Beispiel #1
0
                           K1c,
                           Carters_coef=Cl)

# injection parameters
Q0 = 0.01  # injection rate
Injection = InjectionProperties(Q0, Mesh)

# fluid properties
Fluid = FluidProperties(rheology='PLF', n=0.6, k=0.001 / 12)

# simulation properties
simulProp = SimulationProperties()
simulProp.finalTime = 1e7                               # the time at which the simulation stops
simulProp.set_outputFolder("./Data/MtoK_leakoff")       # the disk address where the files are saved
simulProp.set_simulation_name('PLF_MtoKtilde_n0.6')
simulProp.tolFractFront = 0.003                         # increase the tolerance for faster run
simulProp.projMethod = 'LS_continousfront'              # using the continuous front algorithm
simulProp.set_tipAsymptote('PLF')                       # setting the tip asymptote to power-law fluid

# initializing the fracture width with the solution provided by  Madyarova & Detournay 2004 for power-law fluids. 
w = np.zeros(Mesh.NumberOfElts)
xw = np.genfromtxt('width_n_05.csv', delimiter=',')
t = 0.00005
n = Fluid.n
gamma = 0.7155
Mprime = 2**(n + 1) * (2 * n + 1)**n / n**n * Fluid.k
Vel = 2 * (n + 1) / (n + 2) / 3 * gamma * (Eprime * Q0 ** (n + 2) / Mprime
        ) ** (1 / (3 * n + 6)) / t ** ((n + 4) / (3 * n + 6))
eps = (Mprime / Eprime / t**n) ** (1 / (n + 2))
L = (Eprime * Q0**(n + 2) * t**(2 * n + 2) / Mprime) ** (1 / (3 * n + 6))
simulProp.finalTime = 86  # the time at which the simulation stops
simulProp.set_outputFolder(
    "./Data/HB")  # the disk address where the files are saved
simulProp.set_simulation_name(
    'HB_injection_line_sink')  # setting simulation name
simulProp.saveG = True  # enable saving the coefficient G
simulProp.plotVar = ['ir', 'w']  # plot width of fracture
simulProp.saveEffVisc = True  # enable saving of the effective viscosity
simulProp.relaxation_factor = 0.3  # relax Anderson iteration
simulProp.maxSolverItrs = 200  # set maximum number of Anderson iterations to 200
simulProp.Anderson_parameter = 10  # save last 10 iterations in Anderson iteration
simulProp.collectPerfData = True  # enable collect performance data
simulProp.fixedTmStp = np.asarray(
    [[0, 0.5], [0.01,
                None]])  # set auto time step size after propagation start
simulProp.tolFractFront = 0.003  # relaxing tolerance for front iteration
simulProp.set_tipAsymptote(
    'HBF')  # setting tip asymptote to Herschel-Bulkley fluid

# starting simulation with a static radial fracture with radius 20cm and net pressure of 1MPa
Fr_geometry = Geometry('radial', radius=0.2)
from elasticity import load_isotropic_elasticity_matrix
C = load_isotropic_elasticity_matrix(Mesh, Eprime)
init_param = InitializationParameters(Fr_geometry,
                                      regime='static',
                                      net_pressure=1e6,
                                      elasticity_matrix=C)

# creating fracture object
Fr = Fracture(Mesh, init_param, Solid, Fluid, Injection, simulProp)
Fr.pInjLine = Fr.pFluid[Mesh.CenterElts]
                           minimum_width=1e-5)

# injection parameters
Q0 = np.asarray([[0.0, 500], [2000, 0]])  # injection rate
Injection = InjectionProperties(Q0, Mesh)

