Beispiel #1
0
 def test_box_product(self):
     a = Box(x=4)
     b = Box(y=3).shifted(math.wrap(1))
     ab = a * b
     self.assertEqual(2, ab.spatial_rank)
     math.assert_close(ab.size, (4, 3))
     math.assert_close(ab.lower, (0, 1))
Beispiel #2
0
 def test_box_constructor_kwargs(self):
     b = Box(x=3.5, y=4)
     math.assert_close(b.lower, 0)
     math.assert_close(b.upper, (3.5, 4))
     b = Box(x=(1, 2), y=None)
     math.assert_close(b.lower, (1, -math.INF))
     math.assert_close(b.upper, (2, math.INF))
     b = Box(x=(None, None))
     math.assert_close(b.lower, -math.INF)
     math.assert_close(b.upper, math.INF)
Beispiel #3
0
 def test_plot_scalar_2d_batch(self):
     self._test_plot(
         CenteredGrid(Noise(batch(b=2)),
                      0,
                      x=64,
                      y=8,
                      bounds=Box(0, [1, 1])))
     self._test_plot(CenteredGrid(Noise(batch(b=2)),
                                  0,
                                  x=64,
                                  y=8,
                                  bounds=Box(0, [1, 1])),
                     row_dims='b',
                     size=(2, 4))
Beispiel #4
0
def tensor_as_field(t: Tensor):
    """
    Interpret a `Tensor` as a `CenteredGrid` or `PointCloud` depending on its dimensions.

    Unlike the `CenteredGrid` constructor, this function will have the values sampled at integer points for each spatial dimension.

    Args:
        t: `Tensor` with either `spatial` or `instance` dimensions.

    Returns:
        `CenteredGrid` or `PointCloud`
    """
    if spatial(t):
        assert not instance(
            t
        ), f"Cannot interpret tensor as Field because it has both spatial and instance dimensions: {t.shape}"
        bounds = Box(-0.5, math.wrap(spatial(t), channel('vector')) - 0.5)
        return CenteredGrid(t, 0, bounds=bounds)
    if instance(t):
        assert not spatial(
            t
        ), f"Cannot interpret tensor as Field because it has both spatial and instance dimensions: {t.shape}"
        assert 'vector' in t.shape, f"Cannot interpret tensor as PointCloud because it has not vector dimension."
        point_count = instance(t).volume
        bounds = data_bounds(t)
        radius = math.vec_length(
            bounds.size) / (1 + point_count**(1 / t.vector.size))
        return PointCloud(Sphere(t, radius=radius))
Beispiel #5
0
 def test_plot_vector_grid_2d(self):
     self._test_plot(
         CenteredGrid(Noise(vector=2),
                      extrapolation.ZERO,
                      x=64,
                      y=8,
                      bounds=Box(0, [1, 1])) * 0.1)
Beispiel #6
0
    def __init__(self,
                 resolution: math.Shape = math.EMPTY_SHAPE,
                 boundaries: dict or tuple or list = OPEN,
                 bounds: Box = None,
                 **resolution_):
        """
        The Domain specifies the grid resolution, physical size and boundary conditions of a simulation.

        It provides convenience methods for creating Grids fitting the domain, e.g. `grid()`, `vector_grid()` and `staggered_grid()`.

        Also see the `phi.physics` module documentation at https://tum-pbs.github.io/PhiFlow/Physics.html

