Exemple #1
0
def main(args):
    slide_fn = args.slide_fn
    level = args.level

    ## Load model
    net = models.tissue_detector_DNN()
    eddl.build(net, eddl.rmsprop(0.00001), ["soft_cross_entropy"],
               ["categorical_accuracy"],
               eddl.CS_GPU() if args.gpu else eddl.CS_CPU())

    eddl.load(net, args.weights_fn, "bin")
    eddl.summary(net)

    ## Load Slide
    slide_T, s = read_slide(slide_fn, level)

    ## Compute tissue mask
    #len_T = slide_T.getShape()[0]
    #bs = args.batch_size
    #nb = int(np.ceil((len_T / bs)))
    #print ("n. batches: %d" % nb)
    #output_l = []
    #for b in range(nb):
    #    start = bs*b
    #    stop = bs*(b+1) if bs*(b+1) < len_T else len_T
    #    b_T = slide_T.select(["%d:%d" % (start, stop)])

    output_l = eddl.predict(net, [slide_T])

    print(output_l)
    ## Binarize the output
    mask = get_mask(output_l, s, args.threshold)
    np.save("mask", mask)
Exemple #2
0
    def load_model(self, model_weights):
        ## Load the ANN tissue detector model implemented by using pyeddl
        ## Create ANN topology (Same used during training phase)
        ## The model is assumed being trained by using RGB triplets.
        net = models.tissue_detector_DNN()
        eddl.build(net, eddl.rmsprop(0.00001), ["soft_cross_entropy"],
                   ["categorical_accuracy"],
                   eddl.CS_GPU() if self.gpu else eddl.CS_CPU())
        # Load weights
        eddl.load(net, model_weights, "bin")

        self.model = net
Exemple #3
0
def main(args):
    num_classes = 1
    size = [192, 192]  # size of images
    thresh = 0.5

    if args.out_dir:
        os.makedirs(args.out_dir, exist_ok=True)

    in_ = eddl.Input([3, size[0], size[1]])
    out = SegNet(in_, num_classes)
    out_sigm = eddl.Sigmoid(out)
    net = eddl.Model([in_], [out_sigm])
    eddl.build(net, eddl.adam(0.0001), ["cross_entropy"],
               ["mean_squared_error"],
               eddl.CS_GPU([1]) if args.gpu else eddl.CS_CPU())
    eddl.summary(net)
    eddl.setlogfile(net, "skin_lesion_segmentation_inference")

    if not os.path.exists(args.ckpts):
        raise RuntimeError('Checkpoint "{}" not found'.format(args.ckpts))
    eddl.load(net, args.ckpts, "bin")

    training_augs = ecvl.SequentialAugmentationContainer([
        ecvl.AugResizeDim(size),
    ])
    test_augs = ecvl.SequentialAugmentationContainer([
        ecvl.AugResizeDim(size),
    ])
    dataset_augs = ecvl.DatasetAugmentations([training_augs, None, test_augs])

    print("Reading dataset")
    d = ecvl.DLDataset(args.in_ds, args.batch_size, dataset_augs)
    x = Tensor([args.batch_size, d.n_channels_, size[0], size[1]])
    y = Tensor([args.batch_size, d.n_channels_gt_, size[0], size[1]])
    print("Testing")
    d.SetSplit(ecvl.SplitType.test)
    num_samples_test = len(d.GetSplit())
    num_batches_test = num_samples_test // args.batch_size

    evaluator = utils.Evaluator()
    evaluator.ResetEval()
    for b in range(num_batches_test):
        n = 0
        print("Batch {:d}/{:d} ".format(b + 1, num_batches_test),
              end="",
              flush=True)
        d.LoadBatch(x, y)
        x.div_(255.0)
        y.div_(255.0)
        eddl.forward(net, [x])
        output = eddl.getOutput(out_sigm)
        for k in range(args.batch_size):
            img = output.select([str(k)])
            gt = y.select([str(k)])
            img_np, gt_np = np.array(img, copy=False), np.array(gt, copy=False)
            iou = evaluator.BinaryIoU(img_np, gt_np, thresh=thresh)
            print("- IoU: %.6g " % iou, end="", flush=True)
            if args.out_dir:
                # C++ BinaryIoU modifies image as a side effect
                img_np[img_np >= thresh] = 1
                img_np[img_np < thresh] = 0
                img_t = ecvl.TensorToView(img)
                img_t.colortype_ = ecvl.ColorType.GRAY
                img_t.channels_ = "xyc"
                img.mult_(255.)
                # orig_img
                orig_img = x.select([str(k)])
                orig_img.mult_(255.)
                orig_img_t = ecvl.TensorToImage(orig_img)
                orig_img_t.colortype_ = ecvl.ColorType.BGR
                orig_img_t.channels_ = "xyc"

