Beispiel #1
0
    def __init__(self):
        Pollution = DiscreteDistribution({'F': 0.9, 'T': 0.1})
        Smoker = DiscreteDistribution({'T': 0.3, 'F': 0.7})
        print(Smoker)
        Cancer = ConditionalProbabilityTable([
            ['T', 'T', 'T', 0.05],
            ['T', 'T', 'F', 0.95],
            ['T', 'F', 'T', 0.02],
            ['T', 'F', 'F', 0.98],
            ['F', 'T', 'T', 0.03],
            ['F', 'T', 'F', 0.97],
            ['F', 'F', 'T', 0.001],
            ['F', 'F', 'F', 0.999],
        ], [Pollution, Smoker])
        print(Cancer)
        XRay = ConditionalProbabilityTable([
            ['T', 'T', 0.9],
            ['T', 'F', 0.1],
            ['F', 'T', 0.2],
            ['F', 'F', 0.8],
        ], [Cancer])
        Dyspnoea = ConditionalProbabilityTable([
            ['T', 'T', 0.65],
            ['T', 'F', 0.35],
            ['F', 'T', 0.3],
            ['F', 'F', 0.7],
        ], [Cancer])
        s1 = Node(Pollution, name="Pollution")
        s2 = Node(Smoker, name="Smoker")
        s3 = Node(Cancer, name="Cancer")
        s4 = Node(XRay, name="XRay")
        s5 = Node(Dyspnoea, name="Dyspnoea")

        model = BayesianNetwork("Lung Cancer")
        model.add_states(s1, s2, s3, s4, s5)
        model.add_edge(s1, s3)
        model.add_edge(s2, s3)
        model.add_edge(s3, s4)
        model.add_edge(s3, s5)
        model.bake()
        self.model = model

        meta = []
        name_mapper = ["Pollution", "Smoker", "Cancer", "XRay", "Dyspnoea"]
        for i in range(self.model.node_count()):
            meta.append({
                "name": name_mapper[i],
                "type": "categorical",
                "size": 2,
                "i2s": ['T', 'F']
            })
        self.meta = meta
Beispiel #2
0
    def __init__(self):
        A = DiscreteDistribution({'1': 1. / 3, '2': 1. / 3, '3': 1. / 3})
        B = ConditionalProbabilityTable([
            ['1', '1', 0.5],
            ['1', '2', 0.5],
            ['1', '3', 0],
            ['2', '1', 0],
            ['2', '2', 0.5],
            ['2', '3', 0.5],
            ['3', '1', 0.5],
            ['3', '2', 0],
            ['3', '3', 0.5],
        ], [A])
        C = ConditionalProbabilityTable([
            ['1', '4', 0.5],
            ['1', '5', 0.5],
            ['1', '6', 0],
            ['2', '4', 0],
            ['2', '5', 0.5],
            ['2', '6', 0.5],
            ['3', '4', 0.5],
            ['3', '5', 0],
            ['3', '6', 0.5],
        ], [A])

        s1 = Node(A, name="A")
        s2 = Node(B, name="B")
        s3 = Node(C, name="C")

        model = BayesianNetwork("tree")
        model.add_states(s1, s2, s3)
        model.add_edge(s1, s2)
        model.add_edge(s1, s3)
        model.bake()
        self.model = model

        meta = []
        for i in range(self.model.node_count() - 1):
            meta.append({
                "name": chr(ord('A') + i),
                "type": "categorical",
                "size": 3,
                "i2s": ['1', '2', '3']
            })
        meta.append({
            "name": "C",
            "type": "categorical",
            "size": 3,
            "i2s": ['4', '5', '6']
        })
        self.meta = meta
Beispiel #3
0
def build_net(cpts):
    states = dict()
    for name, cpt in cpts.items():
        states[name] = State(cpt, name=name)

    model = BayesianNetwork('Poker Game')
    model.add_states(*list(states.values()))

