def thesis_cavg_vs_noise(): # 150 sample per point alldates = db.fetch_dates([20160830143035701, 20160830162947428]) # zc vs noise_power dates = [alldates[0], alldates[-1]] graphs.change_fontsize(15) ax = graphs.scatter_range(dates, ['noise_power', 'good_link_ratio'], color='b') ax.set_xlabel("Noise Power (dBm)") ax.set_ylabel("$C$") #ax.set_ylim((0.25,0.85)) graphs.save('latex_figures/thesis_cavg_vs_noise')
def thesis_cavg_vs_zc(): # 150 sample per point alldates = db.fetch_dates([20160825232333852, 20160826024432633]) # cavg vs zclen dates = [alldates[0], alldates[-1]] graphs.change_fontsize(15) ax = graphs.scatter_range(dates, ['zc_len', 'good_link_ratio'], color='b') ax.set_xlabel("Length of ZC sequence $N$") ax.set_ylabel("$C$") ax.set_ylim((0.25,0.85)) graphs.save('latex_figures/thesis_cavg_vs_zc')
def interd_cavg_vs_nodecount(): # 150 sample per point graphs.GRAPH_OUTPUT_FORMAT = 'png' graphs.change_fontsize(graphs.FONTSIZE + 2) alldates = db.fetch_dates([20160825101515414, 20160825135628487]) # cavg vs nodecount dates = [alldates[0], alldates[-1]] ax = graphs.scatter_range(dates, ['nodecount', 'good_link_ratio'], color='k') ax.set_xlabel("Number of nodes $M$") ax.set_ylabel("$C$") graphs.save('interd_cavg_vs_nodecount') graphs.show()
def thesis_cavg_vs_nodecount(): # 180 sample per point alldates = db.fetch_dates([20160824001859759, 20160824034043274]) # nodecount vs cavg dates = [alldates[0], alldates[-1]] graphs.change_fontsize(15) ax = graphs.scatter_range(dates, ['nodecount', 'good_link_ratio'], color='b') ax.set_xlabel("Number of nodes $M$") ax.set_ylabel("$C$") ax.set_ylim((0.37,0.92)) graphs.save('latex_figures/thesis_cavg_vs_nodecount')
def thesis_cavg_vs_distance(): # 180 sample per point alldates = db.fetch_dates([20160824125623027, 20160824143207623]) # dist vs cavg alldates += db.fetch_dates([20160824155429863, 20160824170025866]) # dist vs cavg (extra) dates = [alldates[0], alldates[-1]] graphs.change_fontsize(15) ax = graphs.scatter_range(dates, ['max_dist_from_origin', 'good_link_ratio'], color='b') ax.set_xlabel("Side of square area (Meters)") ax.set_ylabel("$C$") tick_locs = [500,750,1000,1250,1500] tick_lbls = list(map(str, tick_locs)) ax.set_xticks(tick_locs)#, minor=False) ax.set_xticklabels(tick_lbls) graphs.save('latex_figures/thesis_cavg_vs_distance')
def interd_compare_quiet(): graphs.GRAPH_OUTPUT_FORMAT = 'png' graphs.change_fontsize(graphs.FONTSIZE + 2) alldates = db.fetch_dates([20160822172521531, 20160822215536865]) # 960sims quiet compare dates = [alldates[0], alldates[-1]] labels = [] labels.append('Random') labels.append('Clustering') labels.append('Sensing') ax = graphs.scatter_range(dates, ['max_dist_from_origin', 'good_link_ratio'], multiplot='quiet_selection', legend_labels=labels); ax.set_xlabel("Side of square area (m)") ax.set_ylabel("$C$") graphs.save('interd_compare_quiet') graphs.show()
def interd_dpll_vs_r12(): # 150 sample per point graphs.GRAPH_OUTPUT_FORMAT = 'png' graphs.change_fontsize(graphs.FONTSIZE + 2) alldates = db.fetch_dates([20160828200017740, 20160828205450849]) # r12 vs dpll dates = [alldates[0], alldates[-1]] labels = [] labels.append('R12') labels.append('DPLL') ax = graphs.scatter_range(dates, ['nodecount', 'good_link_ratio'], multiplot='peak_detect', legend_labels=labels) ax.set_xlabel("Number of nodes (M)") ax.set_ylabel("$C$") graphs.save('interd_dpll_vs_r12') graphs.show()
def interd_cavg_vs_distance(): # 150 sample per point graphs.GRAPH_OUTPUT_FORMAT = 'png' graphs.change_fontsize(graphs.FONTSIZE + 2) alldates = db.fetch_dates([20160825141108531, 20160825183253474]) # cavg vs dist dates = [alldates[0], alldates[-1]] ax = graphs.scatter_range(dates, ['max_dist_from_origin', 'good_link_ratio'], color='k') ax.set_xlabel("Side of square area (Meters)") ax.set_ylabel("$C$") tick_locs = [500,750,1000,1250,1500] tick_lbls = list(map(str, tick_locs)) ax.set_xticks(tick_locs)#, minor=False) ax.set_xticklabels(tick_lbls) graphs.save('interd_cavg_vs_distance') graphs.show()
def interd_dpll_final_compare(): #alldates = db.fetch_dates([20160829122809568, 20160829152128098]) # plain dpll vs contention graphs.GRAPH_OUTPUT_FORMAT = 'png' graphs.change_fontsize(15) alldates = db.fetch_dates([20160828200017740, 20160828205450849]) # r12 vs dpll dates = [alldates[0], alldates[-1]] #extra ( add to scatter_range) #sens_dates = db.fetch_dates([20160829122809568, 20160829152128098]) # plain dpll vs contention #new_fetch_dict = {'date':sens_dates, 'quiet_selection':['contention']} #raw_data = db.fetch_matching(new_fetch_dict, collist) #datalist.append(np.array(raw_data)) #labels.append('Sensing') labels = [] labels.append('R12') labels.append('DPLL') labels.append('DPLL-S') ax = graphs.scatter_range(dates, ['nodecount', 'good_link_ratio'], multiplot='peak_detect', legend_labels=labels) ax.set_xlabel("Number of nodes (M)") ax.set_ylabel("$C$") graphs.save('interd_dpll_final_compare') graphs.show()