        Args:
          resolution: grid dimensions as Shape or sequence of integers. Alternatively, dimensions can be specified directly as kwargs.
          boundaries: specifies the extrapolation modes of grids created from this Domain.
            Default materials include OPEN, CLOSED, PERIODIC.
            To specify boundary conditions per face of the domain, pass a sequence of boundaries or boundary pairs (lower, upper)., e.g. [CLOSED, (CLOSED, OPEN)].
            See https://tum-pbs.github.io/PhiFlow/Physics.html#boundary-conditions .
          bounds: physical size of the domain. If not provided, the size is equal to the resolution (unit cubes).
        """
        self.resolution: math.Shape = spatial_shape(
            resolution) & spatial_shape(resolution_)
        """ Grid dimensions as `Shape` object containing spatial dimensions only. """
        self.boundaries: dict = _create_boundary_conditions(
            boundaries, self.resolution.names)
        """ Outer boundary conditions. """
        self.bounds: Box = Box(0, math.wrap(
            self.resolution, names='vector')) if bounds is None else bounds
        """ Physical dimensions of the domain. """
Beispiel #7
0
 def bounds(self) -> Box:
     if self._bounds is not None:
         return self._bounds
     else:
         from phi.field._field_math import data_bounds
         bounds = data_bounds(self.elements.center)
         radius = math.max(self.elements.bounding_radius())
         return Box(bounds.lower - radius, bounds.upper + radius)
Beispiel #8
0
 def test_plot_multi_1d(self):
     self._test_plot(
         CenteredGrid(
             lambda x: math.stack({
                 'sin': math.sin(x),
                 'cos': math.cos(x)
             }, channel('curves')),
             x=100,
             bounds=Box(x=2 * math.pi)))
Beispiel #9
0
def data_bounds(loc: SampledField or Tensor) -> Box:
    if isinstance(loc, SampledField):
        loc = loc.points
    assert isinstance(
        loc,
        Tensor), f"loc must be a Tensor or SampledField but got {type(loc)}"
    min_vec = math.min(loc, dim=loc.shape.non_batch.non_channel)
    max_vec = math.max(loc, dim=loc.shape.non_batch.non_channel)
    return Box(min_vec, max_vec)
Beispiel #10
0
 def test_plot_multiple(self):
     grid = CenteredGrid(Noise(batch(b=2)), 0, Box[0:1, 0:1], x=50, y=10)
     grid2 = CenteredGrid(grid, 0, Box[0:2, 0:1], x=20, y=50)
     points = wrap([(.2, .4), (.9, .8)], instance('points'),
                   channel('vector'))
     cloud = PointCloud(Sphere(points, radius=0.1), bounds=Box(0, [1, 1]))
     titles = math.wrap([['b=0', 'b=0', 'points'], ['b=1', 'b=1', '']],
                        spatial('rows,cols'))
     self._test_plot(grid, grid2, cloud, row_dims='b', title=titles)
Beispiel #11
0
 def vector_potential(self,
                      value: Field or Tensor or Number or Geometry or callable = 0.,
                      extrapolation: str or math.Extrapolation = 'scalar',
                      curl_type=CenteredGrid):
     if self.rank == 2 and curl_type == StaggeredGrid:
         pot_bounds = Box(self.bounds.lower - 0.5 * self.dx, self.bounds.upper + 0.5 * self.dx)
         alt_domain = Domain(self.boundaries, self.resolution + 1, bounds=pot_bounds)
         return alt_domain.scalar_grid(value, extrapolation=extrapolation)
     raise NotImplementedError()
Beispiel #12
0
 def __init__(self, elements: Geometry, values: Tensor, extrapolation: float
              or math.Extrapolation, resolution: Shape, bounds: Box):
     if bounds.size.vector.item_names is None:
         with NUMPY:
             bounds = bounds.shifted(
                 math.zeros(channel(vector=spatial(values).names)))
     SampledField.__init__(self, elements, values, extrapolation, bounds)
     assert values.shape.spatial_rank == elements.spatial_rank, f"Spatial dimensions of values ({values.shape}) do not match elements {elements}"
     assert values.shape.spatial_rank == bounds.spatial_rank, f"Spatial dimensions of values ({values.shape}) do not match elements {elements}"
     assert values.shape.instance_rank == 0, f"Instance dimensions not supported for grids. Got values with shape {values.shape}"
     self._resolution = resolution
Beispiel #13
0
 def test_overlay(self):
     grid = CenteredGrid(Noise(),
                         extrapolation.ZERO,
                         x=64,
                         y=8,
                         bounds=Box(0, [1, 1]))
     points = wrap([(.2, .4), (.9, .8)], instance('points'),
                   channel('vector'))
     cloud = PointCloud(Sphere(points, radius=.1))
     self._test_plot(overlay(grid, grid * (0.1, 0.02), cloud),
                     title='Overlay')
Beispiel #14
0
 def test_plot_vector_3d_batched(self):
     sphere = CenteredGrid(SoftGeometryMask(
         Sphere(x=.5, y=.5, z=.5, radius=.4)),
                           x=10,
                           y=10,
                           z=10,
                           bounds=Box(x=1, y=1, z=1)) * (.1, 0, 0)
     cylinder = CenteredGrid(geom.infinite_cylinder(
         x=16, y=16, inf_dim='z', radius=10),
                             x=32,
                             y=32,
                             z=32) * (0, 0, .1)
     self._test_plot(sphere, cylinder)
Beispiel #15
0
 def simulate(centers):
     world = World()
     fluid = world.add(Fluid(Domain(x=5, y=4, bounds=Box(0, [40, 32])),
                             buoyancy_factor=0.1,
                             batch_size=centers.shape[0]),
                       physics=IncompressibleFlow())
     world.add(Inflow(Sphere(center=centers, radius=3), rate=0.2))
     world.add(Fan(Sphere(center=centers, radius=5), acceleration=[1.0, 0]))
     world.step(dt=1.5)
     world.step(dt=1.5)
     world.step(dt=1.5)
     assert not math.close(fluid.density.values, 0)
     print()
     return fluid.density.values.batch[0], fluid.velocity.values.batch[0]
Beispiel #16
0
def expand_staggered(values: Tensor, resolution: Shape,
                     extrapolation: math.Extrapolation):
    """ Add missing spatial dimensions to `values` """
    cells = GridCell(
        resolution,
        Box(
            0,
            math.wrap((1, ) * resolution.rank,
                      channel(vector=resolution.names))))
    components = values.vector.unstack(resolution.spatial_rank)
    tensors = []
    for dim, component in zip(resolution.spatial.names, components):
        comp_cells = cells.stagger(dim, *extrapolation.valid_outer_faces(dim))
        tensors.append(math.expand(component, comp_cells.resolution))
    return math.stack(tensors, channel(vector=resolution.names))
Beispiel #17
0
def stack(fields, dim: Shape, dim_bounds: Box = None):
    """
    Stacks the given `SampledField`s along `dim`.

