absIneq = Forall((x, y), Iff(LessThanEquals(Abs(x), y), And(LessThanEquals(Neg(y), x), LessThanEquals(x, y))), domain=Reals, conditions=[GreaterThanEquals(y, zero)]) absIneq triangleInequality = Forall([a, b], LessThanEquals(Abs(Add(a, b)), Add(Abs(a), Abs(b))), domain=Complexes) triangleInequality absProd = Forall(xEtc, Equals(Abs(Mult(xEtc)), Mult(Etcetera(Abs(xMulti)))), domain=Complexes) absProd absFrac = Forall([a, b], Equals(Abs(Fraction(a, b)), Fraction(Abs(a), Abs(b))), domain=Complexes) absFrac modAbsScaled = Forall((a, b, c), Equals(Mult(a, ModAbs(b, c)), ModAbs(Mult(a, b), Mult(a, c))), domain=Reals) modAbsScaled modAbsSubtractCancel = Forall(
LessThanEquals( Neg(y), x), LessThanEquals( x, y))), domain=Real, conditions=[ GreaterThanEquals( y, zero)]) abs_ineq # transferred by wdc 3/11/2020 triangle_inequality = Forall([a, b], LessThanEquals( Abs(Add(a, b)), Add(Abs(a), Abs(b))), domain=Complex) triangle_inequality # transferred by wdc 3/11/2020 abs_prod = Forall(x_etc, Equals(Abs(Mult(x_etc)), Mult(Etcetera(Abs(x_multi)))), domain=Complex) abs_prod # transferred by wdc 3/11/2020 abs_frac = Forall([a, b], Equals(Abs(frac(a, b)), frac(Abs(a), Abs(b))), domain=Complex) abs_frac # transferred by wdc 3/11/2020 mod_abs_scaled = Forall( (a, b, c), Equals( Mult( a, ModAbs( b, c)), ModAbs(
diff_square_comm one_exp = Forall([x], Equals(Exp(x, one), x), domain=Complex) one_exp exp_one = Forall([x], Equals(Exp(one, x), one), domain=Complex) exp_one same_exp_distribute = Forall([x, y, z], Equals(Mult(Exp(x, y), Exp(z, y)), Exp(Mult(x, z), y)), domain=Complex) same_exp_distribute sqrt_of_prod = Forall(x_etc, Equals(sqrt(Mult(x_etc)), Mult(Etcetera(sqrt(x_multi)))), domain=RealPos) sqrt_of_prod prod_of_sqrts = Forall(x_etc, Equals(Mult(Etcetera(sqrt(x_multi))), sqrt(Mult(x_etc))), domain=RealPos) prod_of_sqrts sqrt_times_itself = Forall(x, Equals(Mult(sqrt(x), sqrt(x)), x), domain=Real, conditions=[GreaterThanEquals(x, zero)]) sqrt_times_itself
fractionNotEqZero = Forall([a, b], NotEquals(Fraction(a, b), zero), domain=ComplexesSansZero) fractionNotEqZero fracZeroNumer = Forall(x, Equals(Fraction(zero, x), zero), domain=Complexes) fracZeroNumer fracOneDenom = Forall(x, Equals(Fraction(x, one), x), domain=Complexes) fracOneDenom distributeFractionThroughSum = Forall([xEtc, y], Equals( Fraction(Add(xEtc), y), Add(Etcetera(Fraction(xMulti, y)))), domain=Complexes, conditions=[NotEquals(y, zero)]) distributeFractionThroughSum distributeFractionThroughSumRev = Forall([xEtc, y], Equals( Add(Etcetera(Fraction(xMulti, y))), Fraction(Add(xEtc), y)), domain=Complexes, conditions=[NotEquals(y, zero)]) distributeFractionThroughSumRev distributeFractionThroughSubtract = Forall([x, y, z], Equals(
