Beispiel #1
0
absIneq = Forall((x, y),
                 Iff(LessThanEquals(Abs(x), y),
                     And(LessThanEquals(Neg(y), x), LessThanEquals(x, y))),
                 domain=Reals,
                 conditions=[GreaterThanEquals(y, zero)])
absIneq

triangleInequality = Forall([a, b],
                            LessThanEquals(Abs(Add(a, b)), Add(Abs(a),
                                                               Abs(b))),
                            domain=Complexes)
triangleInequality

absProd = Forall(xEtc,
                 Equals(Abs(Mult(xEtc)), Mult(Etcetera(Abs(xMulti)))),
                 domain=Complexes)
absProd

absFrac = Forall([a, b],
                 Equals(Abs(Fraction(a, b)), Fraction(Abs(a), Abs(b))),
                 domain=Complexes)
absFrac

modAbsScaled = Forall((a, b, c),
                      Equals(Mult(a, ModAbs(b, c)),
                             ModAbs(Mult(a, b), Mult(a, c))),
                      domain=Reals)
modAbsScaled

modAbsSubtractCancel = Forall(
Beispiel #2
0
                LessThanEquals(
                    Neg(y), x), LessThanEquals(
                        x, y))), domain=Real, conditions=[
                            GreaterThanEquals(
                                y, zero)])
abs_ineq

# transferred by wdc 3/11/2020
triangle_inequality = Forall([a, b], LessThanEquals(
    Abs(Add(a, b)), Add(Abs(a), Abs(b))), domain=Complex)
triangle_inequality

# transferred by wdc 3/11/2020
abs_prod = Forall(x_etc,
                  Equals(Abs(Mult(x_etc)),
                         Mult(Etcetera(Abs(x_multi)))),
                  domain=Complex)
abs_prod

# transferred by wdc 3/11/2020
abs_frac = Forall([a, b],
                  Equals(Abs(frac(a, b)), frac(Abs(a), Abs(b))),
                  domain=Complex)
abs_frac

# transferred by wdc 3/11/2020
mod_abs_scaled = Forall(
    (a, b, c), Equals(
        Mult(
            a, ModAbs(
                b, c)), ModAbs(
Beispiel #3
0
diff_square_comm

one_exp = Forall([x], Equals(Exp(x, one), x), domain=Complex)
one_exp

exp_one = Forall([x], Equals(Exp(one, x), one), domain=Complex)
exp_one

same_exp_distribute = Forall([x, y, z],
                             Equals(Mult(Exp(x, y), Exp(z, y)),
                                    Exp(Mult(x, z), y)),
                             domain=Complex)
same_exp_distribute

sqrt_of_prod = Forall(x_etc,
                      Equals(sqrt(Mult(x_etc)), Mult(Etcetera(sqrt(x_multi)))),
                      domain=RealPos)
sqrt_of_prod

prod_of_sqrts = Forall(x_etc,
                       Equals(Mult(Etcetera(sqrt(x_multi))),
                              sqrt(Mult(x_etc))),
                       domain=RealPos)
prod_of_sqrts

sqrt_times_itself = Forall(x,
                           Equals(Mult(sqrt(x), sqrt(x)), x),
                           domain=Real,
                           conditions=[GreaterThanEquals(x, zero)])
sqrt_times_itself
Beispiel #4
0
fractionNotEqZero = Forall([a, b],
                           NotEquals(Fraction(a, b), zero),
                           domain=ComplexesSansZero)
fractionNotEqZero

fracZeroNumer = Forall(x, Equals(Fraction(zero, x), zero), domain=Complexes)
fracZeroNumer

fracOneDenom = Forall(x, Equals(Fraction(x, one), x), domain=Complexes)
fracOneDenom

distributeFractionThroughSum = Forall([xEtc, y],
                                      Equals(
                                          Fraction(Add(xEtc), y),
                                          Add(Etcetera(Fraction(xMulti, y)))),
                                      domain=Complexes,
                                      conditions=[NotEquals(y, zero)])
distributeFractionThroughSum

distributeFractionThroughSumRev = Forall([xEtc, y],
                                         Equals(
                                             Add(Etcetera(Fraction(xMulti,
                                                                   y))),
                                             Fraction(Add(xEtc), y)),
                                         domain=Complexes,
                                         conditions=[NotEquals(y, zero)])
distributeFractionThroughSumRev

distributeFractionThroughSubtract = Forall([x, y, z],
                                           Equals(
Beispiel #5
0
divide_not_eq_zero

fraction_not_eq_zero = Forall([a, b],
                              NotEquals(frac(a, b), zero),
                              domain=ComplexSansZero)
fraction_not_eq_zero

frac_zero_numer = Forall(x, Equals(frac(zero, x), zero), domain=Complex)
frac_zero_numer