    See Also:
        `concat()`.

    Args:
        fields: List of matching `SampledField` instances.
        dim: Stack dimension as `Shape`. Size is ignored.

    Returns:
        `SampledField` matching stacked fields.
    """
    assert all(
        isinstance(f, SampledField) for f in fields
    ), f"All fields must be SampledFields of the same type but got {fields}"
    assert all(
        isinstance(f, type(fields[0])) for f in fields
    ), f"All fields must be SampledFields of the same type but got {fields}"
    if any(f.extrapolation != fields[0].extrapolation for f in fields):
        raise NotImplementedError("Concatenating extrapolations not supported")
    if isinstance(fields[0], Grid):
        values = math.stack([f.values for f in fields], dim)
        if spatial(dim):
            if dim_bounds is None:
                dim_bounds = Box(**{dim.name: len(fields)})
            return type(fields[0])(values,
                                   extrapolation=fields[0].extrapolation,
                                   bounds=fields[0].bounds * dim_bounds)
        else:
            return fields[0].with_values(values)
    elif isinstance(fields[0], PointCloud):
        elements = geom.stack([f.elements for f in fields], dim=dim)
        values = math.stack([f.values for f in fields], dim=dim)
        colors = math.stack([f.color for f in fields], dim=dim)
        return PointCloud(elements=elements,
                          values=values,
                          color=colors,
                          extrapolation=fields[0].extrapolation,
                          add_overlapping=fields[0]._add_overlapping,
                          bounds=fields[0]._bounds)
    raise NotImplementedError(type(fields[0]))
Beispiel #18
0
    def grid_scatter(self, bounds: Box, resolution: math.Shape, outside_handling: str):
        """
        Approximately samples this field on a regular grid using math.scatter().

