Beispiel #1
0
def setup_titanic():
    # Build a model of the titanic disaster
    global titanic_network, passenger, gender, tclass

    # Passengers on the Titanic either survive or perish
    passenger = DiscreteDistribution({'survive': 0.6, 'perish': 0.4})

    # Gender, given survival data
    gender = ConditionalProbabilityTable(
        [['survive', 'male', 0.0], ['survive', 'female', 1.0],
         ['perish', 'male', 1.0], ['perish', 'female', 0.0]], [passenger])

    # Class of travel, given survival data
    tclass = ConditionalProbabilityTable(
        [['survive', 'first', 0.0], ['survive', 'second', 1.0],
         ['survive', 'third', 0.0], ['perish', 'first', 1.0],
         ['perish', 'second', 0.0], ['perish', 'third', 0.0]], [passenger])

    # State objects hold both the distribution, and a high level name.
    s1 = State(passenger, name="passenger")
    s2 = State(gender, name="gender")
    s3 = State(tclass, name="class")

    # Create the Bayesian network object with a useful name
    titanic_network = BayesianNetwork("Titanic Disaster")

    # Add the three nodes to the network
    titanic_network.add_nodes(s1, s2, s3)

    # Add transitions which represent conditional dependencies, where the
    # second node is conditionally dependent on the first node (Monty is
    # dependent on both guest and prize)
    titanic_network.add_edge(s1, s2)
    titanic_network.add_edge(s1, s3)
    titanic_network.bake()
    def get_bayesnet(self):
        door_lock = DiscreteDistribution({'d1': 0.7, 'd2': 0.3})

        clock_alarm = DiscreteDistribution( { 'a1' : 0.8, 'a2' : 0.2} )

        light = ConditionalProbabilityTable(
            [[ 'd1', 'a1', 'l1', 0.96 ],
             ['d1', 'a1', 'l2', 0.04 ],
             [ 'd1', 'a2', 'l1', 0.89 ],
             [ 'd1', 'a2', 'l2', 0.11 ],
             [ 'd2', 'a1', 'l1', 0.96 ],
             [ 'd2', 'a1', 'l2', 0.04 ],
             [ 'd2', 'a2', 'l1', 0.89 ],
             [ 'd2', 'a2', 'l2', 0.11 ]], [door_lock, clock_alarm])



        coffee_maker = ConditionalProbabilityTable(
            [[ 'a1', 'c1', 0.92 ],
             [ 'a1', 'c2', 0.08 ],
             [ 'a2', 'c1', 0.03 ],
             [ 'a2', 'c2', 0.97 ]], [clock_alarm] )

        s_door_lock = State(door_lock, name="door_lock")
        s_clock_alarm = State(clock_alarm, name="clock_alarm")
        s_light = State(light, name="light")
        s_coffee_maker = State(coffee_maker, name="coffee_maker")
        network = BayesianNetwork("User_pref")
        network.add_nodes(s_door_lock, s_clock_alarm, s_light, s_coffee_maker)

        network.add_edge(s_door_lock,s_light)
        network.add_edge(s_clock_alarm,s_coffee_maker)
        network.add_edge(s_clock_alarm,s_light)
        network.bake()
        return network
Beispiel #3
0
def setup_monty():
    # Build a model of the Monty Hall Problem
    global monty_network, monty_index, prize_index, guest_index

    random.seed(0)

    # Friends emissions are completely random
    guest = DiscreteDistribution({'A': 1. / 3, 'B': 1. / 3, 'C': 1. / 3})

    # The actual prize is independent of the other distributions
    prize = DiscreteDistribution({'A': 1. / 3, 'B': 1. / 3, 'C': 1. / 3})
    # Monty is dependent on both the guest and the prize.
    monty = ConditionalProbabilityTable(
        [['A', 'A', 'A', 0.0],
         ['A', 'A', 'B', 0.5],
         ['A', 'A', 'C', 0.5],
         ['A', 'B', 'A', 0.0],
         ['A', 'B', 'B', 0.0],
         ['A', 'B', 'C', 1.0],
         ['A', 'C', 'A', 0.0],
         ['A', 'C', 'B', 1.0],
         ['A', 'C', 'C', 0.0],
         ['B', 'A', 'A', 0.0],
         ['B', 'A', 'B', 0.0],
         ['B', 'A', 'C', 1.0],
         ['B', 'B', 'A', 0.5],
         ['B', 'B', 'B', 0.0],
         ['B', 'B', 'C', 0.5],
         ['B', 'C', 'A', 1.0],
         ['B', 'C', 'B', 0.0],
         ['B', 'C', 'C', 0.0],
         ['C', 'A', 'A', 0.0],
         ['C', 'A', 'B', 1.0],
         ['C', 'A', 'C', 0.0],
         ['C', 'B', 'A', 1.0],
         ['C', 'B', 'B', 0.0],
         ['C', 'B', 'C', 0.0],
         ['C', 'C', 'A', 0.5],
         ['C', 'C', 'B', 0.5],
         ['C', 'C', 'C', 0.0]], [guest, prize])