divide_not_eq_zero fraction_not_eq_zero = Forall([a, b], NotEquals(frac(a, b), zero), domain=ComplexSansZero) fraction_not_eq_zero frac_zero_numer = Forall(x, Equals(frac(zero, x), zero), domain=Complex) frac_zero_numer frac_one_denom = Forall(x, Equals(frac(x, one), x), domain=Complex) frac_one_denom distributefrac_through_sum = Forall([x_etc, y], Equals(frac(Add(x_etc), y), Add(Etcetera(frac(x_multi, y)))), domain=Complex, conditions=[NotEquals(y, zero)]) distributefrac_through_sum distributefrac_through_sum_rev = Forall([x_etc, y], Equals(Add(Etcetera(frac(x_multi, y))), frac(Add(x_etc), y)), domain=Complex, conditions=[NotEquals(y, zero)]) distributefrac_through_sum_rev distributefrac_through_subtract = Forall([x, y, z], Equals(frac(Sub(x, y), z), Sub(frac(x, z), frac(y, z))), domain=Complex,
multZero multComm = Forall([vEtc, wEtc, xEtc, yEtc, zEtc], Equals(Mult(vEtc, wEtc, xEtc, yEtc, zEtc), Mult(vEtc, yEtc, xEtc, wEtc, zEtc)), domain=Complexes) multComm multAssocRev = Forall([xEtc, yEtc, zEtc], Equals(Mult(xEtc, Mult(yEtc), zEtc), Mult(xEtc, yEtc, zEtc))) multAssocRev distributeThroughSum = Forall([xEtc, yEtc, zEtc], Equals(Mult(xEtc, Add(yEtc), zEtc), Add(Etcetera(Mult(xEtc, yMulti, zEtc)))), domain=Complexes) distributeThroughSum distributeThroughSumRev = Forall([xEtc, yEtc, zEtc], Equals( Add(Etcetera(Mult(xEtc, yMulti, zEtc))), Mult(xEtc, Add(yEtc), zEtc)), domain=Complexes) distributeThroughSumRev distributeThroughSubtract = Forall([wEtc, x, y, zEtc], Equals( Mult(wEtc, Sub(x, y), zEtc), Sub(Mult(wEtc, x, zEtc), Mult(wEtc, y, zEtc))),
diffSquareComm oneExp = Forall([x], Equals(Exp(x, one), x), domain=Complexes) oneExp expOne = Forall([x], Equals(Exp(one, x), one), domain=Complexes) expOne sameExpDistribute = Forall([x, y, z], Equals(Mult(Exp(x, y), Exp(z, y)), Exp(Mult(x, z), y)), domain=Complexes) sameExpDistribute sqrtOfProd = Forall(xEtc, Equals(sqrt(Mult(xEtc)), Mult(Etcetera(sqrt(xMulti)))), domain=RealsPos) sqrtOfProd prodOfSqrts = Forall(xEtc, Equals(Mult(Etcetera(sqrt(xMulti))), sqrt(Mult(xEtc))), domain=RealsPos) prodOfSqrts sqrtTimesItself = Forall(x, Equals(Mult(sqrt(x), sqrt(x)), x), domain=Reals, conditions=[GreaterThanEquals(x, zero)]) sqrtTimesItself endTheorems(locals(), __package__)
mult_comm = Forall([v_etc, w_etc, x_etc, y_etc, z_etc], Equals(Mult(v_etc, w_etc, x_etc, y_etc, z_etc), Mult(v_etc, y_etc, x_etc, w_etc, z_etc)), domain=Complex) mult_comm mult_assoc_rev = Forall([x_etc, y_etc, z_etc], Equals(Mult(x_etc, Mult(y_etc), z_etc), Mult(x_etc, y_etc, z_etc))) mult_assoc_rev distribute_through_sum = Forall([x_etc, y_etc, z_etc], Equals( Mult(x_etc, Add(y_etc), z_etc), Add(Etcetera(Mult(x_etc, y_multi, z_etc)))), domain=Complex) distribute_through_sum distribute_through_sum_rev = Forall( [x_etc, y_etc, z_etc], Equals(Add(Etcetera(Mult(x_etc, y_multi, z_etc))), Mult(x_etc, Add(y_etc), z_etc)), domain=Complex) distribute_through_sum_rev distribute_through_subtract = Forall([w_etc, x, y, z_etc], Equals( Mult(w_etc, Sub(x, y), z_etc), Sub(Mult(w_etc, x, z_etc), Mult(w_etc, y, z_etc))),