        Args:
          outside_handling: `str` passed to `phi.math.scatter()`.
          bounds: physical dimensions of the grid
          resolution: grid resolution

        Returns:
          CenteredGrid

        """
        closest_index = bounds.global_to_local(self.points) * resolution - 0.5
        mode = 'add' if self._add_overlapping else 'mean'
        base = math.zeros(resolution)
        if isinstance(self.extrapolation, math.extrapolation.ConstantExtrapolation):
            base += self.extrapolation.value
        scattered = math.scatter(base, closest_index, self.values, mode=mode, outside_handling=outside_handling)
        return scattered
Beispiel #19
0
    def _grid_scatter(self, box: Box, resolution: math.Shape):
        """
        Approximately samples this field on a regular grid using math.scatter().

        Args:
          box: physical dimensions of the grid
          resolution: grid resolution
          box: Box: 
          resolution: math.Shape: 

        Returns:
          CenteredGrid

        """
        closest_index = math.to_int(math.round(box.global_to_local(self.points) * resolution - 0.5))
        if self._add_overlapping:
            duplicates_handling = 'add'
        else:
            duplicates_handling = 'mean'
        scattered = math.scatter(closest_index, self.values, resolution, duplicates_handling=duplicates_handling, outside_handling='discard', scatter_dims=('points',))
        return scattered
Beispiel #20
0
def pad(grid: Grid, widths: int or tuple or list or dict):
    if isinstance(widths, int):
        widths = {axis: (widths, widths) for axis in grid.shape.spatial.names}
    elif isinstance(widths, (tuple, list)):
        widths = {
            axis: (width if isinstance(width, (tuple, list)) else
                   (width, width))
            for axis, width in zip(grid.shape.spatial.names, widths)
        }
    else:
        assert isinstance(widths, dict)
    widths_list = [widths[axis] for axis in grid.shape.spatial.names]
    if isinstance(grid, Grid):
        data = math.pad(grid.values, widths, grid.extrapolation)
        w_lower = math.wrap([w[0] for w in widths_list])
        w_upper = math.wrap([w[1] for w in widths_list])
        box = Box(grid.box.lower - w_lower * grid.dx,
                  grid.box.upper + w_upper * grid.dx)
        return type(grid)(data, box, grid.extrapolation)
    raise NotImplementedError(
        f"{type(grid)} not supported. Only Grid instances allowed.")
Beispiel #21
0
def pad(grid: GridType, widths: int or tuple or list or dict) -> GridType:
    """
    Pads a `Grid` using its extrapolation.

    Unlike `phi.math.pad()`, this function also affects the `bounds` of the grid, changing its size and origin depending on `widths`.

    Args:
        grid: `CenteredGrid` or `StaggeredGrid`
        widths: Either `int` or `(lower, upper)` to pad the same number of cells in all spatial dimensions
            or `dict` mapping dimension names to `(lower, upper)`.

