def main(args): slide_fn = args.slide_fn level = args.level ## Load model net = models.tissue_detector_DNN() eddl.build(net, eddl.rmsprop(0.00001), ["soft_cross_entropy"], ["categorical_accuracy"], eddl.CS_GPU() if args.gpu else eddl.CS_CPU()) eddl.load(net, args.weights_fn, "bin") eddl.summary(net) ## Load Slide slide_T, s = read_slide(slide_fn, level) ## Compute tissue mask #len_T = slide_T.getShape()[0] #bs = args.batch_size #nb = int(np.ceil((len_T / bs))) #print ("n. batches: %d" % nb) #output_l = [] #for b in range(nb): # start = bs*b # stop = bs*(b+1) if bs*(b+1) < len_T else len_T # b_T = slide_T.select(["%d:%d" % (start, stop)]) output_l = eddl.predict(net, [slide_T]) print(output_l) ## Binarize the output mask = get_mask(output_l, s, args.threshold) np.save("mask", mask)
def load_model(self, model_weights): ## Load the ANN tissue detector model implemented by using pyeddl ## Create ANN topology (Same used during training phase) ## The model is assumed being trained by using RGB triplets. net = models.tissue_detector_DNN() eddl.build(net, eddl.rmsprop(0.00001), ["soft_cross_entropy"], ["categorical_accuracy"], eddl.CS_GPU() if self.gpu else eddl.CS_CPU()) # Load weights eddl.load(net, model_weights, "bin") self.model = net
def main(args): num_classes = 1 size = [192, 192] # size of images thresh = 0.5 if args.out_dir: os.makedirs(args.out_dir, exist_ok=True) in_ = eddl.Input([3, size[0], size[1]]) out = SegNet(in_, num_classes) out_sigm = eddl.Sigmoid(out) net = eddl.Model([in_], [out_sigm]) eddl.build(net, eddl.adam(0.0001), ["cross_entropy"], ["mean_squared_error"], eddl.CS_GPU([1]) if args.gpu else eddl.CS_CPU()) eddl.summary(net) eddl.setlogfile(net, "skin_lesion_segmentation_inference") if not os.path.exists(args.ckpts): raise RuntimeError('Checkpoint "{}" not found'.format(args.ckpts)) eddl.load(net, args.ckpts, "bin") training_augs = ecvl.SequentialAugmentationContainer([ ecvl.AugResizeDim(size), ]) test_augs = ecvl.SequentialAugmentationContainer([ ecvl.AugResizeDim(size), ]) dataset_augs = ecvl.DatasetAugmentations([training_augs, None, test_augs]) print("Reading dataset") d = ecvl.DLDataset(args.in_ds, args.batch_size, dataset_augs) x = Tensor([args.batch_size, d.n_channels_, size[0], size[1]]) y = Tensor([args.batch_size, d.n_channels_gt_, size[0], size[1]]) print("Testing") d.SetSplit(ecvl.SplitType.test) num_samples_test = len(d.GetSplit()) num_batches_test = num_samples_test // args.batch_size evaluator = utils.Evaluator() evaluator.ResetEval() for b in range(num_batches_test): n = 0 print("Batch {:d}/{:d} ".format(b + 1, num_batches_test), end="", flush=True) d.LoadBatch(x, y) x.div_(255.0) y.div_(255.0) eddl.forward(net, [x]) output = eddl.getOutput(out_sigm) for k in range(args.batch_size): img = output.select([str(k)]) gt = y.select([str(k)]) img_np, gt_np = np.array(img, copy=False), np.array(gt, copy=False) iou = evaluator.BinaryIoU(img_np, gt_np, thresh=thresh) print("- IoU: %.6g " % iou, end="", flush=True) if args.out_dir: # C++ BinaryIoU modifies image as a side effect img_np[img_np >= thresh] = 1 img_np[img_np < thresh] = 0 img_t = ecvl.TensorToView(img) img_t.colortype_ = ecvl.ColorType.GRAY img_t.channels_ = "xyc" img.mult_(255.) # orig_img orig_img = x.select([str(k)]) orig_img.mult_(255.) orig_img_t = ecvl.TensorToImage(orig_img) orig_img_t.colortype_ = ecvl.ColorType.BGR orig_img_t.channels_ = "xyc" tmp, labels = ecvl.Image.empty(), ecvl.Image.empty() ecvl.CopyImage(img_t, tmp, ecvl.DataType.uint8) ecvl.ConnectedComponentsLabeling(tmp, labels) ecvl.CopyImage(labels, tmp, ecvl.DataType.uint8) contours = ecvl.FindContours(tmp) ecvl.CopyImage(orig_img_t, tmp, ecvl.DataType.uint8) tmp_np = np.array(tmp, copy=False) for cseq in contours: for c in cseq: tmp_np[c[0], c[1], 0] = 0 tmp_np[c[0], c[1], 1] = 0 tmp_np[c[0], c[1], 2] = 255 filename = d.samples_[d.GetSplit()[n]].location_[0] head, tail = os.path.splitext(os.path.basename(filename)) bname = "%s.png" % head output_fn = os.path.join(args.out_dir, bname) ecvl.ImWrite(output_fn, tmp) gt_t = ecvl.TensorToView(gt) gt_t.colortype_ = ecvl.ColorType.GRAY gt_t.channels_ = "xyc" gt.mult_(255.) gt_filename = d.samples_[d.GetSplit()[n]].label_path_ gt_fn = os.path.join(args.out_dir, os.path.basename(gt_filename)) ecvl.ImWrite(gt_fn, gt_t) n += 1 print() print("MIoU: %.6g" % evaluator.MeanMetric())
def main(args): net_name = "vgg16" num_classes = 2 size = [256, 256] # size of images ### Parse GPU if args.gpu: gpus = [int(i) for i in args.gpu] else: gpus = [] print('GPUs mask: %r' % gpus) ### Get Network net_init = eddl.HeNormal net, dataset_augs = get_net(net_name='vgg16', in_size=size, num_classes=num_classes, lr=args.lr, augs=args.augs_on, gpus=gpus, lsb=args.lsb, init=net_init, dropout=args.dropout, l2_reg=args.l2_reg) out = net.layers[-1] ## Load weights if requested if args.init_weights_fn: print("Loading initialization weights") eddl.load(net, args.init_weights_fn) ## Check options if args.out_dir: working_dir = "model_cnn_%s_ps.%d_bs_%d_lr_%.2e" % ( net_name, size[0], args.batch_size, args.lr) res_dir = os.path.join(args.out_dir, working_dir) try: os.makedirs(res_dir, exist_ok=True) except: print("Directory already exists.") sys.exit() ######################################## ### Set database and read split file ### ######################################## if not args.cassandra_pwd_fn: cass_pass = getpass('Insert Cassandra password: '******'prom', password=cass_pass) #cd = CassandraDataset(ap, ['cassandra_db']) cd = CassandraDataset(ap, ['127.0.0.1'], seed=args.seed) # Check if file exists if Path(args.splits_fn).exists(): # Load splits cd.load_splits(args.splits_fn, batch_size=args.batch_size, augs=dataset_augs) else: print("Split file %s not found" % args.splits_fn) sys.exit(-1) print('Number of batches for each split (train, val, test):', cd.num_batches) ## validation index check and creation of split indexes lists if args.val_split_indexes: n_splits = cd.num_splits out_indexes = [i for i in args.val_split_indexes if i > (n_splits - 1)] if out_indexes: print("Not valid validation split index: %r" % out_indexes) sys.exit(-1) val_splits = args.val_split_indexes test_splits = args.test_split_indexes train_splits = [ i for i in range(n_splits) if (i not in val_splits) and (i not in test_splits) ] num_batches_tr = np.sum([cd.num_batches[i] for i in train_splits]) num_batches_val = np.sum([cd.num_batches[i] for i in val_splits]) print("Train splits: %r" % train_splits) print("Val splits: %r" % val_splits) print("Test splits: %r" % test_splits) else: num_batches_tr = cd.num_batches[0] num_batches_val = cd.num_batches[1] ################################ #### Training and evaluation ### ################################ print("Defining metric...", flush=True) metric_fn = eddl.getMetric("categorical_accuracy") loss_fn = eddl.getLoss("soft_cross_entropy") print("Starting training", flush=True) loss_l = [] acc_l = [] val_loss_l = [] val_acc_l = [] patience_cnt = 0 val_acc_max = 0.0 #### Code used to find best learning rate. Comment it to perform an actual training if args.find_opt_lr: max_epochs = args.epochs lr_start = args.lr lr_end = args.lr_end lr_f = lambda x: 10**(np.log10(lr_start) + ( (np.log10(lr_end) - np.log10(lr_start)) / max_epochs) * x) #### ### Main loop across epochs for e in range(args.epochs): ## SET