                tmp, labels = ecvl.Image.empty(), ecvl.Image.empty()
                ecvl.CopyImage(img_t, tmp, ecvl.DataType.uint8)
                ecvl.ConnectedComponentsLabeling(tmp, labels)
                ecvl.CopyImage(labels, tmp, ecvl.DataType.uint8)
                contours = ecvl.FindContours(tmp)
                ecvl.CopyImage(orig_img_t, tmp, ecvl.DataType.uint8)
                tmp_np = np.array(tmp, copy=False)
                for cseq in contours:
                    for c in cseq:
                        tmp_np[c[0], c[1], 0] = 0
                        tmp_np[c[0], c[1], 1] = 0
                        tmp_np[c[0], c[1], 2] = 255

                filename = d.samples_[d.GetSplit()[n]].location_[0]
                head, tail = os.path.splitext(os.path.basename(filename))
                bname = "%s.png" % head
                output_fn = os.path.join(args.out_dir, bname)
                ecvl.ImWrite(output_fn, tmp)

                gt_t = ecvl.TensorToView(gt)
                gt_t.colortype_ = ecvl.ColorType.GRAY
                gt_t.channels_ = "xyc"
                gt.mult_(255.)
                gt_filename = d.samples_[d.GetSplit()[n]].label_path_
                gt_fn = os.path.join(args.out_dir,
                                     os.path.basename(gt_filename))
                ecvl.ImWrite(gt_fn, gt_t)
            n += 1
        print()
    print("MIoU: %.6g" % evaluator.MeanMetric())
Exemple #4
0
def main(args):
    net_name = "vgg16"
    num_classes = 2
    size = [256, 256]  # size of images

    ### Parse GPU
    if args.gpu:
        gpus = [int(i) for i in args.gpu]
    else:
        gpus = []

    print('GPUs mask: %r' % gpus)
    ### Get Network
    net_init = eddl.HeNormal
    net, dataset_augs = get_net(net_name='vgg16',
                                in_size=size,
                                num_classes=num_classes,
                                lr=args.lr,
                                augs=args.augs_on,
                                gpus=gpus,
                                lsb=args.lsb,
                                init=net_init,
                                dropout=args.dropout,
                                l2_reg=args.l2_reg)
    out = net.layers[-1]

    ## Load weights if requested
    if args.init_weights_fn:
        print("Loading initialization weights")
        eddl.load(net, args.init_weights_fn)

    ## Check options
    if args.out_dir:
        working_dir = "model_cnn_%s_ps.%d_bs_%d_lr_%.2e" % (
            net_name, size[0], args.batch_size, args.lr)
        res_dir = os.path.join(args.out_dir, working_dir)
        try:
            os.makedirs(res_dir, exist_ok=True)
        except:
            print("Directory already exists.")
            sys.exit()

    ########################################
    ### Set database and read split file ###
    ########################################

    if not args.cassandra_pwd_fn:
        cass_pass = getpass('Insert Cassandra password: '******'prom', password=cass_pass)
    #cd = CassandraDataset(ap, ['cassandra_db'])
    cd = CassandraDataset(ap, ['127.0.0.1'], seed=args.seed)

    # Check if file exists
    if Path(args.splits_fn).exists():
        # Load splits
        cd.load_splits(args.splits_fn,
                       batch_size=args.batch_size,
                       augs=dataset_augs)
    else:
        print("Split file %s not found" % args.splits_fn)
        sys.exit(-1)

    print('Number of batches for each split (train, val, test):',
          cd.num_batches)

    ## validation index check and creation of split indexes lists
    if args.val_split_indexes:
        n_splits = cd.num_splits
        out_indexes = [i for i in args.val_split_indexes if i > (n_splits - 1)]
        if out_indexes:
            print("Not valid validation split index: %r" % out_indexes)
            sys.exit(-1)

        val_splits = args.val_split_indexes
        test_splits = args.test_split_indexes
        train_splits = [
            i for i in range(n_splits)
            if (i not in val_splits) and (i not in test_splits)
        ]
        num_batches_tr = np.sum([cd.num_batches[i] for i in train_splits])
        num_batches_val = np.sum([cd.num_batches[i] for i in val_splits])

        print("Train splits: %r" % train_splits)
        print("Val splits: %r" % val_splits)
        print("Test splits: %r" % test_splits)

    else:
        num_batches_tr = cd.num_batches[0]
        num_batches_val = cd.num_batches[1]

    ################################
    #### Training and evaluation ###
    ################################

    print("Defining metric...", flush=True)

    metric_fn = eddl.getMetric("categorical_accuracy")
    loss_fn = eddl.getLoss("soft_cross_entropy")

    print("Starting training", flush=True)

    loss_l = []
    acc_l = []
    val_loss_l = []
    val_acc_l = []

    patience_cnt = 0
    val_acc_max = 0.0

    #### Code used to find best learning rate. Comment it to perform an actual training
    if args.find_opt_lr:
        max_epochs = args.epochs
        lr_start = args.lr
        lr_end = args.lr_end
        lr_f = lambda x: 10**(np.log10(lr_start) + (
            (np.log10(lr_end) - np.log10(lr_start)) / max_epochs) * x)
    ####