frac_one_denom = Forall(x, Equals(frac(x, one), x), domain=Complex)
frac_one_denom

distributefrac_through_sum = Forall([x_etc, y],
                                    Equals(frac(Add(x_etc), y),
                                           Add(Etcetera(frac(x_multi, y)))),
                                    domain=Complex,
                                    conditions=[NotEquals(y, zero)])
distributefrac_through_sum

distributefrac_through_sum_rev = Forall([x_etc, y],
                                        Equals(Add(Etcetera(frac(x_multi, y))),
                                               frac(Add(x_etc), y)),
                                        domain=Complex,
                                        conditions=[NotEquals(y, zero)])
distributefrac_through_sum_rev

distributefrac_through_subtract = Forall([x, y, z],
                                         Equals(frac(Sub(x, y), z),
                                                Sub(frac(x, z), frac(y, z))),
                                         domain=Complex,
Beispiel #6
0
multZero

multComm = Forall([vEtc, wEtc, xEtc, yEtc, zEtc],
                  Equals(Mult(vEtc, wEtc, xEtc, yEtc, zEtc),
                         Mult(vEtc, yEtc, xEtc, wEtc, zEtc)),
                  domain=Complexes)
multComm

multAssocRev = Forall([xEtc, yEtc, zEtc],
                      Equals(Mult(xEtc, Mult(yEtc), zEtc),
                             Mult(xEtc, yEtc, zEtc)))
multAssocRev

distributeThroughSum = Forall([xEtc, yEtc, zEtc],
                              Equals(Mult(xEtc, Add(yEtc), zEtc),
                                     Add(Etcetera(Mult(xEtc, yMulti, zEtc)))),
                              domain=Complexes)
distributeThroughSum

distributeThroughSumRev = Forall([xEtc, yEtc, zEtc],
                                 Equals(
                                     Add(Etcetera(Mult(xEtc, yMulti, zEtc))),
                                     Mult(xEtc, Add(yEtc), zEtc)),
                                 domain=Complexes)
distributeThroughSumRev

distributeThroughSubtract = Forall([wEtc, x, y, zEtc],
                                   Equals(
                                       Mult(wEtc, Sub(x, y), zEtc),
                                       Sub(Mult(wEtc, x, zEtc),
                                           Mult(wEtc, y, zEtc))),
Beispiel #7
0
diffSquareComm

oneExp = Forall([x], Equals(Exp(x, one), x), domain=Complexes)
oneExp

expOne = Forall([x], Equals(Exp(one, x), one), domain=Complexes)
expOne

sameExpDistribute = Forall([x, y, z],
                           Equals(Mult(Exp(x, y), Exp(z, y)),
                                  Exp(Mult(x, z), y)),
                           domain=Complexes)
sameExpDistribute

sqrtOfProd = Forall(xEtc,
                    Equals(sqrt(Mult(xEtc)), Mult(Etcetera(sqrt(xMulti)))),
                    domain=RealsPos)
sqrtOfProd

prodOfSqrts = Forall(xEtc,
                     Equals(Mult(Etcetera(sqrt(xMulti))), sqrt(Mult(xEtc))),
                     domain=RealsPos)
prodOfSqrts

sqrtTimesItself = Forall(x,
                         Equals(Mult(sqrt(x), sqrt(x)), x),
                         domain=Reals,
                         conditions=[GreaterThanEquals(x, zero)])
sqrtTimesItself

endTheorems(locals(), __package__)
mult_comm = Forall([v_etc, w_etc, x_etc, y_etc, z_etc],
                   Equals(Mult(v_etc, w_etc, x_etc, y_etc, z_etc),
                          Mult(v_etc, y_etc, x_etc, w_etc, z_etc)),
                   domain=Complex)
mult_comm

mult_assoc_rev = Forall([x_etc, y_etc, z_etc],
                        Equals(Mult(x_etc, Mult(y_etc), z_etc),
                               Mult(x_etc, y_etc, z_etc)))
mult_assoc_rev

distribute_through_sum = Forall([x_etc, y_etc, z_etc],
                                Equals(
                                    Mult(x_etc, Add(y_etc), z_etc),
                                    Add(Etcetera(Mult(x_etc, y_multi,
                                                      z_etc)))),
                                domain=Complex)
distribute_through_sum

distribute_through_sum_rev = Forall(
    [x_etc, y_etc, z_etc],
    Equals(Add(Etcetera(Mult(x_etc, y_multi, z_etc))),
           Mult(x_etc, Add(y_etc), z_etc)),
    domain=Complex)
distribute_through_sum_rev

distribute_through_subtract = Forall([w_etc, x, y, z_etc],
                                     Equals(
                                         Mult(w_etc, Sub(x, y), z_etc),
                                         Sub(Mult(w_etc, x, z_etc),
                                             Mult(w_etc, y, z_etc))),
Beispiel #9
0
expOne = Forall([x],
               Equals(Exp(one,x),
                     one),
               domain = Complexes)
expOne

