Beispiel #1
0
def setDVGeo(ffdFile, cmplx=False):

    # Setup geometry/mesh
    DVGeo = DVGeometry(ffdFile, complex=cmplx)

    nTwist = 6
    DVGeo.addRefAxis(
        "wing",
        Curve(
            x=numpy.linspace(5.0 / 4.0, 1.5 / 4.0 + 7.5, nTwist),
            y=numpy.zeros(nTwist),
            z=numpy.linspace(0, 14, nTwist),
            k=2,
        ),
    )

    def twist(val, geo):
        for i in range(nTwist):
            geo.rot_z["wing"].coef[i] = val[i]

    def span(val, geo):
        C = geo.extractCoef("wing")
        s = geo.extractS("wing")
        for i in range(len(C)):
            C[i, 2] += s[i] * val[0]
        geo.restoreCoef(C, "wing")

    DVGeo.addGlobalDV("twist", [0] * nTwist, twist, lower=-10, upper=10, scale=1.0)
    DVGeo.addGlobalDV("span", [0], span, lower=-10, upper=10, scale=1.0)
    DVGeo.addLocalDV("shape", lower=-0.5, upper=0.5, axis="y", scale=10.0)

    return DVGeo
Beispiel #2
0
    def test_ffdSplineOrder(self, train=False, refDeriv=False):
        """
        Test custom FFD spline order
        """
        refFile = os.path.join(self.base_path, "ref/test_ffd_spline_order.ref")
        with BaseRegTest(refFile, train=train) as handler:
            handler.root_print("Test custom FFD spline order")
            ffdfile = os.path.join(self.base_path, "../../input_files/deform_geometry_ffd.xyz")
            DVGeo = DVGeometry(ffdfile, kmax=6)

            # create local DVs
            DVGeo.addLocalDV("xdir", lower=-1.0, upper=1.0, axis="x", scale=1.0)
            DVGeo.addLocalDV("ydir", lower=-1.0, upper=1.0, axis="y", scale=1.0)
            DVGeo.addLocalDV("zdir", lower=-1.0, upper=1.0, axis="z", scale=1.0)

            commonUtils.testSensitivities(DVGeo, refDeriv, handler, pointset=3)
Beispiel #3
0
# Set up global design variables
def twist(val, geo):
    for i in range(1, nRefAxPts):
        geo.rot_z["wing"].coef[i] = val[i - 1]


DVGeo.addGlobalDV(dvName="twist",
                  value=[0] * nTwist,
                  func=twist,
                  lower=-10,
                  upper=10,
                  scale=0.01)

# Set up local design variables
DVGeo.addLocalDV("local", lower=-0.5, upper=0.5, axis="y", scale=1)

# Add DVGeo object to CFD solver
CFDSolver.setDVGeo(DVGeo)
# rst dvgeo (end)
# ======================================================================
#         DVConstraint Setup, and Thickness and Volume Constraints
# ======================================================================
# rst dvconVolThick (beg)
DVCon = DVConstraints()
DVCon.setDVGeo(DVGeo)

# Only ADflow has the getTriangulatedSurface Function
DVCon.setSurface(CFDSolver.getTriangulatedMeshSurface())

# Volume constraints
Beispiel #4
0
        chordRef=1.0,
        evalFuncs=["cl", "cd"],
    )
    # Add angle of attack variable
    ap.addDV("alpha", value=alpha[i], lower=0, upper=10.0, scale=1.0)
    aeroProblems.append(ap)
# rst aeroproblem (end)
# ======================================================================
#         Geometric Design Variable Set-up
# ======================================================================
# rst dvgeo (beg)
# Create DVGeometry object
FFDFile = "ffd.xyz"

DVGeo = DVGeometry(FFDFile)  # DVGeo = DVGeometry_FFD(FFDFile)
DVGeo.addLocalDV("shape", lower=-0.05, upper=0.05, axis="y", scale=1.0)

span = 1.0
pos = np.array([0.5]) * span
CFDSolver.addSlices("z", pos, sliceType="absolute")