    ### Main loop across epochs
    for e in range(args.epochs):
        ## SET LT
        if args.find_opt_lr:
            eddl.setlr(net, [lr_f(e)])

        ### Training
        cd.current_split = 0  ## Set the training split as the current one
        print("Epoch {:d}/{:d} - Training".format(e + 1, args.epochs),
              flush=True)

        cd.rewind_splits(shuffle=True)
        eddl.reset_loss(net)
        total_metric = []
        total_loss = []

        ### Looping across batches of training data
        pbar = tqdm(range(num_batches_tr))

        for b_index, b in enumerate(pbar):
            if args.val_split_indexes:
                x, y = cd.load_batch_cross(not_splits=val_splits + test_splits)
            else:
                x, y = cd.load_batch()

            x.div_(255.0)
            tx, ty = [x], [y]
            eddl.train_batch(net, tx, ty)

            #print bratch train results
            instances = (b_index + 1) * args.batch_size
            loss = eddl.get_losses(net)[0]
            metr = eddl.get_metrics(net)[0]
            msg = "Epoch {:d}/{:d} (batch {:d}/{:d}) - loss: {:.3f}, acc: {:.3f}".format(
                e + 1, args.epochs, b + 1, num_batches_tr, loss, metr)
            pbar.set_postfix_str(msg)
            total_loss.append(loss)
            total_metric.append(metr)

        loss_l.append(np.mean(total_loss))
        acc_l.append(np.mean(total_metric))

        pbar.close()

        ### Evaluation on validation set batches
        cd.current_split = 1  ## Set validation split as the current one
        total_metric = []
        total_loss = []

        print("Epoch %d/%d - Evaluation" % (e + 1, args.epochs), flush=True)

        pbar = tqdm(range(num_batches_val))

        for b_index, b in enumerate(pbar):
            if args.val_split_indexes:
                x, y = cd.load_batch_cross(not_splits=train_splits +
                                           test_splits)
            else:
                x, y = cd.load_batch()

            x.div_(255.0)
            eddl.forward(net, [x])
            output = eddl.getOutput(out)
            sum_ca = 0.0  ## sum of samples accuracy within a batch
            sum_ce = 0.0  ## sum of losses within a batch

            n = 0
            for k in range(x.getShape()[0]):
                result = output.select([str(k)])
                target = y.select([str(k)])
                ca = metric_fn.value(target, result)
                ce = loss_fn.value(target, result)
                total_metric.append(ca)
                total_loss.append(ce)
                sum_ca += ca
                sum_ce += ce
                n += 1

            msg = "Epoch {:d}/{:d} (batch {:d}/{:d}) loss: {:.3f}, acc: {:.3f} ".format(
                e + 1, args.epochs, b + 1, num_batches_val, (sum_ce / n),
                (sum_ca / n))
            pbar.set_postfix_str(msg)

        pbar.close()
        val_batch_acc_avg = np.mean(total_metric)
        val_batch_loss_avg = np.mean(total_loss)
        val_loss_l.append(val_batch_loss_avg)
        val_acc_l.append(val_batch_acc_avg)

        print("loss: {:.3f}, acc: {:.3f}, val_loss: {:.3f}, val_acc: {:.3f}\n".
              format(loss_l[-1], acc_l[-1], val_loss_l[-1], val_acc_l[-1]))

        ## Save weights
        if args.save_weights:
            print("Saving weights")
            path = os.path.join(
                res_dir, "promort_%s_weights_ep_%s_vacc_%.2f.bin" %
                (net_name, e, val_acc_l[-1]))
            eddl.save(net, path, "bin")

        # Dump history at the end of each epoch so if the job is interrupted data are not lost.
        if args.out_dir:
            history = {
                'loss': loss_l,
                'acc': acc_l,
                'val_loss': val_loss_l,
                'val_acc': val_acc_l
            }
            pickle.dump(history,
                        open(os.path.join(res_dir, 'history.pickle'), 'wb'))

        ### Patience check
        if val_acc_l[-1] > val_acc_max:
            val_acc_max = val_acc_l[-1]
            patience_cnt = 0
        else:
            patience_cnt += 1

        if patience_cnt > args.patience:
            ## Exit and complete the training
            print("Got maximum patience... training completed")
            break
Exemple #5
0
def main(args):
    num_classes = 1
    size = [512, 512]  # size of images
    thresh = 0.5
    best_dice = -1

    if args.out_dir:
        os.makedirs(args.out_dir, exist_ok=True)

    in_ = eddl.Input([1, size[0], size[1]])
    out = SegNetBN(in_, num_classes)
    out_sigm = eddl.Sigmoid(out)
    net = eddl.Model([in_], [out_sigm])
    eddl.build(net, eddl.adam(0.0001), ["cross_entropy"],
               ["mean_squared_error"],
               eddl.CS_GPU([1], mem='low_mem') if args.gpu else eddl.CS_CPU())
    eddl.summary(net)
    eddl.setlogfile(net, "pneumothorax_segmentation_training")