    for name, parents, _ in sheets:
        for parent in parents:
            print(states[parent])
            model.add_transition(states[parent], states[name])

    model.bake()
    return model
Beispiel #4
0
    def __init__(self):
        Rain = DiscreteDistribution({'T': 0.2, 'F': 0.8})
        Sprinkler = ConditionalProbabilityTable([
            ['F', 'T', 0.4],
            ['F', 'F', 0.6],
            ['T', 'T', 0.1],
            ['T', 'F', 0.9],
        ], [Rain])
        Wet = ConditionalProbabilityTable([
            ['F', 'F', 'T', 0.01],
            ['F', 'F', 'F', 0.99],
            ['F', 'T', 'T', 0.8],
            ['F', 'T', 'F', 0.2],
            ['T', 'F', 'T', 0.9],
            ['T', 'F', 'F', 0.1],
            ['T', 'T', 'T', 0.99],
            ['T', 'T', 'F', 0.01],
        ], [Sprinkler, Rain])

        s1 = Node(Rain, name="Rain")
        s2 = Node(Sprinkler, name="Sprinkler")
        s3 = Node(Wet, name="Wet")

        model = BayesianNetwork("Simple fully connected")
        model.add_states(s1, s2, s3)
        model.add_edge(s1, s2)
        model.add_edge(s1, s3)
        model.add_edge(s2, s3)
        model.bake()
        self.model = model

        meta = []
        for i in range(self.model.node_count()):
            meta.append({
                "name": None,
                "type": "categorical",
                "size": 2,
                "i2s": ['T', 'F']
            })
        meta[0]['name'] = 'Rain'
        meta[1]['name'] = 'Sprinkler'
        meta[2]['name'] = 'Wet'
        self.meta = meta
from pomegranate import DiscreteDistribution
from pomegranate import ConditionalProbabilityTable
from pomegranate import BayesianNetwork
from pomegranate import Node

guest = DiscreteDistribution({'A': 1. / 3, 'B': 1. / 3, 'C': 1. / 3})
prize = DiscreteDistribution({'A': 1. / 3, 'B': 1. / 3, 'C': 1. / 3})
monty = ConditionalProbabilityTable(
    [['A', 'A', 'A', 0.0], ['A', 'A', 'B', 0.5], ['A', 'A', 'C', 0.5],
     ['A', 'B', 'A', 0.0], ['A', 'B', 'B', 0.0], ['A', 'B', 'C', 1.0],
     ['A', 'C', 'A', 0.0], ['A', 'C', 'B', 1.0], ['A', 'C', 'C', 0.0],
     ['B', 'A', 'A', 0.0], ['B', 'A', 'B', 0.0], ['B', 'A', 'C', 1.0],
     ['B', 'B', 'A', 0.5], ['B', 'B', 'B', 0.0], ['B', 'B', 'C', 0.5],
     ['B', 'C', 'A', 1.0], ['B', 'C', 'B', 0.0], ['B', 'C', 'C', 0.0],
     ['C', 'A', 'A', 0.0], ['C', 'A', 'B', 1.0], ['C', 'A', 'C', 0.0],
     ['C', 'B', 'A', 1.0], ['C', 'B', 'B', 0.0], ['C', 'B', 'C', 0.0],
     ['C', 'C', 'A', 0.5], ['C', 'C', 'B', 0.5], ['C', 'C', 'C', 0.0]],
    [guest, prize])

s1 = Node(guest, name="guest")
s2 = Node(prize, name="prize")
s3 = Node(monty, name="monty")

model = BayesianNetwork("Monty Hall Problem")
model.add_states(s1, s2, s3)
model.add_edge(s1, s3)
model.add_edge(s2, s3)
model.bake()
Beispiel #6
0
    def __init__(self, filename):
        with open(filename) as f:
            bif = f.read()
        vars = re.findall(r"variable[^\{]+{[^\}]+}", bif)
        probs = re.findall(r"probability[^\{]+{[^\}]+}", bif)