    Returns:
        `Grid` of the same type as `grid`
    """
    if isinstance(widths, int):
        widths = {axis: (widths, widths) for axis in grid.shape.spatial.names}
    elif isinstance(widths, (tuple, list)):
        widths = {
            axis: (width if isinstance(width, (tuple, list)) else
                   (width, width))
            for axis, width in zip(grid.shape.spatial.names, widths)
        }
    else:
        assert isinstance(widths, dict)
    widths_list = [widths[axis] for axis in grid.shape.spatial.names]
    if isinstance(grid, Grid):
        data = math.pad(grid.values, widths, grid.extrapolation)
        w_lower = math.wrap([w[0] for w in widths_list])
        w_upper = math.wrap([w[1] for w in widths_list])
        bounds = Box(grid.box.lower - w_lower * grid.dx,
                     grid.box.upper + w_upper * grid.dx)
        return type(grid)(values=data,
                          resolution=data.shape.spatial,
                          bounds=bounds,
                          extrapolation=grid.extrapolation)
    raise NotImplementedError(
        f"{type(grid)} not supported. Only Grid instances allowed.")
Beispiel #22
0
 def test_box_constructor(self):
     box = Box(0, (1, 1))
     math.assert_close(box.size, 1)
Beispiel #23
0
 def test_box_eq(self):
     self.assertNotEqual(Box(x=1, y=1), Box(x=1))
Beispiel #24
0
def data_bounds(field: SampledField):
    data = field.points
    min_vec = math.min(data, dim=data.shape.spatial.names)
    max_vec = math.max(data, dim=data.shape.spatial.names)
    return Box(min_vec, max_vec)
Beispiel #25
0
 def test_box_volume(self):
     box = Box(
         math.tensor([(0, 0), (1, 1)], batch('boxes'), channel('vector')),
         1)
     math.assert_close(box.volume, [1, 0])
Beispiel #26
0
 def test_box_batched(self):
     box = Box(
         math.tensor([(0, 0), (1, 1)], batch('boxes'), channel('vector')),
         1)
     self.assertEqual(math.batch(boxes=2), box.shape)
Beispiel #27
0
 def test_create_grid_int_resolution(self):
     g = CenteredGrid(0, 0, Box(x=4, y=3), resolution=10)
     self.assertEqual(g.shape, spatial(x=10, y=10))
     g = StaggeredGrid(0, 0, Box(x=4, y=3), resolution=10)
     self.assertEqual(spatial(g), spatial(x=10, y=10))
Beispiel #28
0
    def __init__(self,
                 values: Any,
                 extrapolation: Any = 0.,
                 bounds: Box = None,
                 resolution: int or Shape = None,
                 **resolution_: int or Tensor):
        """
        Args:
            values: Values to use for the grid.
                Has to be one of the following:

                * `phi.geom.Geometry`: sets inside values to 1, outside to 0
                * `Field`: resamples the Field to the staggered sample points
                * `Number`: uses the value for all sample points
                * `tuple` or `list`: interprets the sequence as vector, used for all sample points
                * `phi.math.Tensor` compatible with grid dims: uses tensor values as grid values
                * Function `values(x)` where `x` is a `phi.math.Tensor` representing the physical location.
                    The spatial dimensions of the grid will be passed as batch dimensions to the function.