# Add DVGeo object to CFD solver
CFDSolver.setDVGeo(DVGeo)
# rst dvgeo (end)
# ======================================================================
#         DVConstraint Setup
# ======================================================================
# rst dvcon (beg)
DVCon = DVConstraints()  # DVCon = DVConstraints_FFD_data()
DVCon.setDVGeo(DVGeo)
Beispiel #5
0
    def test_triangulatedSurface_intersected_2DVGeos(self, train=False, refDeriv=False):
        refFile = os.path.join(self.base_path, "ref/test_DVConstraints_triangulatedSurface_intersected_2DVGeos.ref")
        with BaseRegTest(refFile, train=train) as handler:
            meshFile = os.path.join(self.base_path, "../../input_files/bwb.stl")
            objFile = os.path.join(self.base_path, "../../input_files/blob_bwb_wing.stl")
            ffdFile = os.path.join(self.base_path, "../../input_files/bwb.xyz")
            testMesh = mesh.Mesh.from_file(meshFile)
            testObj = mesh.Mesh.from_file(objFile)
            # test mesh dim 0 is triangle index
            # dim 1 is each vertex of the triangle
            # dim 2 is x, y, z dimension

            # create a DVGeo object with a few local thickness variables
            DVGeo1 = DVGeometry(ffdFile)
            nRefAxPts = DVGeo1.addRefAxis("wing", xFraction=0.25, alignIndex="k")
            self.nTwist = nRefAxPts - 1

            def twist(val, geo):
                for i in range(1, nRefAxPts):
                    geo.rot_z["wing"].coef[i] = val[i - 1]

            DVGeo1.addGlobalDV(dvName="twist", value=[0] * self.nTwist, func=twist, lower=-10, upper=10, scale=1)
            DVGeo1.addLocalDV("local", lower=-0.5, upper=0.5, axis="y", scale=1)

            # create a DVGeo object with a few local thickness variables
            DVGeo2 = DVGeometry(ffdFile, name="blobdvgeo")
            DVGeo2.addLocalDV("local_2", lower=-0.5, upper=0.5, axis="y", scale=1)

            # check that DVGeos with duplicate var names are not allowed
            DVGeo3 = DVGeometry(ffdFile)
            DVGeo3.addLocalDV("local", lower=-0.5, upper=0.5, axis="y", scale=1)

            # create a DVConstraints object for the wing
            DVCon = DVConstraints()
            DVCon.setDVGeo(DVGeo1)
            DVCon.setDVGeo(DVGeo2, name="second")
            with self.assertRaises(ValueError):
                DVCon.setDVGeo(DVGeo3, name="third")

            p0 = testMesh.vectors[:, 0, :]
            v1 = testMesh.vectors[:, 1, :] - p0
            v2 = testMesh.vectors[:, 2, :] - p0
            DVCon.setSurface([p0, v1, v2], addToDVGeo=True)
            p0b = testObj.vectors[:, 0, :]
            v1b = testObj.vectors[:, 1, :] - p0b
            v2b = testObj.vectors[:, 2, :] - p0b
            p0b = p0b + np.array([0.0, 0.3, 0.0])
            DVCon.setSurface([p0b, v1b, v2b], name="blob", addToDVGeo=True, DVGeoName="second")

            DVCon.addTriangulatedSurfaceConstraint("default", "default", "blob", "second", rho=10.0, addToPyOpt=True)

            funcs = {}
            DVCon.evalFunctions(funcs, includeLinear=True)
            handler.root_add_dict("funcs_base", funcs, rtol=1e-6, atol=1e-6)
            funcsSens = {}
            DVCon.evalFunctionsSens(funcsSens, includeLinear=True)
            # regress the derivatives
            handler.root_add_dict("derivs_base", funcsSens, rtol=1e-6, atol=1e-6)

            # FD check DVGeo1
            funcsSensFD = evalFunctionsSensFD(DVGeo1, DVCon, fdstep=1e-3)
            at_least_one_var = False
            for outkey in funcs.keys():
                for inkey in DVGeo1.getValues().keys():
                    analytic = funcsSens[outkey][inkey]
                    fd = funcsSensFD[outkey][inkey]
                    handler.assert_allclose(analytic, fd, name="finite_diff_check", rtol=1e-3, atol=1e-3)
                    # make sure there are actually checks happening
                    self.assertTrue(np.abs(np.sum(fd)) > 1e-10)
                    at_least_one_var = True
            self.assertTrue(at_least_one_var)