    if args.ckpts and os.path.exists(args.ckpts):
        print("Loading checkpoints '{}'".format(args.ckpts))
        eddl.load(net, args.ckpts, 'bin')

    training_augs = ecvl.SequentialAugmentationContainer([
        ecvl.AugResizeDim(size),
        ecvl.AugMirror(0.5),
        ecvl.AugRotate([-10, 10]),
        ecvl.AugBrightness([0, 30]),
        ecvl.AugGammaContrast([0, 3]),
    ])
    validation_augs = ecvl.SequentialAugmentationContainer(
        [ecvl.AugResizeDim(size)])
    dataset_augs = ecvl.DatasetAugmentations(
        [training_augs, validation_augs, None])

    print("Reading dataset")
    d = ecvl.DLDataset(args.in_ds, args.batch_size, dataset_augs,
                       ecvl.ColorType.GRAY)
    # Prepare tensors which store batch
    x = Tensor([args.batch_size, d.n_channels_, size[0], size[1]])
    y = Tensor([args.batch_size, d.n_channels_gt_, size[0], size[1]])

    # Retrieve indices of images with a black ground truth
    # which are not include in a split
    train_split = d.GetSplit(ecvl.SplitType.training)
    val_split = d.GetSplit(ecvl.SplitType.validation)
    test_split = d.GetSplit(ecvl.SplitType.test)
    all_split = set(train_split + val_split + test_split)

    images_list = set(range(len(d.samples_)))

    # Obtain images with black ground truth
    black_images = images_list - all_split

    # Add a 25% of training samples with black ground truth.
    num_samples_train = math.floor(len(train_split) * 1.25)
    num_batches_train = num_samples_train // args.batch_size

    # Add a 25% of validation samples with black ground truth.
    num_samples_validation = math.floor(len(val_split) * 1.25)
    num_batches_validation = num_samples_validation // args.batch_size

    black_images = list(black_images)
    black_training = black_images[0:-(num_samples_validation - len(val_split))]
    black_validation = black_images[-(num_samples_validation -
                                      len(val_split)):]
    indices = list(range(args.batch_size))

    evaluator = utils.Evaluator()
    print("Starting training")
    for e in range(args.epochs):
        print("Epoch {:d}/{:d} - Training".format(e + 1, args.epochs),
              flush=True)
        d.SetSplit(ecvl.SplitType.training)
        eddl.reset_loss(net)
        s = d.GetSplit()
        random.shuffle(s)
        d.split_.training_ = s
        random.shuffle(black_training)

        d.ResetAllBatches()
        # Indices to track mask and black vector in PneumothoraxLoadBatch
        m_i = 0
        b_i = 0
        for i, b in enumerate(range(num_batches_train)):
            d, images, labels, _, m_i, b_i = PneumothoraxLoadBatch(
                d, black_training, m_i, b_i)
            x, y = fill_tensors(images, labels, x, y)
            x.div_(255.0)
            y.div_(255.0)
            eddl.train_batch(net, [x], [y], indices)
            if i % args.log_interval == 0:
                print("Epoch {:d}/{:d} (batch {:d}/{:d}) - ".format(
                    e + 1, args.epochs, b + 1, num_batches_train),
                      end="",
                      flush=True)
                eddl.print_loss(net, b)
                print()

        d.SetSplit(ecvl.SplitType.validation)
        evaluator.ResetEval()
        print("Epoch %d/%d - Evaluation" % (e + 1, args.epochs), flush=True)
        m_i = 0
        b_i = 0
        for b in range(num_batches_validation):
            n = 0
            print("Epoch {:d}/{:d} (batch {:d}/{:d}) ".format(
                e + 1, args.epochs, b + 1, num_batches_validation),
                  end="",
                  flush=True)
            d, images, labels, names, m_i, b_i = PneumothoraxLoadBatch(
                d, black_validation, m_i, b_i)
            x, y = fill_tensors(images, labels, x, y)
            x.div_(255.0)
            y.div_(255.0)
            eddl.forward(net, [x])
            output = eddl.getOutput(out_sigm)

            # Compute Dice metric and optionally save the output images
            for k in range(args.batch_size):
                pred = output.select([str(k)])
                gt = y.select([str(k)])
                pred_np = np.array(pred, copy=False)
                gt_np = np.array(gt, copy=False)
                # DiceCoefficient modifies image as a side effect
                dice = evaluator.DiceCoefficient(pred_np, gt_np, thresh=thresh)
                print("- Dice: {:.6f} ".format(dice), end="", flush=True)

                if args.out_dir:
                    # Save original image fused together with prediction and
                    # ground truth
                    pred_np *= 255
                    pred_ecvl = ecvl.TensorToImage(pred)
                    pred_ecvl.colortype_ = ecvl.ColorType.GRAY
                    pred_ecvl.channels_ = "xyc"
                    ecvl.ResizeDim(pred_ecvl, pred_ecvl, (1024, 1024),
                                   ecvl.InterpolationType.nearest)

                    filename_gt = names[n + 1]
                    gt_ecvl = ecvl.ImRead(filename_gt,
                                          ecvl.ImReadMode.GRAYSCALE)

                    filename = names[n]