LT if args.find_opt_lr: eddl.setlr(net, [lr_f(e)]) ### Training cd.current_split = 0 ## Set the training split as the current one print("Epoch {:d}/{:d} - Training".format(e + 1, args.epochs), flush=True) cd.rewind_splits(shuffle=True) eddl.reset_loss(net) total_metric = [] total_loss = [] ### Looping across batches of training data pbar = tqdm(range(num_batches_tr)) for b_index, b in enumerate(pbar): if args.val_split_indexes: x, y = cd.load_batch_cross(not_splits=val_splits + test_splits) else: x, y = cd.load_batch() x.div_(255.0) tx, ty = [x], [y] eddl.train_batch(net, tx, ty) #print bratch train results instances = (b_index + 1) * args.batch_size loss = eddl.get_losses(net)[0] metr = eddl.get_metrics(net)[0] msg = "Epoch {:d}/{:d} (batch {:d}/{:d}) - loss: {:.3f}, acc: {:.3f}".format( e + 1, args.epochs, b + 1, num_batches_tr, loss, metr) pbar.set_postfix_str(msg) total_loss.append(loss) total_metric.append(metr) loss_l.append(np.mean(total_loss)) acc_l.append(np.mean(total_metric)) pbar.close() ### Evaluation on validation set batches cd.current_split = 1 ## Set validation split as the current one total_metric = [] total_loss = [] print("Epoch %d/%d - Evaluation" % (e + 1, args.epochs), flush=True) pbar = tqdm(range(num_batches_val)) for b_index, b in enumerate(pbar): if args.val_split_indexes: x, y = cd.load_batch_cross(not_splits=train_splits + test_splits) else: x, y = cd.load_batch() x.div_(255.0) eddl.forward(net, [x]) output = eddl.getOutput(out) sum_ca = 0.0 ## sum of samples accuracy within a batch sum_ce = 0.0 ## sum of losses within a batch n = 0 for k in range(x.getShape()[0]): result = output.select([str(k)]) target = y.select([str(k)]) ca = metric_fn.value(target, result) ce = loss_fn.value(target, result) total_metric.append(ca) total_loss.append(ce) sum_ca += ca sum_ce += ce n += 1 msg = "Epoch {:d}/{:d} (batch {:d}/{:d}) loss: {:.3f}, acc: {:.3f} ".format( e + 1, args.epochs, b + 1, num_batches_val, (sum_ce / n), (sum_ca / n)) pbar.set_postfix_str(msg) pbar.close() val_batch_acc_avg = np.mean(total_metric) val_batch_loss_avg = np.mean(total_loss) val_loss_l.append(val_batch_loss_avg) val_acc_l.append(val_batch_acc_avg) print("loss: {:.3f}, acc: {:.3f}, val_loss: {:.3f}, val_acc: {:.3f}\n". format(loss_l[-1], acc_l[-1], val_loss_l[-1], val_acc_l[-1])) ## Save weights if args.save_weights: print("Saving weights") path = os.path.join( res_dir, "promort_%s_weights_ep_%s_vacc_%.2f.bin" % (net_name, e, val_acc_l[-1])) eddl.save(net, path, "bin") # Dump history at the end of each epoch so if the job is interrupted data are not lost. if args.out_dir: history = { 'loss': loss_l, 'acc': acc_l, 'val_loss': val_loss_l, 'val_acc': val_acc_l } pickle.dump(history, open(os.path.join(res_dir, 'history.pickle'), 'wb')) ### Patience check if val_acc_l[-1] > val_acc_max: val_acc_max = val_acc_l[-1] patience_cnt = 0 else: patience_cnt += 1 if patience_cnt > args.patience: ## Exit and complete the training print("Got maximum patience... training completed") break
def main(args): num_classes = 1 size = [512, 512] # size of images thresh = 0.5 best_dice = -1 if args.out_dir: os.makedirs(args.out_dir, exist_ok=True) in_ = eddl.Input([1, size[0], size[1]]) out = SegNetBN(in_, num_classes) out_sigm = eddl.Sigmoid(out) net = eddl.Model([in_], [out_sigm]) eddl.build(net, eddl.adam(0.0001), ["cross_entropy"], ["mean_squared_error"], eddl.CS_GPU([1], mem='low_mem') if args.gpu else eddl.CS_CPU()) eddl.summary(net) eddl.setlogfile(net, "pneumothorax_segmentation_training") if args.ckpts and os.path.exists(args.ckpts): print("Loading checkpoints '{}'".format(args.ckpts)) eddl.load(net, args.ckpts, 'bin') training_augs = ecvl.SequentialAugmentationContainer([ ecvl.AugResizeDim(size), ecvl.AugMirror(0.5), ecvl.AugRotate([-10, 10]), ecvl.AugBrightness([0, 30]), ecvl.AugGammaContrast([0, 3]), ]) validation_augs = ecvl.SequentialAugmentationContainer( [ecvl.AugResizeDim(size)]) dataset_augs = ecvl.DatasetAugmentations( [training_augs, validation_augs, None]) print("Reading dataset") d = ecvl.DLDataset(args.in_ds, args.batch_size, dataset_augs, ecvl.ColorType.GRAY) # Prepare tensors which store batch x = Tensor([args.batch_size, d.n_channels_, size[0], size[1]]) y = Tensor([args.batch_size, d.n_channels_gt_, size[0], size[1]]) # Retrieve indices of images with a black ground truth # which are not include in a split train_split = d.GetSplit(ecvl.SplitType.training) val_split = d.GetSplit(ecvl.SplitType.validation) test_split = d.GetSplit(ecvl.SplitType.test) all_split = set(train_split + val_split + test_split) images_list = set(range(len(d.samples_))) # Obtain images with black ground truth black_images = images_list - all_split # Add a 25% of training samples with black ground truth. num_samples_train = math.floor(len(train_split) * 1.25) num_batches_train = num_samples_train // args.batch_size # Add a 25% of validation samples with black ground truth. num_samples_validation = math.floor(len(val_split) * 1.25) num_batches_validation = num_samples_validation // args.batch_size black_images = list(black_images) black_training = black_images[0:-(num_samples_validation - len(val_split))] black_validation = black_images[-(num_samples_validation - len(val_split)):] indices = list(range(args.batch_size)) evaluator = utils.Evaluator() print("Starting training") for e in range(args.epochs): print("Epoch {:d}/{:d} - Training".format(e + 1, args.epochs), flush=True) d.SetSplit(ecvl.SplitType.training) eddl.reset_loss(net) s = d.GetSplit() random.shuffle(s) d.split_.training_ = s random.shuffle(black_training) d.ResetAllBatches() # Indices to track mask and black vector in PneumothoraxLoadBatch m_i = 0 b_i = 0 for i, b in enumerate(range(num_batches_train)): d, images, labels, _, m_i, b_i = PneumothoraxLoadBatch( d, black_training, m_i, b_i) x, y = fill_tensors(images, labels, x, y) x.div_(255.0) y.div_(255.0) eddl.train_batch(net, [x], [y], indices) if i % args.log_interval == 0: print("Epoch {:d}/{:d} (batch {:d}/{:d}) - ".format( e + 1, args.epochs, b + 1, num_batches_train), end="", flush=True) eddl.print_loss(net, b) print() d.SetSplit(ecvl.SplitType.validation) evaluator.ResetEval() print("Epoch %d/%d - Evaluation" % (e + 1, args.epochs), flush=True) m_i = 0 b_i = 0 for b in range(num_batches_validation): n = 0 print("Epoch {:d}/{:d} (batch {:d}/{:d}) ".format( e + 1, args.epochs, b + 1, num_batches_validation), end="", flush=True) d, images, labels, names, m_i, b_i = PneumothoraxLoadBatch( d, black_validation, m_i, b_i) x, y = fill_tensors(images, labels, x, y) x.div_(255.0) y.div_(255.0) eddl.forward(net, [x]) output = eddl.getOutput(out_sigm) # Compute Dice metric and optionally save the output images for k in range(args.batch_size): pred = output.select([str(k)]) gt = y.select([str(k)]) pred_np = np.array(pred, copy=False) gt_np = np.array(gt, copy=False) # DiceCoefficient modifies image as a side effect dice = evaluator.DiceCoefficient(pred_np, gt_np, thresh=thresh) print("- Dice: {:.6f} ".format(dice), end="", flush=True) if args.out_dir: # Save original image fused together with prediction and # ground truth pred_np *= 255 pred_ecvl = ecvl.TensorToImage(pred) pred_ecvl.colortype_ = ecvl.ColorType.GRAY pred_ecvl.channels_ = "xyc" ecvl.ResizeDim(pred_ecvl, pred_ecvl, (1024, 1024), ecvl.InterpolationType.nearest) filename_gt = names[n + 1] gt_ecvl = ecvl.ImRead(filename_gt, ecvl.ImReadMode.GRAYSCALE) filename = names[n] # Image as BGR img_ecvl = ecvl.ImRead(filename) ecvl.Stack([img_ecvl, img_ecvl, img_ecvl], img_ecvl) img_ecvl.channels_ = "xyc" img_ecvl.colortype_ = ecvl.ColorType.BGR image_np = np.array(img_ecvl, copy=False) pred_np = np.array(pred_ecvl, copy=False) gt_np = np.array(gt_ecvl, copy=False) pred_np = pred_np.squeeze() gt_np = gt_np.squeeze() # Prediction summed in R channel image_np[:, :, -1] = np.where(pred_np == 255, pred_np, image_np[:, :, -1]) # Ground truth summed in G channel image_np[:, :, 1] = np.where(gt_np == 255, gt_np, image_np[:, :, 1]) n += 2 head, tail = os.path.splitext(os.path.basename(filename)) bname = "{}.png".format(head) filepath = os.path.join(args.out_dir, bname) ecvl.ImWrite(filepath, img_ecvl) print() mean_dice = evaluator.MeanMetric() if mean_dice > best_dice: print("Saving weights") eddl.save( net, "pneumothorax_segnetBN_adam_lr_0.0001_" "loss_ce_size_512_{}.bin".format(e + 1), "bin") best_dice = mean_dice print("Mean Dice Coefficient: {:.6g}".format(mean_dice))
def classificate(args): args = dotdict(args) ckpts_dir = opjoin(settings.TRAINING_DIR, 'ckpts') outputfile = None inference = None train = True if args.mode == 'training' else False batch_size = args.batch_size if args.mode == 'training' else args.test_batch_size weight_id = args.weight_id weight = dj_models.ModelWeights.objects.get(id=weight_id) if train: pretrained = None if weight.pretrained_on: pretrained = weight.pretrained_on.location else: inference_id = args.inference_id inference = dj_models.Inference.objects.get(id=inference_id) pretrained = weight.location save_stdout = sys.stdout size = [args.input_h, args.input_w] # Height, width try: model = bindings.models_binding[args.model_id] except KeyError: raise Exception( f'Model with id: {args.model_id} not found in bindings.py') try: dataset_path = str( dj_models.Dataset.objects.get(id=args.dataset_id).path) except KeyError: raise Exception( f'Dataset with id: {args.dataset_id} not found in bindings.py') dataset = bindings.dataset_binding.get(args.dataset_id) if dataset is None and not train: # Binding does not exist. it's a single image dataset # Use as dataset "stub" the dataset on which model has been trained dataset = bindings.dataset_binding.get(weight.dataset_id.id) elif dataset is None and train: raise Exception( f'Dataset with id: {args.dataset_id} not found in bindings.py') basic_augs = ecvl.SequentialAugmentationContainer( [ecvl.AugResizeDim(size)]) train_augs = basic_augs val_augs = basic_augs test_augs = basic_augs if args.train_augs: train_augs = ecvl.SequentialAugmentationContainer([ ecvl.AugResizeDim(size), ecvl.AugmentationFactory.create(args.train_augs) ]) if args.val_augs: val_augs = ecvl.SequentialAugmentationContainer([ ecvl.AugResizeDim(size), ecvl.AugmentationFactory.create(args.val_augs) ]) if args.test_augs: test_augs = ecvl.SequentialAugmentationContainer([ ecvl.AugResizeDim(size), ecvl.AugmentationFactory.create(args.test_augs) ]) logging.info('Reading dataset') print('Reading dataset', flush=True) dataset = dataset( dataset_path, batch_size, ecvl.DatasetAugmentations([train_augs, val_augs, test_augs])) d = dataset.d num_classes = dataset.num_classes in_ = eddl.Input([d.n_channels_, size[0], size[1]]) out = model(in_, num_classes) # out is already softmaxed in classific models net = eddl.Model([in_], [out]) if train: logfile = open(Path(weight.logfile), 'w') else: logfile = open(inference.logfile, 'w') outputfile = open(inference.outputfile, 'w') with redirect_stdout(logfile): # Save args to file print('args: ' + json.dumps(args, indent=2, sort_keys=True), flush=True) logging.info('args: ' + json.dumps(args, indent=2, sort_keys=True)) eddl.build( net, eddl.sgd(args.lr, 0.9), [bindings.losses_binding.get(args.loss)], [bindings.metrics_binding.get(args.metric)], eddl.CS_GPU([1], mem='low_mem') if args.gpu else eddl.CS_CPU()) eddl.summary(net) if pretrained and os.path.exists(pretrained): eddl.load(net, pretrained) logging.info('Weights loaded') # Create tensor for images and labels images = eddlT.create([batch_size, d.n_channels_, size[0], size[1]]) labels = eddlT.create([batch_size, num_classes]) logging.info(f'Starting {args.mode}') print(f'Starting {args.mode}', flush=True) if train: num_samples_train = len(d.GetSplit(ecvl.SplitType.training)) num_batches_train = num_samples_train // batch_size num_samples_val = len(d.GetSplit(ecvl.SplitType.validation)) num_batches_val = num_samples_val // batch_size indices = list(range(batch_size)) for e in range(args.epochs): eddl.reset_loss(net) d.SetSplit(ecvl.SplitType.training) s = d.GetSplit() random.shuffle(s) d.split_.training_ = s d.ResetCurrentBatch() # total_loss = 0. # total_metric = 0. for i in range(num_batches_train): d.LoadBatch(images, labels) images.div_(255.0) eddl.train_batch(net, [images], [labels], indices) total_loss = net.fiterr[0] total_metric = net.fiterr[1] print( f'Train Epoch: {e + 1}/{args.epochs} [{i + 1}/{num_batches_train}] {net.lout[0].name}' f'({net.losses[0].name}={total_loss / net.inferenced_samples:1.3f},' f'{net.metrics[0].name}={total_metric / net.inferenced_samples:1.3f})', flush=True) logging.info( f'Train Epoch: {e + 1}/{args.epochs} [{i + 1}/{num_batches_train}] {net.lout[0].name}' f'({net.losses[0].name}={total_loss / net.inferenced_samples:1.3f},' f'{net.metrics[0].name}={total_metric / net.inferenced_samples:1.3f})' ) eddl.save(net, opjoin(ckpts_dir, f'{weight_id}.bin')) logging.info('Weights saved') print('Weights saved', flush=True) if len(d.split_.validation_) > 0: logging.info(f'Validation {e}/{args.epochs}') print(f'Validation {e}/{args.epochs}', flush=True) d.SetSplit(ecvl.SplitType.validation) d.ResetCurrentBatch() for i in range(num_batches_val): d.LoadBatch(images, labels) images.div_(255.0) eddl.eval_batch(net, [images], [labels], indices) # eddl.evaluate(net, [images], [labels]) total_loss = net.fiterr[0] total_metric = net.fiterr[1] print( f'Val Epoch: {e + 1}/{args.epochs} [{i + 1}/{num_batches_val}] {net.lout[0].name}' f'({net.losses[0].name}={total_loss / net.inferenced_samples:1.3f},' f'{net.metrics[0].name}={total_metric / net.inferenced_samples:1.3f})', flush=True) logging.info( f'Val Epoch: {e + 1}/{args.epochs} [{i + 1}/{num_batches_val}] {net.lout[0].name}' f'({net.losses[0].name}={total_loss / net.inferenced_samples:1.3f},' f'{net.metrics[0].name}={total_metric / net.inferenced_samples:1.3f})' ) else: d.SetSplit(ecvl.SplitType.test) num_samples_test = len(d.GetSplit()) num_batches_test = num_samples_test // batch_size preds = np.empty((0, num_classes), np.float64) for b in range(num_batches_test): d.LoadBatch(images) images.div_(255.0) eddl.forward(net, [images]) print(f'Infer Batch {b + 1}/{num_batches_test}', flush=True) logging.info(f'Infer Batch {b + 1}/{num_batches_test}') # print( # f'Evaluation {b + 1}/{num_batches} {net.lout[0].name}({net.losses[0].name}={total_loss / net.inferenced_samples:1.3f},' # f'{net.metrics[0].name}={total_metric / net.inferenced_samples:1.3f})') # logging.info( # f'Evaluation {b + 1}/{num_batches} {net.lout[0].name}({net.losses[0].name}={total_loss / net.inferenced_samples:1.3f},' # f'{net.metrics[0].name}={total_metric / net.inferenced_samples:1.3f})') # Save network predictions for i in range(batch_size): pred = np.array(eddlT.select(eddl.getTensor(out), i), copy=False) # gt = np.argmax(np.array(labels)[indices]) # pred = np.append(pred, gt).reshape((1, num_classes + 1)) preds = np.append(preds, pred, axis=0) pred_name = d.samples_[d.GetSplit()[b * batch_size + i]].location_ # print(f'{pred_name};{pred}') outputfile.write(f'{pred_name};{pred.tolist()}\n') outputfile.close() print('<done>') logfile.close() del net del out del in_ return
