combinations(cliques, 2))
            weights = list(map(lambda x: len(set(x[0]).intersection(set(x[1]))),
                           edges))
            for edge, weight in zip(edges, weights):
                complete_graph.add_edge(*edge, weight=-weight)

            # Create clique trees by minimum (or maximum) spanning tree method
            clique_trees = JunctionTree(nx.minimum_spanning_tree(complete_graph).edges())

        # Check whether the factors are defined for all the random variables or not
        all_vars = itertools.chain(*[factor.scope() for factor in self.factors])
        if set(all_vars) != set(self.nodes()):
            ValueError('Factor for all the random variables not specified')

        # Dictionary stating whether the factor is used to create clique
        # potential or not
        # If false, then it is not used to create any clique potential
        is_used = {factor: False for factor in self.factors}

        for node in clique_trees.nodes():
            clique_factors = []
            for factor in self.factors:
                # If the factor is not used in creating any clique potential as
                # well as has any variable of the given clique in its scope,
                # then use it in creating clique potential
                if not is_used[factor] and set(factor.scope()).issubset(node):
                    clique_factors.append(factor)
                    is_used[factor] = True

            # To compute clique potential, initially set it as unity factor
            var_card = [self.get_cardinality()[x] for x in node]
            clique_potential = Factor(node, var_card, np.ones(np.product(var_card)))
            # multiply it with the factors associated with the variables present
            # in the clique (or node)
            clique_potential *= factor_product(*clique_factors)
            clique_trees.add_factors(clique_potential)

        if not all(is_used.values()):
            raise ValueError('All the factors were not used to create Junction Tree.'
                             'Extra factors are defined.')

        return clique_trees
    def _query(self, variables, operation, evidence=None):
        """
        This is a generalized query method that can be used for both query and map query.

        Parameters
        ----------
        variables: list
            list of variables for which you want to compute the probability
        operation: str ('marginalize' | 'maximize')
            The operation to do for passing messages between nodes.
        evidence: dict
            a dict key, value pair as {var: state_of_var_observed}
            None if no evidence

        Examples
        --------
        >>> from pgmpy.inference import BeliefPropagation
        >>> from pgmpy.models import BayesianModel
        >>> import numpy as np
        >>> import pandas as pd
        >>> values = pd.DataFrame(np.random.randint(low=0, high=2, size=(1000, 5)),
        ...                       columns=['A', 'B', 'C', 'D', 'E'])
        >>> model = BayesianModel([('A', 'B'), ('C', 'B'), ('C', 'D'), ('B', 'E')])
        >>> model.fit(values)
        >>> inference = BeliefPropagation(model)
        >>> phi_query = inference.query(['A', 'B'])

        References
        ----------
        Algorithm 10.4 Out-of-clique inference in clique tree
        Probabilistic Graphical Models: Principles and Techniques Daphne Koller and Nir Friedman.
        """

        is_calibrated = self._is_converged(operation=operation)
        # Calibrate the junction tree if not calibrated
        if not is_calibrated:
            self.calibrate()

        if not isinstance(variables, (list, tuple, set)):
            query_variables = [variables]
        else:
            query_variables = list(variables)
        query_variables.extend(evidence.keys() if evidence else [])

        # Find a tree T' such that query_variables are a subset of scope(T')
        nodes_with_query_variables = set()
        for var in query_variables:
            nodes_with_query_variables.update(
                filter(lambda x: var in x, self.junction_tree.nodes()))
        subtree_nodes = nodes_with_query_variables

        # Conversion of set to tuple just for indexing
        nodes_with_query_variables = tuple(nodes_with_query_variables)
        # As junction tree is a tree, that means that there would be only path between any two nodes in the tree
        # thus we can just take the path between any two nodes; no matter there order is
        for i in range(len(nodes_with_query_variables) - 1):
            subtree_nodes.update(
                nx.shortest_path(self.junction_tree,
                                 nodes_with_query_variables[i],
                                 nodes_with_query_variables[i + 1]))
        subtree_undirected_graph = self.junction_tree.subgraph(subtree_nodes)
        # Converting subtree into a junction tree
        if len(subtree_nodes) == 1:
            subtree = JunctionTree()
            subtree.add_node(subtree_nodes.pop())
        else:
            subtree = JunctionTree(subtree_undirected_graph.edges())

        # Selecting a node is root node. Root node would be having only one neighbor
        if len(subtree.nodes()) == 1:
            root_node = subtree.nodes()[0]
        else:
            root_node = tuple(
                filter(lambda x: len(list(subtree.neighbors(x))) == 1,
                       subtree.nodes()))[0]
        clique_potential_list = [self.clique_beliefs[root_node]]

        # For other nodes in the subtree compute the clique potentials as follows
        # As all the nodes are nothing but tuples so simple set(root_node) won't work at it would update the set with'
        # all the elements of the tuple; instead use set([root_node]) as it would include only the tuple not the
        # internal elements within it.
        parent_nodes = set([root_node])
        nodes_traversed = set()
        while parent_nodes:
            parent_node = parent_nodes.pop()
            for child_node in set(
                    subtree.neighbors(parent_node)) - nodes_traversed:
                clique_potential_list.append(
                    self.clique_beliefs[child_node] /
                    self.sepset_beliefs[frozenset([parent_node, child_node])])
                parent_nodes.update([child_node])
            nodes_traversed.update([parent_node])

        # Add factors to the corresponding junction tree
        subtree.add_factors(*clique_potential_list)

        # Sum product variable elimination on the subtree
        variable_elimination = VariableElimination(subtree)
        if operation == 'marginalize':
            return variable_elimination.query(variables=variables,
                                              evidence=evidence)
        elif operation == 'maximize':
            return variable_elimination.map_query(variables=variables,
                                                  evidence=evidence)
Beispiel #7
0
# Firstly import JunctionTree class
from pgmpy.models import JunctionTree
junction_tree = JunctionTree()
# Each node in the junction tree is a cluster of random variables
# represented as a tuple
junction_tree.add_nodes_from([('A', 'B', 'C'), ('C', 'D')])
junction_tree.add_edge(('A', 'B', 'C'), ('C', 'D'))
junction_tree.add_edge(('A', 'B', 'C'), ('D', 'E', 'F'))
Beispiel #8
0
 def setUp(self):
     self.graph = JunctionTree()