    # Make the states
    s1 = State(guest, name="guest")
    s2 = State(prize, name="prize")
    s3 = State(monty, name="monty")

    # Make the bayes net, add the states, and the conditional dependencies.
    monty_network = BayesianNetwork("test")
    monty_network.add_nodes(s1, s2, s3)
    monty_network.add_edge(s1, s3)
    monty_network.add_edge(s2, s3)
    monty_network.bake()

    monty_index = monty_network.states.index(s3)
    prize_index = monty_network.states.index(s2)
    guest_index = monty_network.states.index(s1)
Beispiel #4
0
def setup_monty():
    # Build a model of the Monty Hall Problem
    global monty_network, monty_index, prize_index, guest_index

    random.seed(0)

    # Friends emissions are completely random
    guest = DiscreteDistribution({'A': 1. / 3, 'B': 1. / 3, 'C': 1. / 3})

    # The actual prize is independent of the other distributions
    prize = DiscreteDistribution({'A': 1. / 3, 'B': 1. / 3, 'C': 1. / 3})
    # Monty is dependent on both the guest and the prize.
    monty = ConditionalProbabilityTable(
        [['A', 'A', 'A', 0.0],
         ['A', 'A', 'B', 0.5],
         ['A', 'A', 'C', 0.5],
         ['A', 'B', 'A', 0.0],
         ['A', 'B', 'B', 0.0],
         ['A', 'B', 'C', 1.0],
         ['A', 'C', 'A', 0.0],
         ['A', 'C', 'B', 1.0],
         ['A', 'C', 'C', 0.0],
         ['B', 'A', 'A', 0.0],
         ['B', 'A', 'B', 0.0],
         ['B', 'A', 'C', 1.0],
         ['B', 'B', 'A', 0.5],
         ['B', 'B', 'B', 0.0],
         ['B', 'B', 'C', 0.5],
         ['B', 'C', 'A', 1.0],
         ['B', 'C', 'B', 0.0],
         ['B', 'C', 'C', 0.0],
         ['C', 'A', 'A', 0.0],
         ['C', 'A', 'B', 1.0],
         ['C', 'A', 'C', 0.0],
         ['C', 'B', 'A', 1.0],
         ['C', 'B', 'B', 0.0],
         ['C', 'B', 'C', 0.0],
         ['C', 'C', 'A', 0.5],
         ['C', 'C', 'B', 0.5],
         ['C', 'C', 'C', 0.0]], [guest, prize])

    # Make the states
    s1 = State(guest, name="guest")
    s2 = State(prize, name="prize")
    s3 = State(monty, name="monty")

    # Make the bayes net, add the states, and the conditional dependencies.
    monty_network = BayesianNetwork("test")
    monty_network.add_nodes(s1, s2, s3)
    monty_network.add_edge(s1, s3)
    monty_network.add_edge(s2, s3)
    monty_network.bake()

    monty_index = monty_network.states.index(s3)
    prize_index = monty_network.states.index(s2)
    guest_index = monty_network.states.index(s1)
Beispiel #5
0
    def __init__(self):
        Pollution = DiscreteDistribution({'F': 0.9, 'T': 0.1})
        Smoker = DiscreteDistribution({'T': 0.3, 'F': 0.7})
        print(Smoker)
        Cancer = ConditionalProbabilityTable([
            ['T', 'T', 'T', 0.05],
            ['T', 'T', 'F', 0.95],
            ['T', 'F', 'T', 0.02],
            ['T', 'F', 'F', 0.98],
            ['F', 'T', 'T', 0.03],
            ['F', 'T', 'F', 0.97],
            ['F', 'F', 'T', 0.001],
            ['F', 'F', 'F', 0.999],
        ], [Pollution, Smoker])
        print(Cancer)
        XRay = ConditionalProbabilityTable([
            ['T', 'T', 0.9],
            ['T', 'F', 0.1],
            ['F', 'T', 0.2],
            ['F', 'F', 0.8],
        ], [Cancer])
        Dyspnoea = ConditionalProbabilityTable([
            ['T', 'T', 0.65],
            ['T', 'F', 0.35],
            ['F', 'T', 0.3],
            ['F', 'F', 0.7],
        ], [Cancer])
        s1 = Node(Pollution, name="Pollution")
        s2 = Node(Smoker, name="Smoker")
        s3 = Node(Cancer, name="Cancer")
        s4 = Node(XRay, name="XRay")
        s5 = Node(Dyspnoea, name="Dyspnoea")