def main(args): num_classes = 1 size = [512, 512] # size of images thresh = 0.5 if args.out_dir: os.makedirs(args.out_dir, exist_ok=True) in_ = eddl.Input([1, size[0], size[1]]) out = SegNetBN(in_, num_classes) out_sigm = eddl.Sigmoid(out) net = eddl.Model([in_], [out_sigm]) eddl.build( net, eddl.adam(0.0001), ["cross_entropy"], ["mean_squared_error"], eddl.CS_GPU([1]) if args.gpu else eddl.CS_CPU() ) eddl.summary(net) eddl.setlogfile(net, "pneumothorax_segmentation_inference") if not os.path.exists(args.ckpts): raise RuntimeError('Checkpoint "{}" not found'.format(args.ckpts)) eddl.load(net, args.ckpts, "bin") training_augs = ecvl.SequentialAugmentationContainer([ ecvl.AugResizeDim(size), ]) test_augs = ecvl.SequentialAugmentationContainer([ ecvl.AugResizeDim(size), ]) dataset_augs = ecvl.DatasetAugmentations([training_augs, None, test_augs]) print("Reading dataset") d = ecvl.DLDataset(args.in_ds, args.batch_size, dataset_augs, ecvl.ColorType.GRAY) x = Tensor([args.batch_size, d.n_channels_, size[0], size[1]]) print("Testing") d.SetSplit(ecvl.SplitType.test) num_samples_test = len(d.GetSplit()) num_batches_test = num_samples_test // args.batch_size evaluator = utils.Evaluator() evaluator.ResetEval() for b in range(num_batches_test): n = 0 print("Batch {:d}/{:d} ".format( b + 1, num_batches_test), end="", flush=True) d.LoadBatch(x) x.div_(255.0) eddl.forward(net, [x]) if args.out_dir: output = eddl.getOutput(out_sigm) for k in range(args.batch_size): img = output.select([str(k)]) img_I = ecvl.TensorToImage(img) img_I.colortype_ = ecvl.ColorType.GRAY img_I.channels_ = "xyc" ecvl.Threshold(img_I, img_I, thresh, 255) filename = d.samples_[d.GetSplit()[n]].location_[0] head, tail = os.path.splitext(os.path.basename(filename)) bname = "{}.png".format(head) output_fn = os.path.join(args.out_dir, bname) ecvl.ImWrite(output_fn, img_I) n += 1 print()
def main(args): net_name = "vgg16" num_classes = 2 size = [256, 256] # size of images ### Get Network net = get_net(in_size=size, num_classes=num_classes, gpu=args.gpu) out = net.layers[-1] ## Load weights if requested print("Loading initialization weights") if args.weights_fn: weights_fn = args.weights_fn elif args.weights_path: weights_fn = get_best_weight_file(args.weights_path) else: print("One of --weights_fn or --weights_path is required") sys.exit(-1) eddl.load(net, weights_fn) ## Check options print("Creating output directory...") working_dir = "%s_%s" % (os.path.basename( args.splits_fn), os.path.basename(weights_fn)) res_dir = os.path.join(args.out_dir, working_dir) os.makedirs(res_dir, exist_ok=True) fn = os.path.join(res_dir, "pred.csv") fd = open(fn, "w") fd.write("patch_id,normal_p,tumor_p,normal_gt,tumor_gt\n") ################################# ### Set database to read data ### ################################# if not args.cassandra_pwd_fn: cass_pass = getpass('Insert Cassandra password: '******'prom', password=cass_pass) #cd = CassandraDataset(ap, ['cassandra_db']) cd = CassandraDataset(ap, ['127.0.0.1']) try: cd.load_splits(args.splits_fn, batch_size=args.batch_size, augs=[]) except: print("Split file not found") sys.exit(-1) print('Number of batches for each split (train, val, test):', cd.num_batches) ################### #### Evaluation ### ################### print("Defining metric...", flush=True) si = args.split_index num_batches = cd.num_batches[si] cd.current_split = si ## Set the current split cd.rewind_splits(shuffle=False) rows = cd.row_keys[cd.split[si]] indexes = cd.current_index[si] eddl.reset_loss(net) metric = eddl.getMetric("categorical_accuracy") ### Evaluation on validation set batches total_metric = [] pbar = tqdm(range(num_batches)) for b_index, b in enumerate(pbar): ids = rows[indexes - cd.batch_size:indexes] n = 0 x, y = cd.load_batch() x.div_(255.0) eddl.forward(net, [x]) output = eddl.getOutput(out) sum_ = 0.0 for k in range(x.getShape()[0]): result = output.select([str(k)]) target = y.select([str(k)]) ca = metric.value(target, result) total_metric.append(ca) sum_ += ca p_id = str(ids[k]['patch_id']) result_np = result.getdata()[0] gt_np = target.getdata()[0] normal_p = result_np[0] tumor_p = result_np[1] normal_gt = gt_np[0] tumor_gt = gt_np[1] fd.write('%s,%.2f,%.2f,%.2f,%.2f\n' % (p_id, normal_p, tumor_p, normal_gt, tumor_gt)) n += 1 indexes = cd.current_index[si] msg = "Batch {:d}/{:d}) - acc: {:.3f} ".format(b + 1, num_batches, (sum_ / n)) pbar.set_postfix_str(msg) pbar.close() fd.close() total_avg = np.mean(total_metric) print("Total categorical accuracy: {:.3f}\n".format(total_avg))
def main(args): num_classes = 8 size = [224, 224] # size of images in_ = eddl.Input([3, size[0], size[1]]) out = VGG16(in_, num_classes) net = eddl.Model([in_], [out]) eddl.build(net, eddl.sgd(0.001, 0.9), ["soft_cross_entropy"], ["categorical_accuracy"], eddl.CS_GPU([1]) if args.gpu else eddl.CS_CPU()) eddl.summary(net) eddl.setlogfile(net, "skin_lesion_classification_inference") training_augs = ecvl.SequentialAugmentationContainer([ ecvl.AugResizeDim(size), ]) test_augs = ecvl.SequentialAugmentationContainer([ ecvl.AugResizeDim(size), ]) dataset_augs = ecvl.DatasetAugmentations([training_augs, None, test_augs]) print("Reading dataset") d = ecvl.DLDataset(args.in_ds, args.batch_size, dataset_augs) if args.out_dir: for c in d.classes_: os.makedirs(os.path.join(args.out_dir, c), exist_ok=True) x = Tensor([args.batch_size, d.n_channels_, size[0], size[1]]) y = Tensor([args.batch_size, len(d.classes_)]) d.SetSplit(ecvl.SplitType.test) num_samples = len(d.GetSplit()) num_batches = num_samples // args.batch_size metric = eddl.getMetric("categorical_accuracy") total_metric = [] if not os.path.exists(args.ckpts): raise RuntimeError('Checkpoint "{}" not found'.format(args.ckpts)) eddl.load(net, args.ckpts, "bin") print("Testing") for b in range(num_batches): n = 0 print("Batch {:d}/{:d}".format(b + 1, num_batches)) d.LoadBatch(x, y) x.div_(255.0) eddl.forward(net, [x]) output = eddl.getOutput(out) sum_ = 0.0 for j in range(args.batch_size): result = output.select([str(j)]) target = y.select([str(j)]) ca = metric.value(target, result) total_metric.append(ca) sum_ += ca if args.out_dir: result_a = np.array(result, copy=False) target_a = np.array(target, copy=False) classe = np.argmax(result_a).item() gt_class = np.argmax(target_a).item() single_image = x.select([str(j)]) img_t = ecvl.TensorToView(single_image) img_t.colortype_ = ecvl.ColorType.BGR single_image.mult_(255.) filename = d.samples_[d.GetSplit()[n]].location_[0] head, tail = os.path.splitext(os.path.basename(filename)) bname = "%s_gt_class_%s.png" % (head, gt_class) cur_path = os.path.join(args.out_dir, d.classes_[classe], bname) ecvl.ImWrite(cur_path, img_t) n += 1 print("categorical_accuracy:", sum_ / args.batch_size) total_avg = sum(total_metric) / len(total_metric) print("Total categorical accuracy:", total_avg)