                    # Image as BGR
                    img_ecvl = ecvl.ImRead(filename)
                    ecvl.Stack([img_ecvl, img_ecvl, img_ecvl], img_ecvl)
                    img_ecvl.channels_ = "xyc"
                    img_ecvl.colortype_ = ecvl.ColorType.BGR
                    image_np = np.array(img_ecvl, copy=False)
                    pred_np = np.array(pred_ecvl, copy=False)
                    gt_np = np.array(gt_ecvl, copy=False)

                    pred_np = pred_np.squeeze()
                    gt_np = gt_np.squeeze()
                    # Prediction summed in R channel
                    image_np[:, :, -1] = np.where(pred_np == 255, pred_np,
                                                  image_np[:, :, -1])
                    # Ground truth summed in G channel
                    image_np[:, :, 1] = np.where(gt_np == 255, gt_np,
                                                 image_np[:, :, 1])

                    n += 2
                    head, tail = os.path.splitext(os.path.basename(filename))
                    bname = "{}.png".format(head)
                    filepath = os.path.join(args.out_dir, bname)
                    ecvl.ImWrite(filepath, img_ecvl)

            print()

        mean_dice = evaluator.MeanMetric()
        if mean_dice > best_dice:
            print("Saving weights")
            eddl.save(
                net, "pneumothorax_segnetBN_adam_lr_0.0001_"
                "loss_ce_size_512_{}.bin".format(e + 1), "bin")
            best_dice = mean_dice
        print("Mean Dice Coefficient: {:.6g}".format(mean_dice))
Exemple #6
0
def classificate(args):
    args = dotdict(args)

    ckpts_dir = opjoin(settings.TRAINING_DIR, 'ckpts')
    outputfile = None
    inference = None

    train = True if args.mode == 'training' else False
    batch_size = args.batch_size if args.mode == 'training' else args.test_batch_size
    weight_id = args.weight_id
    weight = dj_models.ModelWeights.objects.get(id=weight_id)
    if train:
        pretrained = None
        if weight.pretrained_on:
            pretrained = weight.pretrained_on.location
    else:
        inference_id = args.inference_id
        inference = dj_models.Inference.objects.get(id=inference_id)
        pretrained = weight.location
    save_stdout = sys.stdout
    size = [args.input_h, args.input_w]  # Height, width
    try:
        model = bindings.models_binding[args.model_id]
    except KeyError:
        raise Exception(
            f'Model with id: {args.model_id} not found in bindings.py')
    try:
        dataset_path = str(
            dj_models.Dataset.objects.get(id=args.dataset_id).path)
    except KeyError:
        raise Exception(
            f'Dataset with id: {args.dataset_id} not found in bindings.py')
    dataset = bindings.dataset_binding.get(args.dataset_id)

    if dataset is None and not train:
        # Binding does not exist. it's a single image dataset
        # Use as dataset "stub" the dataset on which model has been trained
        dataset = bindings.dataset_binding.get(weight.dataset_id.id)
    elif dataset is None and train:
        raise Exception(
            f'Dataset with id: {args.dataset_id} not found in bindings.py')

    basic_augs = ecvl.SequentialAugmentationContainer(
        [ecvl.AugResizeDim(size)])
    train_augs = basic_augs
    val_augs = basic_augs
    test_augs = basic_augs
    if args.train_augs:
        train_augs = ecvl.SequentialAugmentationContainer([
            ecvl.AugResizeDim(size),
            ecvl.AugmentationFactory.create(args.train_augs)
        ])
    if args.val_augs:
        val_augs = ecvl.SequentialAugmentationContainer([
            ecvl.AugResizeDim(size),
            ecvl.AugmentationFactory.create(args.val_augs)
        ])
    if args.test_augs:
        test_augs = ecvl.SequentialAugmentationContainer([
            ecvl.AugResizeDim(size),
            ecvl.AugmentationFactory.create(args.test_augs)
        ])

    logging.info('Reading dataset')
    print('Reading dataset', flush=True)

    dataset = dataset(
        dataset_path, batch_size,
        ecvl.DatasetAugmentations([train_augs, val_augs, test_augs]))
    d = dataset.d
    num_classes = dataset.num_classes
    in_ = eddl.Input([d.n_channels_, size[0], size[1]])
    out = model(in_,
                num_classes)  # out is already softmaxed in classific models
    net = eddl.Model([in_], [out])

    if train:
        logfile = open(Path(weight.logfile), 'w')
    else:
        logfile = open(inference.logfile, 'w')
        outputfile = open(inference.outputfile, 'w')
    with redirect_stdout(logfile):
        # Save args to file
        print('args: ' + json.dumps(args, indent=2, sort_keys=True),
              flush=True)
        logging.info('args: ' + json.dumps(args, indent=2, sort_keys=True))

        eddl.build(
            net, eddl.sgd(args.lr,
                          0.9), [bindings.losses_binding.get(args.loss)],
            [bindings.metrics_binding.get(args.metric)],
            eddl.CS_GPU([1], mem='low_mem') if args.gpu else eddl.CS_CPU())
        eddl.summary(net)

        if pretrained and os.path.exists(pretrained):
            eddl.load(net, pretrained)
            logging.info('Weights loaded')