        model = BayesianNetwork("Lung Cancer")
        model.add_states(s1, s2, s3, s4, s5)
        model.add_edge(s1, s3)
        model.add_edge(s2, s3)
        model.add_edge(s3, s4)
        model.add_edge(s3, s5)
        model.bake()
        self.model = model

        meta = []
        name_mapper = ["Pollution", "Smoker", "Cancer", "XRay", "Dyspnoea"]
        for i in range(self.model.node_count()):
            meta.append({
                "name": name_mapper[i],
                "type": "categorical",
                "size": 2,
                "i2s": ['T', 'F']
            })
        self.meta = meta
Beispiel #6
0
    def __init__(self):
        A = DiscreteDistribution({'1': 1. / 3, '2': 1. / 3, '3': 1. / 3})
        B = ConditionalProbabilityTable([
            ['1', '1', 0.5],
            ['1', '2', 0.5],
            ['1', '3', 0],
            ['2', '1', 0],
            ['2', '2', 0.5],
            ['2', '3', 0.5],
            ['3', '1', 0.5],
            ['3', '2', 0],
            ['3', '3', 0.5],
        ], [A])
        C = ConditionalProbabilityTable([
            ['1', '4', 0.5],
            ['1', '5', 0.5],
            ['1', '6', 0],
            ['2', '4', 0],
            ['2', '5', 0.5],
            ['2', '6', 0.5],
            ['3', '4', 0.5],
            ['3', '5', 0],
            ['3', '6', 0.5],
        ], [A])

        s1 = Node(A, name="A")
        s2 = Node(B, name="B")
        s3 = Node(C, name="C")

        model = BayesianNetwork("tree")
        model.add_states(s1, s2, s3)
        model.add_edge(s1, s2)
        model.add_edge(s1, s3)
        model.bake()
        self.model = model

        meta = []
        for i in range(self.model.node_count() - 1):
            meta.append({
                "name": chr(ord('A') + i),
                "type": "categorical",
                "size": 3,
                "i2s": ['1', '2', '3']
            })
        meta.append({
            "name": "C",
            "type": "categorical",
            "size": 3,
            "i2s": ['4', '5', '6']
        })
        self.meta = meta
Beispiel #7
0
def test_io_fit():
    d1 = DiscreteDistribution({True: 0.6, False: 0.4})
    d2 = ConditionalProbabilityTable([
        [True, 'A', 0.2],
        [True, 'B', 0.8],
        [False, 'A', 0.3],
        [False, 'B', 0.7]], [d1])
    d3 = ConditionalProbabilityTable([
        ['A', 0, 0.3],
        ['A', 1, 0.7],
        ['B', 0, 0.8],
        ['B', 1, 0.2]], [d2])

    n1 = Node(d1)
    n2 = Node(d2)
    n3 = Node(d3)

    model1 = BayesianNetwork()
    model1.add_nodes(n1, n2, n3)
    model1.add_edge(n1, n2)
    model1.add_edge(n2, n3)
    model1.bake()
    model1.fit(X, weights=weights)

    d1 = DiscreteDistribution({True: 0.2, False: 0.8})
    d2 = ConditionalProbabilityTable([
        [True, 'A', 0.7],
        [True, 'B', 0.2],
        [False, 'A', 0.4],
        [False, 'B', 0.6]], [d1])
    d3 = ConditionalProbabilityTable([
        ['A', 0, 0.9],
        ['A', 1, 0.1],
        ['B', 0, 0.0],
        ['B', 1, 1.0]], [d2])

    n1 = Node(d1)
    n2 = Node(d2)
    n3 = Node(d3)

    model2 = BayesianNetwork()
    model2.add_nodes(n1, n2, n3)
    model2.add_edge(n1, n2)
    model2.add_edge(n2, n3)
    model2.bake()
    model2.fit(data_generator)

    logp1 = model1.log_probability(X)
    logp2 = model2.log_probability(X)

    assert_array_almost_equal(logp1, logp2)
Beispiel #8
0
def build_net(cpts):
    states = dict()
    for name, cpt in cpts.items():
        states[name] = State(cpt, name=name)