# fluid properties
Fluid = FluidProperties(viscosity=30, density=2400)

# simulation properties
simulProp = SimulationProperties()
simulProp.finalTime = 560000  # the time at which the simulation stops
simulProp.set_outputFolder(
    "./Data/neutral_buoyancy")  # the disk address where the files are saved
simulProp.gravity = True  # set up the gravity flag
simulProp.tolFractFront = 3e-3  # increase the tolerance for fracture
# front iteration
simulProp.plotTSJump = 4  # plot every fourth time step
simulProp.saveTSJump = 2  # save every second time step
simulProp.maxSolverItrs = 200  # increase the Anderson iteration limit for the
# elastohydrodynamic solver
simulProp.tmStpPrefactor = np.asarray([[0, 80000], [0.5, 0.1]
                                       ])  # set up the time step prefactor
simulProp.timeStepLimit = 5000  # time step limit
simulProp.plotVar = ['w',
                     'v']  # plot fracture width and fracture front velocity
simulProp.set_mesh_extension_direction(
    ['top', 'horizontal'])  # allow the fracture to extend in positive y and x
simulProp.set_mesh_extension_factor(1.2)  # set the extension factor to 1.4
simulProp.useBlockToeplizCompression = True  # use the Toepliz elasticity matrix to save memory
                           anisotropic_K1c=True,
                           K1c_func=K1c_func)

# injection parameters
Q0 = 0.001  # injection rate
Injection = InjectionProperties(Q0, Mesh)

# fluid properties
Fluid = FluidProperties(viscosity=1.1e-5)

# simulation properties
simulProp = SimulationProperties()
simulProp.finalTime = 500  # the time at which the simulation stops
simulProp.set_volumeControl(
    True)  # to set up the solver in volume control mode (inviscid fluid)
simulProp.tolFractFront = 4e-3  # increase tolerance for the anisotropic case
simulProp.remeshFactor = 1.5  # the factor by which the mesh will be compressed.
simulProp.set_outputFolder(
    "./Data/ellipse")  # the disk address where the files are saved
simulProp.set_simulation_name('anisotropic_toughness_benchmark')
simulProp.symmetric = True  # solving with faster solver that assumes fracture is symmetric

# initializing fracture
gamma = (K1c_func(np.pi / 2) / K1c_func(0))**2  # gamma = (Kc1/Kc3)**2
Fr_geometry = Geometry('elliptical', minor_axis=2., gamma=gamma)
init_param = InitializationParameters(Fr_geometry, regime='E_K')

# creating fracture object
Fr = Fracture(Mesh, init_param, Solid, Fluid, Injection, simulProp)

# create a Controller
Beispiel #5
0
                        compressibility=0,
                        n=0.6, k=0.75, T0=10.)


# simulation properties
simulProp = SimulationProperties()
simulProp.finalTime = 38000                             # the time at which the simulation stops
simulProp.set_outputFolder("./Data/HB")                 # the disk address where the files are saved
simulProp.set_simulation_name('HB_Gauss_Chebyshev_comparison')  # setting simulation name
simulProp.saveG = True                                  # enable saving the coefficient G
simulProp.plotVar = ['w', 'G']                          # plot width of fracture
simulProp.saveEffVisc = True                            # enable saving of the effective viscosity
simulProp.relaxation_factor = 0.3                       # relax Anderson iteration
simulProp.maxSolverItrs = 200                           # set maximum number of Anderson iterations to 200
simulProp.collectPerfData = True                        # enable collect performance data
simulProp.tolFractFront = 3e-3                          # increasing fracture front iteration tolerance
simulProp.plotTSJump = 5                                # plotting after every five time steps
simulProp.tmStpPrefactor = 0.6                          # reducing time steps for better convergence
simulProp.Anderson_parameter = 10                       # saving last 10 solutions for better performance

# initializing the fracture width with the solution provided by  Madyarova & Detournay 2004 for power-law fluids.
w = np.zeros(Mesh.NumberOfElts)
xw = np.genfromtxt('width_n_05.csv', delimiter=',')     # loading dimensionless width profile for n = 0.5
t = 2e-2
n = Fluid.n
gamma = 0.699
Mprime = 2**(n + 1) * (2 * n + 1)**n / n**n * Fluid.k
Vel = 2 * (n + 1) / (n + 2) / 3 * gamma * (Eprime * Q0 ** (n + 2) / Mprime
        ) ** (1 / (3 * n + 6)) / t ** ((n + 4) / (3 * n + 6))
eps = (Mprime / Eprime / t**n) ** (1 / (n + 2))
L = (Eprime * Q0**(n + 2) * t**(2 * n + 2) / Mprime) ** (1 / (3 * n + 6))