        # Create tensor for images and labels
        images = eddlT.create([batch_size, d.n_channels_, size[0], size[1]])
        labels = eddlT.create([batch_size, num_classes])

        logging.info(f'Starting {args.mode}')
        print(f'Starting {args.mode}', flush=True)
        if train:
            num_samples_train = len(d.GetSplit(ecvl.SplitType.training))
            num_batches_train = num_samples_train // batch_size
            num_samples_val = len(d.GetSplit(ecvl.SplitType.validation))
            num_batches_val = num_samples_val // batch_size

            indices = list(range(batch_size))

            for e in range(args.epochs):
                eddl.reset_loss(net)
                d.SetSplit(ecvl.SplitType.training)
                s = d.GetSplit()
                random.shuffle(s)
                d.split_.training_ = s
                d.ResetCurrentBatch()
                # total_loss = 0.
                # total_metric = 0.
                for i in range(num_batches_train):
                    d.LoadBatch(images, labels)
                    images.div_(255.0)
                    eddl.train_batch(net, [images], [labels], indices)
                    total_loss = net.fiterr[0]
                    total_metric = net.fiterr[1]
                    print(
                        f'Train Epoch: {e + 1}/{args.epochs} [{i + 1}/{num_batches_train}] {net.lout[0].name}'
                        f'({net.losses[0].name}={total_loss / net.inferenced_samples:1.3f},'
                        f'{net.metrics[0].name}={total_metric / net.inferenced_samples:1.3f})',
                        flush=True)

                    logging.info(
                        f'Train Epoch: {e + 1}/{args.epochs} [{i + 1}/{num_batches_train}] {net.lout[0].name}'
                        f'({net.losses[0].name}={total_loss / net.inferenced_samples:1.3f},'
                        f'{net.metrics[0].name}={total_metric / net.inferenced_samples:1.3f})'
                    )

                eddl.save(net, opjoin(ckpts_dir, f'{weight_id}.bin'))
                logging.info('Weights saved')
                print('Weights saved', flush=True)

                if len(d.split_.validation_) > 0:

                    logging.info(f'Validation {e}/{args.epochs}')
                    print(f'Validation {e}/{args.epochs}', flush=True)

                    d.SetSplit(ecvl.SplitType.validation)
                    d.ResetCurrentBatch()

                    for i in range(num_batches_val):
                        d.LoadBatch(images, labels)
                        images.div_(255.0)
                        eddl.eval_batch(net, [images], [labels], indices)
                        # eddl.evaluate(net, [images], [labels])

                        total_loss = net.fiterr[0]
                        total_metric = net.fiterr[1]
                        print(
                            f'Val Epoch: {e + 1}/{args.epochs}  [{i + 1}/{num_batches_val}] {net.lout[0].name}'
                            f'({net.losses[0].name}={total_loss / net.inferenced_samples:1.3f},'
                            f'{net.metrics[0].name}={total_metric / net.inferenced_samples:1.3f})',
                            flush=True)
                        logging.info(
                            f'Val Epoch: {e + 1}/{args.epochs}  [{i + 1}/{num_batches_val}] {net.lout[0].name}'
                            f'({net.losses[0].name}={total_loss / net.inferenced_samples:1.3f},'
                            f'{net.metrics[0].name}={total_metric / net.inferenced_samples:1.3f})'
                        )
        else:
            d.SetSplit(ecvl.SplitType.test)
            num_samples_test = len(d.GetSplit())
            num_batches_test = num_samples_test // batch_size
            preds = np.empty((0, num_classes), np.float64)

            for b in range(num_batches_test):
                d.LoadBatch(images)
                images.div_(255.0)
                eddl.forward(net, [images])

                print(f'Infer Batch {b + 1}/{num_batches_test}', flush=True)
                logging.info(f'Infer Batch {b + 1}/{num_batches_test}')