    model = BayesianNetwork('Poker Game')
    model.add_states(*list(states.values()))

    for name, parents, _ in sheets:
        for parent in parents:
            print(states[parent])
            model.add_transition(states[parent], states[name])

    model.bake()
    return model
Beispiel #9
0
    def __init__(self):
        Rain = DiscreteDistribution({'T': 0.2, 'F': 0.8})
        Sprinkler = ConditionalProbabilityTable([
            ['F', 'T', 0.4],
            ['F', 'F', 0.6],
            ['T', 'T', 0.1],
            ['T', 'F', 0.9],
        ], [Rain])
        Wet = ConditionalProbabilityTable([
            ['F', 'F', 'T', 0.01],
            ['F', 'F', 'F', 0.99],
            ['F', 'T', 'T', 0.8],
            ['F', 'T', 'F', 0.2],
            ['T', 'F', 'T', 0.9],
            ['T', 'F', 'F', 0.1],
            ['T', 'T', 'T', 0.99],
            ['T', 'T', 'F', 0.01],
        ], [Sprinkler, Rain])

        s1 = Node(Rain, name="Rain")
        s2 = Node(Sprinkler, name="Sprinkler")
        s3 = Node(Wet, name="Wet")

        model = BayesianNetwork("Simple fully connected")
        model.add_states(s1, s2, s3)
        model.add_edge(s1, s2)
        model.add_edge(s1, s3)
        model.add_edge(s2, s3)
        model.bake()
        self.model = model

        meta = []
        for i in range(self.model.node_count()):
            meta.append({
                "name": None,
                "type": "categorical",
                "size": 2,
                "i2s": ['T', 'F']
            })
        meta[0]['name'] = 'Rain'
        meta[1]['name'] = 'Sprinkler'
        meta[2]['name'] = 'Wet'
        self.meta = meta
Beispiel #10
0
def setup_titanic():
    # Build a model of the titanic disaster
    global titanic_network, passenger, gender, tclass

    # Passengers on the Titanic either survive or perish
    passenger = DiscreteDistribution({'survive': 0.6, 'perish': 0.4})

    # Gender, given survival data
    gender = ConditionalProbabilityTable(
        [['survive', 'male',   0.0],
         ['survive', 'female', 1.0],
         ['perish', 'male',    1.0],
         ['perish', 'female',  0.0]], [passenger])

    # Class of travel, given survival data
    tclass = ConditionalProbabilityTable(
        [['survive', 'first',  0.0],
         ['survive', 'second', 1.0],
         ['survive', 'third',  0.0],
         ['perish', 'first',  1.0],
         ['perish', 'second', 0.0],
         ['perish', 'third',  0.0]], [passenger])

    # State objects hold both the distribution, and a high level name.
    s1 = State(passenger, name="passenger")
    s2 = State(gender, name="gender")
    s3 = State(tclass, name="class")

    # Create the Bayesian network object with a useful name
    titanic_network = BayesianNetwork("Titanic Disaster")

    # Add the three nodes to the network
    titanic_network.add_nodes(s1, s2, s3)

    # Add transitions which represent conditional dependencies, where the
    # second node is conditionally dependent on the first node (Monty is
    # dependent on both guest and prize)
    titanic_network.add_edge(s1, s2)
    titanic_network.add_edge(s1, s3)
    titanic_network.bake()
Beispiel #11
0
def pomegranate_User_pref():
    door_lock = DiscreteDistribution({'True': 0.7, 'False': 0.3})

    thermostate = ConditionalProbabilityTable(
        [['True', 'True', 0.2], ['True', 'False', 0.8],
         ['False', 'True', 0.01], ['False', 'False', 0.99]], [door_lock])
    clock_alarm = DiscreteDistribution({'True': 0.8, 'False': 0.2})

    light = ConditionalProbabilityTable(
        [['True', 'True', 'True', 0.96], ['True', 'True', 'False', 0.04],
         ['True', 'False', 'True', 0.89], ['True', 'False', 'False', 0.11],
         ['False', 'True', 'True', 0.96], ['False', 'True', 'False', 0.04],
         ['False', 'False', 'True', 0.89], ['False', 'False', 'False', 0.11]],
        [door_lock, clock_alarm])

    coffee_maker = ConditionalProbabilityTable(
        [['True', 'True', 0.92], ['True', 'False', 0.08],
         ['False', 'True', 0.03], ['False', 'False', 0.97]], [clock_alarm])