            # FD check DVGeo2
            funcsSensFD = evalFunctionsSensFD(DVGeo2, DVCon, fdstep=1e-3)
            at_least_one_var = False
            for outkey in funcs.keys():
                for inkey in DVGeo2.getValues().keys():
                    analytic = funcsSens[outkey][inkey]
                    fd = funcsSensFD[outkey][inkey]
                    handler.assert_allclose(analytic, fd, name="finite_diff_check", rtol=1e-3, atol=1e-3)
                    self.assertTrue(np.abs(np.sum(fd)) > 1e-10)
                    at_least_one_var = True
            self.assertTrue(at_least_one_var)
Beispiel #6
0
    def generate_dvgeo_dvcon(self, geometry, addToDVGeo=False, intersected=False):
        """
        This function creates the DVGeometry and DVConstraints objects for each geometry used in this class.

        The C172 wing represents a typical use case with twist and shape variables.

        The rectangular box is primarily used to test unscaled constraint function
        values against known values for thickness, volume, and surface area.

        The BWB is used for the triangulated surface and volume constraint tests.

        The RAE 2822 wing is used for the curvature constraint test.
        """

        if geometry == "c172":
            meshFile = os.path.join(self.base_path, "../../input_files/c172.stl")
            ffdFile = os.path.join(self.base_path, "../../input_files/c172.xyz")
            xFraction = 0.25
            meshScale = 1e-3
        elif geometry == "box":
            meshFile = os.path.join(self.base_path, "../../input_files/2x1x8_rectangle.stl")
            ffdFile = os.path.join(self.base_path, "../../input_files/2x1x8_rectangle.xyz")
            xFraction = 0.5
            meshScale = 1
        elif geometry == "bwb":
            meshFile = os.path.join(self.base_path, "../../input_files/bwb.stl")
            ffdFile = os.path.join(self.base_path, "../../input_files/bwb.xyz")
            xFraction = 0.25
            meshScale = 1
        elif geometry == "rae2822":
            ffdFile = os.path.join(self.base_path, "../../input_files/deform_geometry_ffd.xyz")
            xFraction = 0.25

        DVGeo = DVGeometry(ffdFile, child=self.child)
        DVCon = DVConstraints()
        nRefAxPts = DVGeo.addRefAxis("wing", xFraction=xFraction, alignIndex="k")
        self.nTwist = nRefAxPts - 1

        if self.child:
            parentFFD = os.path.join(self.base_path, "../../input_files/parent.xyz")
            self.parentDVGeo = DVGeometry(parentFFD)
            self.parentDVGeo.addChild(DVGeo)
            DVCon.setDVGeo(self.parentDVGeo)
        else:
            DVCon.setDVGeo(DVGeo)

        # Add design variables
        def twist(val, geo):
            for i in range(1, nRefAxPts):
                geo.rot_z["wing"].coef[i] = val[i - 1]

        DVGeo.addGlobalDV(dvName="twist", value=[0] * self.nTwist, func=twist, lower=-10, upper=10, scale=1)
        DVGeo.addLocalDV("local", lower=-0.5, upper=0.5, axis="y", scale=1)

        # RAE 2822 does not have a DVCon surface so we just return
        if geometry == "rae2822":
            return DVGeo, DVCon

        # Get the mesh from the STL
        testMesh = mesh.Mesh.from_file(meshFile)
        # dim 0 is triangle index
        # dim 1 is each vertex of the triangle
        # dim 2 is x, y, z dimension

        p0 = testMesh.vectors[:, 0, :] * meshScale
        v1 = testMesh.vectors[:, 1, :] * meshScale - p0
        v2 = testMesh.vectors[:, 2, :] * meshScale - p0
        DVCon.setSurface([p0, v1, v2], addToDVGeo=addToDVGeo)

        # Add the blob surface for the BWB
        if geometry == "bwb":
            objFile = os.path.join(self.base_path, "../../input_files/blob_bwb_wing.stl")
            testObj = mesh.Mesh.from_file(objFile)
            p0b = testObj.vectors[:, 0, :]
            v1b = testObj.vectors[:, 1, :] - p0b
            v2b = testObj.vectors[:, 2, :] - p0b
            if intersected:
                p0b = p0b + np.array([0.0, 0.3, 0.0])
            DVCon.setSurface([p0b, v1b, v2b], name="blob")

        return DVGeo, DVCon