                # print(
                #     f'Evaluation {b + 1}/{num_batches} {net.lout[0].name}({net.losses[0].name}={total_loss / net.inferenced_samples:1.3f},'
                #     f'{net.metrics[0].name}={total_metric / net.inferenced_samples:1.3f})')
                # logging.info(
                #     f'Evaluation {b + 1}/{num_batches} {net.lout[0].name}({net.losses[0].name}={total_loss / net.inferenced_samples:1.3f},'
                #     f'{net.metrics[0].name}={total_metric / net.inferenced_samples:1.3f})')
                # Save network predictions
                for i in range(batch_size):
                    pred = np.array(eddlT.select(eddl.getTensor(out), i),
                                    copy=False)
                    # gt = np.argmax(np.array(labels)[indices])
                    # pred = np.append(pred, gt).reshape((1, num_classes + 1))
                    preds = np.append(preds, pred, axis=0)
                    pred_name = d.samples_[d.GetSplit()[b * batch_size +
                                                        i]].location_
                    # print(f'{pred_name};{pred}')
                    outputfile.write(f'{pred_name};{pred.tolist()}\n')
            outputfile.close()
        print('<done>')
    logfile.close()
    del net
    del out
    del in_
    return
def main(args):
    num_classes = 1
    size = [512, 512]  # size of images
    thresh = 0.5

    if args.out_dir:
        os.makedirs(args.out_dir, exist_ok=True)

    in_ = eddl.Input([1, size[0], size[1]])
    out = SegNetBN(in_, num_classes)
    out_sigm = eddl.Sigmoid(out)
    net = eddl.Model([in_], [out_sigm])
    eddl.build(
        net,
        eddl.adam(0.0001),
        ["cross_entropy"],
        ["mean_squared_error"],
        eddl.CS_GPU([1]) if args.gpu else eddl.CS_CPU()
    )
    eddl.summary(net)
    eddl.setlogfile(net, "pneumothorax_segmentation_inference")

    if not os.path.exists(args.ckpts):
        raise RuntimeError('Checkpoint "{}" not found'.format(args.ckpts))
    eddl.load(net, args.ckpts, "bin")

    training_augs = ecvl.SequentialAugmentationContainer([
        ecvl.AugResizeDim(size),
    ])
    test_augs = ecvl.SequentialAugmentationContainer([
        ecvl.AugResizeDim(size),
    ])
    dataset_augs = ecvl.DatasetAugmentations([training_augs, None, test_augs])

    print("Reading dataset")
    d = ecvl.DLDataset(args.in_ds, args.batch_size, dataset_augs,
                       ecvl.ColorType.GRAY)
    x = Tensor([args.batch_size, d.n_channels_, size[0], size[1]])
    print("Testing")
    d.SetSplit(ecvl.SplitType.test)
    num_samples_test = len(d.GetSplit())
    num_batches_test = num_samples_test // args.batch_size

    evaluator = utils.Evaluator()
    evaluator.ResetEval()
    for b in range(num_batches_test):
        n = 0
        print("Batch {:d}/{:d} ".format(
            b + 1, num_batches_test), end="", flush=True)
        d.LoadBatch(x)
        x.div_(255.0)
        eddl.forward(net, [x])
        if args.out_dir:
            output = eddl.getOutput(out_sigm)
            for k in range(args.batch_size):
                img = output.select([str(k)])
                img_I = ecvl.TensorToImage(img)
                img_I.colortype_ = ecvl.ColorType.GRAY
                img_I.channels_ = "xyc"
                ecvl.Threshold(img_I, img_I, thresh, 255)

                filename = d.samples_[d.GetSplit()[n]].location_[0]
                head, tail = os.path.splitext(os.path.basename(filename))
                bname = "{}.png".format(head)
                output_fn = os.path.join(args.out_dir, bname)
                ecvl.ImWrite(output_fn, img_I)

                n += 1
        print()
Exemple #8
0
def main(args):
    net_name = "vgg16"
    num_classes = 2
    size = [256, 256]  # size of images

    ### Get Network
    net = get_net(in_size=size, num_classes=num_classes, gpu=args.gpu)
    out = net.layers[-1]

    ## Load weights if requested
    print("Loading initialization weights")
    if args.weights_fn:
        weights_fn = args.weights_fn
    elif args.weights_path:
        weights_fn = get_best_weight_file(args.weights_path)
    else:
        print("One of --weights_fn or --weights_path is required")
        sys.exit(-1)

    eddl.load(net, weights_fn)

    ## Check options
    print("Creating output directory...")
    working_dir = "%s_%s" % (os.path.basename(
        args.splits_fn), os.path.basename(weights_fn))
    res_dir = os.path.join(args.out_dir, working_dir)
    os.makedirs(res_dir, exist_ok=True)
    fn = os.path.join(res_dir, "pred.csv")
    fd = open(fn, "w")
    fd.write("patch_id,normal_p,tumor_p,normal_gt,tumor_gt\n")

    #################################
    ### Set database to read data ###
    #################################

    if not args.cassandra_pwd_fn:
        cass_pass = getpass('Insert Cassandra password: '******'prom', password=cass_pass)
    #cd = CassandraDataset(ap, ['cassandra_db'])
    cd = CassandraDataset(ap, ['127.0.0.1'])

    try:
        cd.load_splits(args.splits_fn, batch_size=args.batch_size, augs=[])
    except:
        print("Split file not found")
        sys.exit(-1)

    print('Number of batches for each split (train, val, test):',
          cd.num_batches)