    window = ConditionalProbabilityTable(
        [['True', 'True', 0.885], ['True', 'False', 0.115],
         ['False', 'True', 0.04], ['False', 'False', 0.96]], [thermostate])

    s0_door_lock = State(door_lock, name="door_lock")
    s1_clock_alarm = State(clock_alarm, name="clock_alarm")
    s2_light = State(light, name="light")
    s3_coffee_maker = State(coffee_maker, name="coffee_maker")
    s4_thermostate = State(thermostate, name="thermostate")
    s5_window = State(window, name="Window")
    network = BayesianNetwork("User_pref")
    network.add_nodes(s0_door_lock, s1_clock_alarm, s2_light, s3_coffee_maker,
                      s4_thermostate, s5_window)

    network.add_edge(s0_door_lock, s2_light)
    network.add_edge(s0_door_lock, s4_thermostate)
    network.add_edge(s1_clock_alarm, s3_coffee_maker)
    network.add_edge(s1_clock_alarm, s2_light)
    network.add_edge(s4_thermostate, s5_window)
    network.bake()
    return network
Beispiel #12
0
 def __get_bayesian_network_model(
     self,
     symptom_distributions: List,
     symptom_states: List,
     file_name: str,
     disease_name: str,
 ):
     disease_conditional_distribution = list()
     for (s1, s2, s3, s4, s5, d, p) in get_from_csv(file_name):
         disease_conditional_distribution.append(
             [s1, s2, s3, s4, s5, d, float(p)])
     disease_distribution = ConditionalProbabilityTable(
         disease_conditional_distribution,
         symptom_distributions,
     )
     disease = Node(disease_distribution, name=disease_name)
     model = BayesianNetwork(disease_name)
     model.add_state(disease)
     for symptom_state in symptom_states:
         model.add_state(symptom_state)
         model.add_edge(symptom_state, disease)
     model.bake()
     return model
from pomegranate import DiscreteDistribution
from pomegranate import ConditionalProbabilityTable
from pomegranate import BayesianNetwork
from pomegranate import Node

guest = DiscreteDistribution({'A': 1. / 3, 'B': 1. / 3, 'C': 1. / 3})
prize = DiscreteDistribution({'A': 1. / 3, 'B': 1. / 3, 'C': 1. / 3})
monty = ConditionalProbabilityTable(
    [['A', 'A', 'A', 0.0], ['A', 'A', 'B', 0.5], ['A', 'A', 'C', 0.5],
     ['A', 'B', 'A', 0.0], ['A', 'B', 'B', 0.0], ['A', 'B', 'C', 1.0],
     ['A', 'C', 'A', 0.0], ['A', 'C', 'B', 1.0], ['A', 'C', 'C', 0.0],
     ['B', 'A', 'A', 0.0], ['B', 'A', 'B', 0.0], ['B', 'A', 'C', 1.0],
     ['B', 'B', 'A', 0.5], ['B', 'B', 'B', 0.0], ['B', 'B', 'C', 0.5],
     ['B', 'C', 'A', 1.0], ['B', 'C', 'B', 0.0], ['B', 'C', 'C', 0.0],
     ['C', 'A', 'A', 0.0], ['C', 'A', 'B', 1.0], ['C', 'A', 'C', 0.0],
     ['C', 'B', 'A', 1.0], ['C', 'B', 'B', 0.0], ['C', 'B', 'C', 0.0],
     ['C', 'C', 'A', 0.5], ['C', 'C', 'B', 0.5], ['C', 'C', 'C', 0.0]],
    [guest, prize])

s1 = Node(guest, name="guest")
s2 = Node(prize, name="prize")
s3 = Node(monty, name="monty")

model = BayesianNetwork("Monty Hall Problem")
model.add_states(s1, s2, s3)
model.add_edge(s1, s3)
model.add_edge(s2, s3)
model.bake()
Beispiel #14
0
    def __init__(self, filename):
        with open(filename) as f:
            bif = f.read()
        vars = re.findall(r"variable[^\{]+{[^\}]+}", bif)
        probs = re.findall(r"probability[^\{]+{[^\}]+}", bif)

        var_nodes = {}
        var_index_to_name = []
        edges = []

        self.meta = []
        todo = set()
        for v, p in zip(vars, probs):
            m = re.search(r"variable\s+([^\{\s]+)\s+", v)
            v_name = m.group(1)
            m = re.search(r"type\s+discrete\s+\[\s*(\d+)\s*\]\s*\{([^\}]+)\}",
                          v)
            v_opts_n = int(m.group(1))
            v_opts = m.group(2).replace(',', ' ').split()