            extrapolation: The grid extrapolation determines the value outside the `values` tensor.
                Allowed types: `float`, `phi.math.Tensor`, `phi.math.extrapolation.Extrapolation`.
            bounds: Physical size and location of the grid as `phi.geom.Box`.
            resolution: Grid resolution as purely spatial `phi.math.Shape`.
            **resolution_: Spatial dimensions as keyword arguments. Typically either `resolution` or `spatial_dims` are specified.
        """
        if resolution is None and not resolution_:
            assert isinstance(
                values, math.Tensor
            ), "Grid resolution must be specified when 'values' is not a Tensor."
            resolution = values.shape.spatial
            bounds = bounds or Box(0, math.wrap(resolution, channel('vector')))
            elements = GridCell(resolution, bounds)
        else:
            if isinstance(resolution, int):
                assert not resolution_, "Cannot specify keyword resolution and integer resolution at the same time."
                resolution = spatial(
                    **{
                        dim: resolution
                        for dim in bounds.size.shape.get_item_names('vector')
                    })
            resolution = (resolution
                          or math.EMPTY_SHAPE) & spatial(**resolution_)
            bounds = bounds or Box(0, math.wrap(resolution, channel('vector')))
            elements = GridCell(resolution, bounds)
            if isinstance(values, math.Tensor):
                values = math.expand(values, resolution)
            elif isinstance(values, Geometry):
                values = reduce_sample(HardGeometryMask(values), elements)
            elif isinstance(values, Field):
                values = reduce_sample(values, elements)
            elif callable(values):
                values = math.map_s2b(values)(elements.center)
                assert isinstance(
                    values, math.Tensor
                ), f"values function must return a Tensor but returned {type(values)}"
            else:
                if isinstance(
                        values,
                    (tuple, list)) and len(values) == resolution.rank:
                    values = math.tensor(values,
                                         channel(vector=resolution.names))
                values = math.expand(math.tensor(values), resolution)
        if values.dtype.kind not in (float, complex):
            values = math.to_float(values)
        assert resolution.spatial_rank == bounds.spatial_rank, f"Resolution {resolution} does not match bounds {bounds}"
        Grid.__init__(self, elements, values, extrapolation,
                      values.shape.spatial, bounds)
Beispiel #29
0
    def __init__(self,
                 values: Any,
                 extrapolation: float or math.Extrapolation = 0,
                 bounds: Box = None,
                 resolution: Shape = None,
                 **resolution_: int or Tensor):
        """
        Args:
            values: Values to use for the grid.
                Has to be one of the following:

                * `phi.geom.Geometry`: sets inside values to 1, outside to 0
                * `Field`: resamples the Field to the staggered sample points
                * `Number`: uses the value for all sample points
                * `tuple` or `list`: interprets the sequence as vector, used for all sample points
                * `phi.math.Tensor` with staggered shape: uses tensor values as grid values.
                  Must contain a `vector` dimension with each slice consisting of one more element along the dimension they describe.
                  Use `phi.math.stack()` to manually create this non-uniform tensor.
                * Function `values(x)` where `x` is a `phi.math.Tensor` representing the physical location.
                    The spatial dimensions of the grid will be passed as batch dimensions to the function.