        var_nodes = {}
        var_index_to_name = []
        edges = []

        self.meta = []
        todo = set()
        for v, p in zip(vars, probs):
            m = re.search(r"variable\s+([^\{\s]+)\s+", v)
            v_name = m.group(1)
            m = re.search(r"type\s+discrete\s+\[\s*(\d+)\s*\]\s*\{([^\}]+)\}",
                          v)
            v_opts_n = int(m.group(1))
            v_opts = m.group(2).replace(',', ' ').split()

            assert v_opts_n == len(v_opts)
            # print(v_name, v_opts_n, v_opts)

            m = re.search(r"probability\s*\(([^)]+)\)", p)
            cond = m.group(1).replace('|', ' ').replace(',', ' ').split()
            assert cond[0] == v_name
            # print(cond)

            self.meta.append({
                "name": v_name,
                "type": "categorical",
                "size": v_opts_n,
                "i2s": v_opts
            })
            if len(cond) == 1:
                m = re.search(r"table([e\-\d\.\s,]*);", p)
                margin_p = m.group(1).replace(',', ' ').split()
                margin_p = [float(x) for x in margin_p]
                assert abs(sum(margin_p) - 1) < 1e-6
                assert len(margin_p) == v_opts_n
                margin_p = dict(zip(v_opts, margin_p))

                var_index_to_name.append(v_name)
                tmp = DiscreteDistribution(margin_p)
                # print(tmp)
                var_nodes[v_name] = tmp
            else:
                m_iter = re.finditer(r"\(([^)]*)\)([\s\d\.,\-e]+);", p)
                cond_p_table = []
                for m in m_iter:
                    cond_values = m.group(1).replace(',', ' ').split()
                    cond_p = m.group(2).replace(',', ' ').split()
                    cond_p = [float(x) for x in cond_p]
                    assert len(cond_values) == len(cond) - 1
                    assert len(cond_p) == v_opts_n
                    assert abs(sum(cond_p) - 1) < 1e-6

                    for opt, opt_p in zip(v_opts, cond_p):
                        cond_p_table.append(cond_values + [opt, opt_p])
                var_index_to_name.append(v_name)

                tmp = (cond_p_table, cond)
                # print(tmp)
                var_nodes[v_name] = tmp
                for x in cond[1:]:
                    edges.append((x, v_name))
                todo.add(v_name)

        while len(todo) > 0:
            # print(todo)
            for v_name in todo:
                # print(v_name, type(var_nodes[v_name]))
                cond_p_table, cond = var_nodes[v_name]
                flag = True
                for y in cond[1:]:
                    if y in todo:
                        flag = False
                        break
                if flag:
                    cond_t = [var_nodes[x] for x in cond[1:]]
                    var_nodes[v_name] = ConditionalProbabilityTable(
                        cond_p_table, cond_t)
                    todo.remove(v_name)
                    break

        for x in var_index_to_name:
            var_nodes[x] = Node(var_nodes[x], name=x)

        var_nodes_list = [var_nodes[x] for x in var_index_to_name]
        # print(var_nodes_list)
        model = BayesianNetwork("tmp")
        model.add_states(*var_nodes_list)

        for edge in edges:
            model.add_edge(var_nodes[edge[0]], var_nodes[edge[1]])
        model.bake()
        # print(model.to_json())
        self.model = model
Beispiel #7
0
    ["none", "no", "delayed", 0.1],
    ["light", "yes", "on time", 0.6],
    ["light", "yes", "delayed", 0.4],
    ["light", "no", "on time", 0.7],
    ["light", "no", "delayed", 0.3],
    ["heavy", "yes", "on time", 0.4],
    ["heavy", "yes", "delayed", 0.6],
    ["heavy", "no", "on time", 0.5],
    ["heavy", "no", "delayed", 0.5],
], [rain.distribution, maintenance.distribution]),
             name="train")