            assert v_opts_n == len(v_opts)
            # print(v_name, v_opts_n, v_opts)

            m = re.search(r"probability\s*\(([^)]+)\)", p)
            cond = m.group(1).replace('|', ' ').replace(',', ' ').split()
            assert cond[0] == v_name
            # print(cond)

            self.meta.append({
                "name": v_name,
                "type": "categorical",
                "size": v_opts_n,
                "i2s": v_opts
            })
            if len(cond) == 1:
                m = re.search(r"table([e\-\d\.\s,]*);", p)
                margin_p = m.group(1).replace(',', ' ').split()
                margin_p = [float(x) for x in margin_p]
                assert abs(sum(margin_p) - 1) < 1e-6
                assert len(margin_p) == v_opts_n
                margin_p = dict(zip(v_opts, margin_p))

                var_index_to_name.append(v_name)
                tmp = DiscreteDistribution(margin_p)
                # print(tmp)
                var_nodes[v_name] = tmp
            else:
                m_iter = re.finditer(r"\(([^)]*)\)([\s\d\.,\-e]+);", p)
                cond_p_table = []
                for m in m_iter:
                    cond_values = m.group(1).replace(',', ' ').split()
                    cond_p = m.group(2).replace(',', ' ').split()
                    cond_p = [float(x) for x in cond_p]
                    assert len(cond_values) == len(cond) - 1
                    assert len(cond_p) == v_opts_n
                    assert abs(sum(cond_p) - 1) < 1e-6

                    for opt, opt_p in zip(v_opts, cond_p):
                        cond_p_table.append(cond_values + [opt, opt_p])
                var_index_to_name.append(v_name)

                tmp = (cond_p_table, cond)
                # print(tmp)
                var_nodes[v_name] = tmp
                for x in cond[1:]:
                    edges.append((x, v_name))
                todo.add(v_name)

        while len(todo) > 0:
            # print(todo)
            for v_name in todo:
                # print(v_name, type(var_nodes[v_name]))
                cond_p_table, cond = var_nodes[v_name]
                flag = True
                for y in cond[1:]:
                    if y in todo:
                        flag = False
                        break
                if flag:
                    cond_t = [var_nodes[x] for x in cond[1:]]
                    var_nodes[v_name] = ConditionalProbabilityTable(
                        cond_p_table, cond_t)
                    todo.remove(v_name)
                    break

        for x in var_index_to_name:
            var_nodes[x] = Node(var_nodes[x], name=x)

        var_nodes_list = [var_nodes[x] for x in var_index_to_name]
        # print(var_nodes_list)
        model = BayesianNetwork("tmp")
        model.add_states(*var_nodes_list)

        for edge in edges:
            model.add_edge(var_nodes[edge[0]], var_nodes[edge[1]])
        model.bake()
        # print(model.to_json())
        self.model = model
Beispiel #15
0
network = BayesianNetwork("Monty hall problem")
network.add_states(*states.values())
network.add_edge(states["Peer_Pressure"],states["Smoking"])
network.add_edge(states["Anxiety"],states["Smoking"])
network.add_edge(states["Smoking"],states["Yellow_Fingers"])
network.add_edge(states["Genetics"],states["Lung_cancer"])
network.add_edge(states["Smoking"],states["Lung_cancer"])
network.add_edge(states["Genetics"],states["Attention_Disorder"])
network.add_edge(states['Lung_cancer'], states["Coughing"])
network.add_edge(states['Allergy'], states["Coughing"])
network.add_edge(states['Coughing'], states["Fatigue"])
network.add_edge(states['Lung_cancer'], states["Fatigue"])
network.add_edge(states["Fatigue"], states["Car_Accident"])
network.add_edge(states["Attention_Disorder"], states["Car_Accident"])
import ast
network.bake()
beliefs = network.predict_proba({"Genetics":"T"},max_iterations=100000)
# print(beliefs)
# beliefs = map(str, beliefs)
# for state, belief in zip(network.states, beliefs):
#     if hasattr(belief,"parameters"):
#         print(state.name,belief.parameters)
# exit()
# network.add_edge(s1, s3)
# network.add_edge(s2, s3)
#
# beliefs = network.predict_proba({"guest": "A", "monty": "B"})
# beliefs = map(str, beliefs)
# for state, belief in zip(network.states, beliefs):
#     print(state.name, belief)
Beispiel #16
0
def setup_huge_monty():
    # Build the huge monty hall huge_monty_network. This is an example I made
    # up with which may not exactly flow logically, but tests a varied type of
    # tables ensures heterogeneous types of data work together.
    global huge_monty_network, huge_monty_friend, huge_monty_guest, huge_monty
    global huge_monty_remaining, huge_monty_randomize, huge_monty_prize