# transferred 2/20/2020
sameExpDistribute = Forall([x,y,z],
                            Equals(Mult(Exp(x,y),Exp(z,y)),
                                 Exp(Mult(x,z),y)),
                            domain = Complexes)
sameExpDistribute

# transferred 2/20/2020
sqrtOfProd = Forall(xEtc, Equals(sqrt(Mult(xEtc)),
                              Mult(Etcetera(sqrt(xMulti)))),
                  domain=RealsPos)
sqrtOfProd

# transferred 2/20/2020
prodOfSqrts = Forall(xEtc, Equals(Mult(Etcetera(sqrt(xMulti))),
                                  sqrt(Mult(xEtc))),
                     domain=RealsPos)
prodOfSqrts

# transferred 2/20/2020
sqrtTimesItself = Forall(x, Equals(Mult(sqrt(x), sqrt(x)), x),
                         domain=Reals, conditions=[GreaterThanEquals(x, zero)])
sqrtTimesItself

endTheorems(locals(), __package__)
Beispiel #10
0
negatedNegativeIsPositive = Forall(a,
                                   GreaterThan(Neg(a), zero),
                                   domain=Reals,
                                   conditions=[LessThan(a, zero)])
negatedNegativeIsPositive

negNotEqZero = Forall(a,
                      NotEquals(Neg(a), zero),
                      domain=Complexes,
                      conditions=[NotEquals(a, zero)])
negNotEqZero

distributeNegThroughSum = Forall([xEtc],
                                 Equals(Neg(Add(xEtc)),
                                        Add(Etcetera(Neg(xMulti)))),
                                 domain=Complexes)
distributeNegThroughSum

distributeNegThroughSumRev = Forall([xEtc],
                                    Equals(Add(Etcetera(Neg(xMulti))),
                                           Neg(Add(xEtc))),
                                    domain=Complexes)
distributeNegThroughSumRev

distributeNegThroughSubtract = Forall([x, y],
                                      Equals(Neg(Sub(x, y)), Add(Neg(x), y)),
                                      domain=Complexes)
distributeNegThroughSubtract

negTimesPos = Forall([x, y],
Beispiel #11
0
subtractCancelRightSumSingleLeft = Forall([x, y], Equals(Sub(y, Add(x, y)), Neg(x)), domain=Complexes)
subtractCancelRightSumSingleLeft

subtractCancelLeftSumSingleRight = Forall([x, y], Equals(Sub(Add(y, x), y), x), domain=Complexes)
subtractCancelLeftSumSingleRight

subtractCancelLeftSumSingleLeft = Forall([x, y], Equals(Sub(Add(x, y), y), x), domain=Complexes)
subtractCancelLeftSumSingleLeft

subtractCancelComplete = Forall(x, Equals(Sub(x, x), zero), domain=Complexes)
subtractCancelComplete

distributeSubtraction = Forall([x, yEtc],
                              Equals(Sub(x, Add(yEtc)),
                                    Add(x, Etcetera(Neg(yMulti)))),
                              domain=Complexes)
distributeSubtraction

cancelAddition = Forall([a,b],
                        Equals(Add(a, Sub(b,b)), a),
                       domain=Complexes)
cancelAddition

cancelSubAndAdd = Forall([a,b],
                         Equals(Sub(Sub(a,Neg(b)), b), a),
                        domain=Complexes)
cancelSubAndAdd

cancelSubThenAdd = Forall([a,b],
                        Equals(Add(Sub(a,b), b), a),
Beispiel #12
0
subtract_cancel_left_sum_single_right = Forall([x, y],
                                               Equals(Sub(Add(y, x), y), x),
                                               domain=Complex)
subtract_cancel_left_sum_single_right

subtract_cancel_left_sum_single_left = Forall([x, y],
                                              Equals(Sub(Add(x, y), y), x),
                                              domain=Complex)
subtract_cancel_left_sum_single_left

subtract_cancel_complete = Forall(x, Equals(Sub(x, x), zero), domain=Complex)
subtract_cancel_complete

distribute_subtraction = Forall([x, y_etc],
                                Equals(Sub(x, Add(y_etc)),
                                       Add(x, Etcetera(Neg(y_multi)))),
                                domain=Complex)
distribute_subtraction

cancel_addition = Forall([a, b], Equals(Add(a, Sub(b, b)), a), domain=Complex)
cancel_addition

cancel_sub_and_add = Forall([a, b],
                            Equals(Sub(Sub(a, Neg(b)), b), a),
                            domain=Complex)
cancel_sub_and_add

cancel_sub_then_add = Forall([a, b],
                             Equals(Add(Sub(a, b), b), a),
                             domain=Complex)
cancel_sub_then_add