# Appointment node is conditional on train
appointment = Node(ConditionalProbabilityTable(
    [["on time", "attend", 0.9], ["on time", "miss", 0.1],
     ["delayed", "attend", 0.6], ["delayed", "miss", 0.4]],
    [train.distribution]),
                   name="appointment")

# Create a bayesian network and add the states
model = BayesianNetwork()
model.add_states(rain, maintenance, train, appointment)

# Add edges connecting nodes
model.add_edge(rain, maintenance)
model.add_edge(rain, train)
model.add_edge(maintenance, train)
model.add_edge(train, appointment)

# Finalize model
model.bake()
Beispiel #8
0
states['Anxiety'] = State(Anxiety, name="Anxiety")
states['Peer_Pressure'] = State(Peer_Pressure, name="Peer_Pressure")
states['Smoking'] = State(Smoking, name="Smoking")
states['Yellow_Fingers'] = State(Yellow_Fingers, name="Yellow_Fingers")
states['Genetics'] = State(Genetics, name="Genetics")
states['Lung_cancer'] = State(Lung_cancer, name="Lung_cancer")
states['Attention_Disorder'] = State(Attention_Disorder, name="Attention_Disorder")
states['Allergy'] = State(Allergy, name="Allergy")
states['Coughing'] = State(Coughing, name="Coughing")
states['Born_an_Even_Day'] = State(Born_an_Even_Day, name="Born_an_Even_Day")

states['Fatigue'] = State(Fatigue, name="Fatigue")
states['Car_Accident' ] = State(Car_Accident, name="Car_Accident")

network = BayesianNetwork("Monty hall problem")
network.add_states(*states.values())
network.add_edge(states["Peer_Pressure"],states["Smoking"])
network.add_edge(states["Anxiety"],states["Smoking"])
network.add_edge(states["Smoking"],states["Yellow_Fingers"])
network.add_edge(states["Genetics"],states["Lung_cancer"])
network.add_edge(states["Smoking"],states["Lung_cancer"])
network.add_edge(states["Genetics"],states["Attention_Disorder"])
network.add_edge(states['Lung_cancer'], states["Coughing"])
network.add_edge(states['Allergy'], states["Coughing"])
network.add_edge(states['Coughing'], states["Fatigue"])
network.add_edge(states['Lung_cancer'], states["Fatigue"])
network.add_edge(states["Fatigue"], states["Car_Accident"])
network.add_edge(states["Attention_Disorder"], states["Car_Accident"])
import ast
network.bake()
beliefs = network.predict_proba({"Genetics":"T"},max_iterations=100000)
Beispiel #9
0
ashwin = ConditionalProbabilityTable(
    returnConditionalProbability(df, 'Location', 'Ashwin'), [location])
batting = ConditionalProbabilityTable(
    returnConditionalProbability(df, 'Toss', 'Bat'), [toss])
result = ConditionalProbabilityTable(
    returnConditionalProbability(df, 'Bat', 'Result'), [batting])

sLocation = State(location, name="Location")
sToss = State(toss, name="Toss")
sBatting = State(batting, name="Batting")
sAshwin = State(ashwin, name="Ashwin")
sResult = State(result, name="Result")

# Create the Bayesian network object with a useful name
model = BayesianNetwork("Ashwin Playing Problem")

# Add the three states to the network
model.add_states(sLocation, sToss, sBatting, sAshwin, sResult)
model.add_edge(sLocation, sAshwin)
model.add_edge(sToss, sBatting)
model.add_edge(sBatting, sResult)
model.bake()

model.predict_proba([None, None, '2nd', 'Y', 'won'])[1]
model.predict_proba([None, None, '2nd', 'N', 'won'])[0]

model.predict_proba([None, None, '2nd', 'Y', 'lost'])[1]

model.predict_proba([None, None, '2nd', 'N', 'lost'])[0]