    # Huge_Monty_Friend
    huge_monty_friend = DiscreteDistribution({True: 0.5, False: 0.5})

    # Huge_Monty_Guest emisisons are completely random
    huge_monty_guest = ConditionalProbabilityTable(
        [[True, 'A', 0.50],
         [True, 'B', 0.25],
         [True, 'C', 0.25],
         [False, 'A', 0.0],
         [False, 'B', 0.7],
         [False, 'C', 0.3]], [huge_monty_friend])

    # Number of huge_monty_remaining cars
    huge_monty_remaining = DiscreteDistribution({0: 0.1, 1: 0.7, 2: 0.2, })

    # Whether they huge_monty_randomize is dependent on the numnber of
    # huge_monty_remaining cars
    huge_monty_randomize = ConditionalProbabilityTable(
        [[0, True, 0.05],
         [0, False, 0.95],
         [1, True, 0.8],
         [1, False, 0.2],
         [2, True, 0.5],
         [2, False, 0.5]], [huge_monty_remaining])

    # Where the huge_monty_prize is depends on if they huge_monty_randomize or
    # not and also the huge_monty_guests huge_monty_friend
    huge_monty_prize = ConditionalProbabilityTable(
        [[True, True, 'A', 0.3],
         [True, True, 'B', 0.4],
         [True, True, 'C', 0.3],
         [True, False, 'A', 0.2],
         [True, False, 'B', 0.4],
         [True, False, 'C', 0.4],
         [False, True, 'A', 0.1],
         [False, True, 'B', 0.9],
         [False, True, 'C', 0.0],
         [False, False, 'A', 0.0],
         [False, False, 'B', 0.4],
         [False, False, 'C', 0.6]], [huge_monty_randomize, huge_monty_friend])

    # Monty is dependent on both the huge_monty_guest and the huge_monty_prize.
    huge_monty = ConditionalProbabilityTable(
        [['A', 'A', 'A', 0.0],
         ['A', 'A', 'B', 0.5],
         ['A', 'A', 'C', 0.5],
         ['A', 'B', 'A', 0.0],
         ['A', 'B', 'B', 0.0],
         ['A', 'B', 'C', 1.0],
         ['A', 'C', 'A', 0.0],
         ['A', 'C', 'B', 1.0],
         ['A', 'C', 'C', 0.0],
         ['B', 'A', 'A', 0.0],
         ['B', 'A', 'B', 0.0],
         ['B', 'A', 'C', 1.0],
         ['B', 'B', 'A', 0.5],
         ['B', 'B', 'B', 0.0],
         ['B', 'B', 'C', 0.5],
         ['B', 'C', 'A', 1.0],
         ['B', 'C', 'B', 0.0],
         ['B', 'C', 'C', 0.0],
         ['C', 'A', 'A', 0.0],
         ['C', 'A', 'B', 1.0],
         ['C', 'A', 'C', 0.0],
         ['C', 'B', 'A', 1.0],
         ['C', 'B', 'B', 0.0],
         ['C', 'B', 'C', 0.0],
         ['C', 'C', 'A', 0.5],
         ['C', 'C', 'B', 0.5],
         ['C', 'C', 'C', 0.0]], [huge_monty_guest, huge_monty_prize])

    # Make the states
    s0 = State(huge_monty_friend, name="huge_monty_friend")
    s1 = State(huge_monty_guest, name="huge_monty_guest")
    s2 = State(huge_monty_prize, name="huge_monty_prize")
    s3 = State(huge_monty, name="huge_monty")
    s4 = State(huge_monty_remaining, name="huge_monty_remaining")
    s5 = State(huge_monty_randomize, name="huge_monty_randomize")

    # Make the bayes net, add the states, and the conditional dependencies.
    huge_monty_network = BayesianNetwork("test")
    huge_monty_network.add_nodes(s0, s1, s2, s3, s4, s5)
    huge_monty_network.add_transition(s0, s1)
    huge_monty_network.add_transition(s1, s3)
    huge_monty_network.add_transition(s2, s3)
    huge_monty_network.add_transition(s4, s5)
    huge_monty_network.add_transition(s5, s2)
    huge_monty_network.add_transition(s0, s2)
    huge_monty_network.bake()
Beispiel #17
0
def setup_huge_monty():
    # Build the huge monty hall huge_monty_network. This is an example I made
    # up with which may not exactly flow logically, but tests a varied type of
    # tables ensures heterogeneous types of data work together.
    global huge_monty_network, huge_monty_friend, huge_monty_guest, huge_monty
    global huge_monty_remaining, huge_monty_randomize, huge_monty_prize