    ###################
    #### Evaluation ###
    ###################

    print("Defining metric...", flush=True)

    si = args.split_index
    num_batches = cd.num_batches[si]
    cd.current_split = si  ## Set the current split
    cd.rewind_splits(shuffle=False)
    rows = cd.row_keys[cd.split[si]]
    indexes = cd.current_index[si]

    eddl.reset_loss(net)
    metric = eddl.getMetric("categorical_accuracy")

    ### Evaluation on validation set batches
    total_metric = []

    pbar = tqdm(range(num_batches))

    for b_index, b in enumerate(pbar):
        ids = rows[indexes - cd.batch_size:indexes]

        n = 0
        x, y = cd.load_batch()
        x.div_(255.0)
        eddl.forward(net, [x])
        output = eddl.getOutput(out)

        sum_ = 0.0

        for k in range(x.getShape()[0]):
            result = output.select([str(k)])
            target = y.select([str(k)])
            ca = metric.value(target, result)
            total_metric.append(ca)
            sum_ += ca

            p_id = str(ids[k]['patch_id'])
            result_np = result.getdata()[0]
            gt_np = target.getdata()[0]
            normal_p = result_np[0]
            tumor_p = result_np[1]
            normal_gt = gt_np[0]
            tumor_gt = gt_np[1]

            fd.write('%s,%.2f,%.2f,%.2f,%.2f\n' %
                     (p_id, normal_p, tumor_p, normal_gt, tumor_gt))

            n += 1

        indexes = cd.current_index[si]

        msg = "Batch {:d}/{:d}) - acc: {:.3f} ".format(b + 1, num_batches,
                                                       (sum_ / n))
        pbar.set_postfix_str(msg)

    pbar.close()
    fd.close()
    total_avg = np.mean(total_metric)

    print("Total categorical accuracy: {:.3f}\n".format(total_avg))
Exemple #9
0
def main(args):
    num_classes = 8
    size = [224, 224]  # size of images

    in_ = eddl.Input([3, size[0], size[1]])
    out = VGG16(in_, num_classes)
    net = eddl.Model([in_], [out])
    eddl.build(net, eddl.sgd(0.001, 0.9), ["soft_cross_entropy"],
               ["categorical_accuracy"],
               eddl.CS_GPU([1]) if args.gpu else eddl.CS_CPU())
    eddl.summary(net)
    eddl.setlogfile(net, "skin_lesion_classification_inference")

    training_augs = ecvl.SequentialAugmentationContainer([
        ecvl.AugResizeDim(size),
    ])
    test_augs = ecvl.SequentialAugmentationContainer([
        ecvl.AugResizeDim(size),
    ])
    dataset_augs = ecvl.DatasetAugmentations([training_augs, None, test_augs])

    print("Reading dataset")
    d = ecvl.DLDataset(args.in_ds, args.batch_size, dataset_augs)

    if args.out_dir:
        for c in d.classes_:
            os.makedirs(os.path.join(args.out_dir, c), exist_ok=True)

    x = Tensor([args.batch_size, d.n_channels_, size[0], size[1]])
    y = Tensor([args.batch_size, len(d.classes_)])

    d.SetSplit(ecvl.SplitType.test)
    num_samples = len(d.GetSplit())
    num_batches = num_samples // args.batch_size
    metric = eddl.getMetric("categorical_accuracy")
    total_metric = []

    if not os.path.exists(args.ckpts):
        raise RuntimeError('Checkpoint "{}" not found'.format(args.ckpts))
    eddl.load(net, args.ckpts, "bin")

    print("Testing")
    for b in range(num_batches):
        n = 0
        print("Batch {:d}/{:d}".format(b + 1, num_batches))
        d.LoadBatch(x, y)
        x.div_(255.0)
        eddl.forward(net, [x])
        output = eddl.getOutput(out)
        sum_ = 0.0
        for j in range(args.batch_size):
            result = output.select([str(j)])
            target = y.select([str(j)])
            ca = metric.value(target, result)
            total_metric.append(ca)
            sum_ += ca
            if args.out_dir:
                result_a = np.array(result, copy=False)
                target_a = np.array(target, copy=False)
                classe = np.argmax(result_a).item()
                gt_class = np.argmax(target_a).item()
                single_image = x.select([str(j)])
                img_t = ecvl.TensorToView(single_image)
                img_t.colortype_ = ecvl.ColorType.BGR
                single_image.mult_(255.)
                filename = d.samples_[d.GetSplit()[n]].location_[0]
                head, tail = os.path.splitext(os.path.basename(filename))
                bname = "%s_gt_class_%s.png" % (head, gt_class)
                cur_path = os.path.join(args.out_dir, d.classes_[classe],
                                        bname)
                ecvl.ImWrite(cur_path, img_t)
            n += 1
        print("categorical_accuracy:", sum_ / args.batch_size)
    total_avg = sum(total_metric) / len(total_metric)
    print("Total categorical accuracy:", total_avg)