Beispiel #1
0
    def run_radial_simul(self, my_front_reconstruction, my_front_advancement,
                         my_vertex_or_path, my_param):
        # setting up the verbosity level of the log at console
        # setup_logging_to_console(verbosity_level='error')

        outputfolder = "./Temp_Data/" + my_vertex_or_path + "_radial_" + my_front_advancement + "_" + my_front_reconstruction
        self.remove(outputfolder)

        # creating mesh
        Mesh = CartesianMesh(my_param['Lx'], my_param['Ly'], my_param['Nx'],
                             my_param['Ny'])

        # solid properties
        nu = my_param['nu']  # Poisson's ratio
        youngs_mod = my_param['youngs_mod']  # Young's modulus
        Eprime = youngs_mod / (1 - nu**2)  # plain strain modulus
        K_Ic = my_param['K_Ic']  # fracture toughness
        Cl = my_param['Cl']  # Carter's leak off coefficient

        # material properties
        Solid = MaterialProperties(Mesh, Eprime, K_Ic, Carters_coef=Cl)

        # injection parameters
        Q0 = my_param['Q0']  # injection rate
        Injection = InjectionProperties(Q0, Mesh)

        # fluid properties
        Fluid = FluidProperties(viscosity=my_param['viscosity'])

        # simulation properties
        simulProp = SimulationProperties()
        simulProp.finalTime = my_param[
            'finalTime']  # the time at which the simulation stops
        simulProp.set_tipAsymptote(
            my_vertex_or_path
        )  # tip asymptote is evaluated with the viscosity dominated assumption
        simulProp.frontAdvancing = my_front_advancement  # to set explicit front tracking
        simulProp.plotFigure = False
        simulProp.set_solTimeSeries(np.asarray([2, 200, 5000, 30000, 100000]))
        simulProp.saveTSJump, simulProp.plotTSJump = 5, 5  # save and plot after every five time steps
        simulProp.set_outputFolder(outputfolder)
        simulProp.projMethod = my_front_reconstruction
        simulProp.log2file = False

        # initialization parameters
        Fr_geometry = Geometry('radial', radius=my_param['initialR'])
        init_param = InitializationParameters(Fr_geometry,
                                              regime=my_vertex_or_path)

        # creating fracture object
        Fr = Fracture(Mesh, init_param, Solid, Fluid, Injection, simulProp)

        # create a Controller
        controller = Controller(Fr, Solid, Fluid, Injection, simulProp)

        # run the simulation
        exitcode = controller.run()
        return exitcode, outputfolder
Beispiel #2
0
# injection parameters
Q0 = 0.01  # injection rate
Injection = InjectionProperties(Q0, Mesh)

# fluid properties
Fluid = FluidProperties(rheology='PLF', n=0.6, k=0.001 / 12)

# simulation properties
simulProp = SimulationProperties()
simulProp.finalTime = 1e7                               # the time at which the simulation stops
simulProp.set_outputFolder("./Data/MtoK_leakoff")       # the disk address where the files are saved
simulProp.set_simulation_name('PLF_MtoKtilde_n0.6')
simulProp.tolFractFront = 0.003                         # increase the tolerance for faster run
simulProp.projMethod = 'LS_continousfront'              # using the continuous front algorithm
simulProp.set_tipAsymptote('PLF')                       # setting the tip asymptote to power-law fluid

# initializing the fracture width with the solution provided by  Madyarova & Detournay 2004 for power-law fluids. 
w = np.zeros(Mesh.NumberOfElts)
xw = np.genfromtxt('width_n_05.csv', delimiter=',')
t = 0.00005
n = Fluid.n
gamma = 0.7155
Mprime = 2**(n + 1) * (2 * n + 1)**n / n**n * Fluid.k
Vel = 2 * (n + 1) / (n + 2) / 3 * gamma * (Eprime * Q0 ** (n + 2) / Mprime
        ) ** (1 / (3 * n + 6)) / t ** ((n + 4) / (3 * n + 6))
eps = (Mprime / Eprime / t**n) ** (1 / (n + 2))
L = (Eprime * Q0**(n + 2) * t**(2 * n + 2) / Mprime) ** (1 / (3 * n + 6))

# interpolating width on cell centers
f = interpolate.interp1d(gamma * L * xw[:, 0],
simulProp.set_outputFolder(
    "./Data/HB")  # the disk address where the files are saved
simulProp.set_simulation_name(
    'HB_injection_line_sink')  # setting simulation name
simulProp.saveG = True  # enable saving the coefficient G
simulProp.plotVar = ['ir', 'w']  # plot width of fracture
simulProp.saveEffVisc = True  # enable saving of the effective viscosity
simulProp.relaxation_factor = 0.3  # relax Anderson iteration
simulProp.maxSolverItrs = 200  # set maximum number of Anderson iterations to 200
simulProp.Anderson_parameter = 10  # save last 10 iterations in Anderson iteration
simulProp.collectPerfData = True  # enable collect performance data
simulProp.fixedTmStp = np.asarray(
    [[0, 0.5], [0.01,
                None]])  # set auto time step size after propagation start
simulProp.tolFractFront = 0.003  # relaxing tolerance for front iteration
simulProp.set_tipAsymptote(
    'HBF')  # setting tip asymptote to Herschel-Bulkley fluid