expOne = Forall([x], Equals(Exp(one,x), one), domain = Complexes) expOne # transferred 2/20/2020 sameExpDistribute = Forall([x,y,z], Equals(Mult(Exp(x,y),Exp(z,y)), Exp(Mult(x,z),y)), domain = Complexes) sameExpDistribute # transferred 2/20/2020 sqrtOfProd = Forall(xEtc, Equals(sqrt(Mult(xEtc)), Mult(Etcetera(sqrt(xMulti)))), domain=RealsPos) sqrtOfProd # transferred 2/20/2020 prodOfSqrts = Forall(xEtc, Equals(Mult(Etcetera(sqrt(xMulti))), sqrt(Mult(xEtc))), domain=RealsPos) prodOfSqrts # transferred 2/20/2020 sqrtTimesItself = Forall(x, Equals(Mult(sqrt(x), sqrt(x)), x), domain=Reals, conditions=[GreaterThanEquals(x, zero)]) sqrtTimesItself endTheorems(locals(), __package__)
negatedNegativeIsPositive = Forall(a, GreaterThan(Neg(a), zero), domain=Reals, conditions=[LessThan(a, zero)]) negatedNegativeIsPositive negNotEqZero = Forall(a, NotEquals(Neg(a), zero), domain=Complexes, conditions=[NotEquals(a, zero)]) negNotEqZero distributeNegThroughSum = Forall([xEtc], Equals(Neg(Add(xEtc)), Add(Etcetera(Neg(xMulti)))), domain=Complexes) distributeNegThroughSum distributeNegThroughSumRev = Forall([xEtc], Equals(Add(Etcetera(Neg(xMulti))), Neg(Add(xEtc))), domain=Complexes) distributeNegThroughSumRev distributeNegThroughSubtract = Forall([x, y], Equals(Neg(Sub(x, y)), Add(Neg(x), y)), domain=Complexes) distributeNegThroughSubtract negTimesPos = Forall([x, y],
subtractCancelRightSumSingleLeft = Forall([x, y], Equals(Sub(y, Add(x, y)), Neg(x)), domain=Complexes) subtractCancelRightSumSingleLeft subtractCancelLeftSumSingleRight = Forall([x, y], Equals(Sub(Add(y, x), y), x), domain=Complexes) subtractCancelLeftSumSingleRight subtractCancelLeftSumSingleLeft = Forall([x, y], Equals(Sub(Add(x, y), y), x), domain=Complexes) subtractCancelLeftSumSingleLeft subtractCancelComplete = Forall(x, Equals(Sub(x, x), zero), domain=Complexes) subtractCancelComplete distributeSubtraction = Forall([x, yEtc], Equals(Sub(x, Add(yEtc)), Add(x, Etcetera(Neg(yMulti)))), domain=Complexes) distributeSubtraction cancelAddition = Forall([a,b], Equals(Add(a, Sub(b,b)), a), domain=Complexes) cancelAddition cancelSubAndAdd = Forall([a,b], Equals(Sub(Sub(a,Neg(b)), b), a), domain=Complexes) cancelSubAndAdd cancelSubThenAdd = Forall([a,b], Equals(Add(Sub(a,b), b), a),
subtract_cancel_left_sum_single_right = Forall([x, y], Equals(Sub(Add(y, x), y), x), domain=Complex) subtract_cancel_left_sum_single_right subtract_cancel_left_sum_single_left = Forall([x, y], Equals(Sub(Add(x, y), y), x), domain=Complex) subtract_cancel_left_sum_single_left subtract_cancel_complete = Forall(x, Equals(Sub(x, x), zero), domain=Complex) subtract_cancel_complete distribute_subtraction = Forall([x, y_etc], Equals(Sub(x, Add(y_etc)), Add(x, Etcetera(Neg(y_multi)))), domain=Complex) distribute_subtraction cancel_addition = Forall([a, b], Equals(Add(a, Sub(b, b)), a), domain=Complex) cancel_addition cancel_sub_and_add = Forall([a, b], Equals(Sub(Sub(a, Neg(b)), b), a), domain=Complex) cancel_sub_and_add cancel_sub_then_add = Forall([a, b], Equals(Add(Sub(a, b), b), a), domain=Complex) cancel_sub_then_add