Beispiel #1
0
def thesis_cavg_vs_noise():
    # 150 sample per point
    alldates = db.fetch_dates([20160830143035701, 20160830162947428]) # zc vs noise_power 
    dates = [alldates[0], alldates[-1]]

    graphs.change_fontsize(15)
    ax = graphs.scatter_range(dates, ['noise_power', 'good_link_ratio'], color='b')
    ax.set_xlabel("Noise Power (dBm)")
    ax.set_ylabel("$C$")
    #ax.set_ylim((0.25,0.85))
    graphs.save('latex_figures/thesis_cavg_vs_noise')
Beispiel #2
0
def thesis_cavg_vs_zc():
    # 150 sample per point
    alldates = db.fetch_dates([20160825232333852, 20160826024432633]) # cavg vs zclen
    dates = [alldates[0], alldates[-1]]

    graphs.change_fontsize(15)
    ax = graphs.scatter_range(dates, ['zc_len', 'good_link_ratio'], color='b')
    ax.set_xlabel("Length of ZC sequence $N$")
    ax.set_ylabel("$C$")
    ax.set_ylim((0.25,0.85))
    graphs.save('latex_figures/thesis_cavg_vs_zc')
Beispiel #3
0
def interd_cavg_vs_nodecount():
    # 150 sample per point
    graphs.GRAPH_OUTPUT_FORMAT = 'png'
    graphs.change_fontsize(graphs.FONTSIZE + 2)
    alldates = db.fetch_dates([20160825101515414, 20160825135628487]) # cavg vs nodecount

    dates = [alldates[0], alldates[-1]]
    ax = graphs.scatter_range(dates, ['nodecount', 'good_link_ratio'], color='k')
    ax.set_xlabel("Number of nodes $M$")
    ax.set_ylabel("$C$")
    graphs.save('interd_cavg_vs_nodecount')
    graphs.show()
Beispiel #4
0
def thesis_cavg_vs_nodecount():
    # 180 sample per point
    alldates = db.fetch_dates([20160824001859759, 20160824034043274]) # nodecount vs cavg
    dates = [alldates[0], alldates[-1]]

    graphs.change_fontsize(15)

    ax = graphs.scatter_range(dates, ['nodecount', 'good_link_ratio'], color='b')
    ax.set_xlabel("Number of nodes $M$")
    ax.set_ylabel("$C$")
    ax.set_ylim((0.37,0.92))
    graphs.save('latex_figures/thesis_cavg_vs_nodecount')
Beispiel #5
0
def thesis_cavg_vs_distance():
    # 180 sample per point
    alldates = db.fetch_dates([20160824125623027, 20160824143207623]) # dist vs cavg
    alldates += db.fetch_dates([20160824155429863, 20160824170025866]) # dist vs cavg (extra)
    dates = [alldates[0], alldates[-1]]

    graphs.change_fontsize(15)
    ax = graphs.scatter_range(dates, ['max_dist_from_origin', 'good_link_ratio'], color='b')
    ax.set_xlabel("Side of square area (Meters)")
    ax.set_ylabel("$C$")
    tick_locs = [500,750,1000,1250,1500]
    tick_lbls = list(map(str, tick_locs))
    ax.set_xticks(tick_locs)#, minor=False)
    ax.set_xticklabels(tick_lbls)
    graphs.save('latex_figures/thesis_cavg_vs_distance')
Beispiel #6
0
def interd_compare_quiet():
    graphs.GRAPH_OUTPUT_FORMAT = 'png'
    graphs.change_fontsize(graphs.FONTSIZE + 2)
    alldates = db.fetch_dates([20160822172521531, 20160822215536865]) # 960sims quiet compare
    dates = [alldates[0], alldates[-1]]

    labels = []
    labels.append('Random')
    labels.append('Clustering')
    labels.append('Sensing')
    ax = graphs.scatter_range(dates, ['max_dist_from_origin', 'good_link_ratio'], multiplot='quiet_selection', legend_labels=labels); 
    ax.set_xlabel("Side of square area (m)")
    ax.set_ylabel("$C$")

    graphs.save('interd_compare_quiet')
    graphs.show()
Beispiel #7
0
def interd_dpll_vs_r12():
    # 150 sample per point
    graphs.GRAPH_OUTPUT_FORMAT = 'png'
    graphs.change_fontsize(graphs.FONTSIZE + 2)
    alldates = db.fetch_dates([20160828200017740, 20160828205450849]) # r12 vs dpll
    dates = [alldates[0], alldates[-1]]


    labels = []
    labels.append('R12')
    labels.append('DPLL')
    ax = graphs.scatter_range(dates, ['nodecount', 'good_link_ratio'], multiplot='peak_detect', legend_labels=labels) 
    ax.set_xlabel("Number of nodes (M)")
    ax.set_ylabel("$C$")
    graphs.save('interd_dpll_vs_r12')
    graphs.show()
Beispiel #8
0
def interd_cavg_vs_distance():
    # 150 sample per point
    graphs.GRAPH_OUTPUT_FORMAT = 'png'
    graphs.change_fontsize(graphs.FONTSIZE + 2)
    alldates = db.fetch_dates([20160825141108531, 20160825183253474]) # cavg vs dist
    dates = [alldates[0], alldates[-1]]

    ax = graphs.scatter_range(dates, ['max_dist_from_origin', 'good_link_ratio'], color='k')
    ax.set_xlabel("Side of square area (Meters)")
    ax.set_ylabel("$C$")
    tick_locs = [500,750,1000,1250,1500]
    tick_lbls = list(map(str, tick_locs))
    ax.set_xticks(tick_locs)#, minor=False)
    ax.set_xticklabels(tick_lbls)
    graphs.save('interd_cavg_vs_distance')
    graphs.show()
Beispiel #9
0
def interd_dpll_final_compare():
    #alldates = db.fetch_dates([20160829122809568, 20160829152128098]) # plain dpll vs contention
    graphs.GRAPH_OUTPUT_FORMAT = 'png'
    graphs.change_fontsize(15)
    alldates = db.fetch_dates([20160828200017740, 20160828205450849]) # r12 vs dpll
    dates = [alldates[0], alldates[-1]]

    #extra ( add to scatter_range)
    #sens_dates = db.fetch_dates([20160829122809568, 20160829152128098]) # plain dpll vs contention
    #new_fetch_dict = {'date':sens_dates, 'quiet_selection':['contention']}
    #raw_data = db.fetch_matching(new_fetch_dict, collist)
    #datalist.append(np.array(raw_data))
    #labels.append('Sensing')

    labels = []
    labels.append('R12')
    labels.append('DPLL')
    labels.append('DPLL-S')
    ax = graphs.scatter_range(dates, ['nodecount', 'good_link_ratio'], multiplot='peak_detect', legend_labels=labels) 
    ax.set_xlabel("Number of nodes (M)")
    ax.set_ylabel("$C$")
    graphs.save('interd_dpll_final_compare')
    graphs.show()