# starting simulation with a static radial fracture with radius 20cm and net pressure of 1MPa
Fr_geometry = Geometry('radial', radius=0.2)
from elasticity import load_isotropic_elasticity_matrix
C = load_isotropic_elasticity_matrix(Mesh, Eprime)
init_param = InitializationParameters(Fr_geometry,
                                      regime='static',
                                      net_pressure=1e6,
                                      elasticity_matrix=C)

# creating fracture object
Fr = Fracture(Mesh, init_param, Solid, Fluid, Injection, simulProp)
Fr.pInjLine = Fr.pFluid[Mesh.CenterElts]

# create a Controller
Beispiel #4
0
K_Ic = 1e6  # fracture toughness

Solid = MaterialProperties(Mesh, Eprime, K_Ic)

# injection parameters
Q0 = 0.001  # injection rate
Injection = InjectionProperties(Q0, Mesh)

# fluid properties
Fluid = FluidProperties(viscosity=0)

# simulation properties
simulProp = SimulationProperties()
simulProp.finalTime = 1e2  # the time at which the simulation stops
simulProp.set_tipAsymptote(
    'K'
)  # the tip asymptote is evaluated with the toughness dominated assumption
simulProp.set_volumeControl(
    True
)  # use the inviscid fluid solver(toughness dominated), imposing volume balance
simulProp.set_outputFolder(
    "./Data/K_radial_symmetric")  # the disk address where the files are saved
simulProp.symmetric = True  # assume fracture geometry to be symmetric (only available for volume control)

# initializing fracture
Fr_geometry = Geometry('radial', radius=0.15)
init_param = InitializationParameters(Fr_geometry, regime='K')

# creating fracture object
Fr = Fracture(Mesh, init_param, Solid, Fluid, Injection, simulProp)
Fluid = FluidProperties(viscosity=1.1e-4)

# aspect ratio of the elliptical fracture
gamma = (
    K1c_func(np.pi / 2) / K1c_func(0) *
    TI_plain_strain_modulus(  # gamma = (Kc3/Kc1*E1/E3)**2
        0, Cij) / TI_plain_strain_modulus(np.pi / 2, Cij))**2

# simulation properties
simulProp = SimulationProperties()
simulProp.finalTime = 1000  # the time at which the simulation stops
simulProp.set_volumeControl(
    True)  # to set up the solver in volume control mode (inviscid fluid)
simulProp.tolFractFront = 4e-3  # increase tolerance for the anisotropic case
simulProp.frontAdvancing = "implicit"  # set the front advancing scheme to implicit
simulProp.set_tipAsymptote('K')  # set the tip asymptote to toughness dominated
simulProp.set_outputFolder(
    "./data/TI_elasticity_ellipse")  # setting the output folder
simulProp.set_simulation_name(
    'TI_ellasticy_benchmark')  # setting the simulation name
simulProp.TI_KernelExecPath = '../TI_Kernel/build/'  # path to the executable that calculates TI kernel
simulProp.symmetric = True  # solving with faster solver that assumes fracture is symmetric
simulProp.remeshFactor = 1.5  # the factor by which the domain is expanded

# initialization parameters
Fr_geometry = Geometry('elliptical', minor_axis=1, gamma=gamma)
init_param = InitializationParameters(Fr_geometry, regime='E_E')

# #  creating fracture object
Fr = Fracture(Mesh, init_param, Solid, Fluid, Injection, simulProp)
Beispiel #6
0
Q0 = 0.01  # injection rate
Injection = InjectionProperties(Q0, Mesh)

# fluid properties
Fluid = FluidProperties(viscosity=1.1e-3)    # toughness dominated solution

# simulation properties
simulProp = SimulationProperties()
simulProp.finalTime = 4000            # the time at which the simulation stops
simulProp.set_volumeControl(True)     # to set up the solver in volume control mode (inviscid fluid)
simulProp.tolFractFront = 4e-3        # increase tolerance for the anisotropic case
simulProp.set_outputFolder("./Data/toughness_jump") # the disk address where the files are saved
simulProp.set_simulation_name('anisotropic_toughness_jump')
simulProp.symmetric = True            # set the fracture to symmetric
simulProp.projMethod = 'ILSA_orig'
simulProp.set_tipAsymptote('U')

# initializing fracture
gamma = (K1c_func(np.pi/2) / K1c_func(0))**2    # gamma = (Kc1/Kc3)**2
Fr_geometry = Geometry('elliptical', minor_axis=15., gamma=gamma)
init_param = InitializationParameters(Fr_geometry, regime='E_K')

# creating fracture object
Fr = Fracture(Mesh,
              init_param,
              Solid,
              Fluid,
              Injection,
              simulProp)

# create a Controller