            extrapolation: The grid extrapolation determines the value outside the `values` tensor.
                Allowed types: `float`, `phi.math.Tensor`, `phi.math.extrapolation.Extrapolation`.
            bounds: Physical size and location of the grid.
            resolution: Grid resolution as purely spatial `phi.math.Shape`.
            **resolution_: Spatial dimensions as keyword arguments. Typically either `resolution` or `spatial_dims` are specified.
        """
        if not isinstance(extrapolation, math.Extrapolation):
            extrapolation = math.extrapolation.ConstantExtrapolation(
                extrapolation)
        if resolution is None and not resolution_:
            assert isinstance(
                values, Tensor
            ), "Grid resolution must be specified when 'values' is not a Tensor."
            any_dim = values.shape.spatial.names[0]
            x = values.vector[any_dim]
            ext_lower, ext_upper = extrapolation.valid_outer_faces(any_dim)
            delta = int(ext_lower) + int(ext_upper) - 1
            resolution = x.shape.spatial._replace_single_size(
                any_dim,
                x.shape.get_size(any_dim) - delta)
            bounds = bounds or Box(0, math.wrap(resolution, channel('vector')))
            elements = staggered_elements(resolution, bounds, extrapolation)
        else:
            if isinstance(resolution, int):
                assert not resolution_, "Cannot specify keyword resolution and integer resolution at the same time."
                resolution = spatial(
                    **{
                        dim: resolution
                        for dim in bounds.size.shape.get_item_names('vector')
                    })
            resolution = (resolution
                          or math.EMPTY_SHAPE) & spatial(**resolution_)
            bounds = bounds or Box(0, math.wrap(resolution, channel('vector')))
            elements = staggered_elements(resolution, bounds, extrapolation)
            if isinstance(values, math.Tensor):
                values = expand_staggered(values, resolution, extrapolation)
            elif isinstance(values, Geometry):
                values = reduce_sample(HardGeometryMask(values), elements)
            elif isinstance(values, Field):
                values = reduce_sample(values, elements)
            elif callable(values):
                values = math.map_s2b(values)(elements.center)
                if elements.shape.shape.rank > 1:  # Different number of X and Y faces
                    assert isinstance(
                        values, TensorStack
                    ), f"values function must return a staggered Tensor but returned {type(values)}"
                assert 'staggered_direction' in values.shape
                if 'vector' in values.shape:
                    values = math.stack([
                        values.staggered_direction[i].vector[i]
                        for i in range(resolution.rank)
                    ], channel(vector=resolution.names))
                else:
                    values = values.staggered_direction.as_channel('vector')
            else:
                values = expand_staggered(math.tensor(values), resolution,
                                          extrapolation)
        if values.dtype.kind not in (float, complex):
            values = math.to_float(values)
        assert resolution.spatial_rank == bounds.spatial_rank, f"Resolution {resolution} does not match bounds {bounds}"
        Grid.__init__(self, elements, values, extrapolation, resolution,
                      bounds)
Beispiel #30
0
def curl(field: Grid, type: type = CenteredGrid):
    """ Computes the finite-difference curl of the give 2D `StaggeredGrid`. """
    assert field.spatial_rank in (
        2, 3), "curl is only defined in 2 and 3 spatial dimensions."
    if isinstance(field, CenteredGrid) and field.spatial_rank == 2:
        if 'vector' not in field.shape and type == StaggeredGrid:
            # 2D curl of scalar field
            grad = math.spatial_gradient(field.values,
                                         dx=field.dx,
                                         difference='forward',
                                         padding=None,
                                         stack_dim=channel('vector'))
            result = grad.vector.flip() * (1, -1)  # (d/dy, -d/dx)
            bounds = Box(field.bounds.lower + 0.5 * field.dx,
                         field.bounds.upper -
                         0.5 * field.dx)  # lose 1 cell per dimension
            return StaggeredGrid(
                result,
                bounds=bounds,
                extrapolation=field.extrapolation.spatial_gradient())
        if 'vector' in field.shape and type == CenteredGrid:
            # 2D curl of vector field
            x, y = field.shape.spatial.names
            vy_dx = math.spatial_gradient(field.values.vector[1],
                                          dx=field.dx.vector[0],
                                          padding=field.extrapolation,
                                          dims=x,
                                          stack_dim=None)
            vx_dy = math.spatial_gradient(field.values.vector[0],
                                          dx=field.dx.vector[1],
                                          padding=field.extrapolation,
                                          dims=y,
                                          stack_dim=None)
            c = vy_dx - vx_dy
            return field.with_values(c)
    elif isinstance(field, StaggeredGrid) and field.spatial_rank == 2:
        if type == CenteredGrid:
            for dim in field.resolution.names:
                l, u = field.extrapolation.valid_outer_faces(dim)
                assert l == u, "periodic extrapolation not yet supported"
            values = bake_extrapolation(field).values
            x_padded = math.pad(values.vector['x'], {'y': (1, 1)},
                                field.extrapolation)
            y_padded = math.pad(values.vector['y'], {'x': (1, 1)},
                                field.extrapolation)
            vx_dy = math.spatial_gradient(x_padded,
                                          field.dx,
                                          'forward',
                                          None,
                                          dims='y',
                                          stack_dim=None)
            vy_dx = math.spatial_gradient(y_padded,
                                          field.dx,
                                          'forward',
                                          None,
                                          dims='x',
                                          stack_dim=None)
            result = vx_dy - vy_dx
            return CenteredGrid(result,
                                field.extrapolation.spatial_gradient(),
                                bounds=field.bounds)
    raise NotImplementedError()