    # Huge_Monty_Friend
    huge_monty_friend = DiscreteDistribution({True: 0.5, False: 0.5})

    # Huge_Monty_Guest emisisons are completely random
    huge_monty_guest = ConditionalProbabilityTable(
        [[True, 'A', 0.50],
         [True, 'B', 0.25],
         [True, 'C', 0.25],
         [False, 'A', 0.0],
         [False, 'B', 0.7],
         [False, 'C', 0.3]], [huge_monty_friend])

    # Number of huge_monty_remaining cars
    huge_monty_remaining = DiscreteDistribution({0: 0.1, 1: 0.7, 2: 0.2, })

    # Whether they huge_monty_randomize is dependent on the numnber of
    # huge_monty_remaining cars
    huge_monty_randomize = ConditionalProbabilityTable(
        [[0, True, 0.05],
         [0, False, 0.95],
         [1, True, 0.8],
         [1, False, 0.2],
         [2, True, 0.5],
         [2, False, 0.5]], [huge_monty_remaining])

    # Where the huge_monty_prize is depends on if they huge_monty_randomize or
    # not and also the huge_monty_guests huge_monty_friend
    huge_monty_prize = ConditionalProbabilityTable(
        [[True, True, 'A', 0.3],
         [True, True, 'B', 0.4],
         [True, True, 'C', 0.3],
         [True, False, 'A', 0.2],
         [True, False, 'B', 0.4],
         [True, False, 'C', 0.4],
         [False, True, 'A', 0.1],
         [False, True, 'B', 0.9],
         [False, True, 'C', 0.0],
         [False, False, 'A', 0.0],
         [False, False, 'B', 0.4],
         [False, False, 'C', 0.6]], [huge_monty_randomize, huge_monty_friend])

    # Monty is dependent on both the huge_monty_guest and the huge_monty_prize.
    huge_monty = ConditionalProbabilityTable(
        [['A', 'A', 'A', 0.0],
         ['A', 'A', 'B', 0.5],
         ['A', 'A', 'C', 0.5],
         ['A', 'B', 'A', 0.0],
         ['A', 'B', 'B', 0.0],
         ['A', 'B', 'C', 1.0],
         ['A', 'C', 'A', 0.0],
         ['A', 'C', 'B', 1.0],
         ['A', 'C', 'C', 0.0],
         ['B', 'A', 'A', 0.0],
         ['B', 'A', 'B', 0.0],
         ['B', 'A', 'C', 1.0],
         ['B', 'B', 'A', 0.5],
         ['B', 'B', 'B', 0.0],
         ['B', 'B', 'C', 0.5],
         ['B', 'C', 'A', 1.0],
         ['B', 'C', 'B', 0.0],
         ['B', 'C', 'C', 0.0],
         ['C', 'A', 'A', 0.0],
         ['C', 'A', 'B', 1.0],
         ['C', 'A', 'C', 0.0],
         ['C', 'B', 'A', 1.0],
         ['C', 'B', 'B', 0.0],
         ['C', 'B', 'C', 0.0],
         ['C', 'C', 'A', 0.5],
         ['C', 'C', 'B', 0.5],
         ['C', 'C', 'C', 0.0]], [huge_monty_guest, huge_monty_prize])

    # Make the states
    s0 = State(huge_monty_friend, name="huge_monty_friend")
    s1 = State(huge_monty_guest, name="huge_monty_guest")
    s2 = State(huge_monty_prize, name="huge_monty_prize")
    s3 = State(huge_monty, name="huge_monty")
    s4 = State(huge_monty_remaining, name="huge_monty_remaining")
    s5 = State(huge_monty_randomize, name="huge_monty_randomize")

    # Make the bayes net, add the states, and the conditional dependencies.
    huge_monty_network = BayesianNetwork("test")
    huge_monty_network.add_nodes(s0, s1, s2, s3, s4, s5)
    huge_monty_network.add_transition(s0, s1)
    huge_monty_network.add_transition(s1, s3)
    huge_monty_network.add_transition(s2, s3)
    huge_monty_network.add_transition(s4, s5)
    huge_monty_network.add_transition(s5, s2)
    huge_monty_network.add_transition(s0, s2)
    huge_monty_network.bake()