Beispiel #1
0
    def __init__(self, datatype, filenames, options):
        self.hfile = list()
        self.legend_text = list()
        for f in filenames:
            self.hfile.append(open(f, "r"))
            self.legend_text.append(f)

        self.block_length = options.block
        self.start = options.start
        self.sample_rate = options.sample_rate

        self.datatype = datatype
        if self.datatype is None:
            self.datatype = datatype_lookup[options.data_type]
        self.sizeof_data = self.datatype(
        ).nbytes  # number of bytes per sample in file

        self.axis_font_size = 16
        self.label_font_size = 18
        self.title_font_size = 20
        self.text_size = 22

        # Setup PLOT
        self.fig = figure(1, figsize=(16, 9), facecolor='w')
        rcParams['xtick.labelsize'] = self.axis_font_size
        rcParams['ytick.labelsize'] = self.axis_font_size

        self.text_file_pos = figtext(0.10,
                                     0.88,
                                     "File Position: ",
                                     weight="heavy",
                                     size=self.text_size)
        self.text_block = figtext(0.40,
                                  0.88, ("Block Size: %d" % self.block_length),
                                  weight="heavy",
                                  size=self.text_size)
        self.text_sr = figtext(0.60,
                               0.88, ("Sample Rate: %.2f" % self.sample_rate),
                               weight="heavy",
                               size=self.text_size)
        self.make_plots()

        self.button_left_axes = self.fig.add_axes([0.45, 0.01, 0.05, 0.05],
                                                  frameon=True)
        self.button_left = Button(self.button_left_axes, "<")
        self.button_left_callback = self.button_left.on_clicked(
            self.button_left_click)

        self.button_right_axes = self.fig.add_axes([0.50, 0.01, 0.05, 0.05],
                                                   frameon=True)
        self.button_right = Button(self.button_right_axes, ">")
        self.button_right_callback = self.button_right.on_clicked(
            self.button_right_click)

        self.xlim = self.sp_f.get_xlim()

        self.manager = get_current_fig_manager()
        connect('key_press_event', self.click)
        show()
Beispiel #2
0
    def __init__(self, datatype, filename, options):
        self.hfile = open(filename, "r")
        self.block_length = options.block
        self.start = options.start
        self.sample_rate = options.sample_rate
        self.psdfftsize = options.psd_size
        self.specfftsize = options.spec_size

        self.dospec = options.enable_spec  # if we want to plot the spectrogram

        self.datatype = datatype
        if self.datatype is None:
            self.datatype = datatype_lookup[options.data_type]
        self.sizeof_data = self.datatype().nbytes    # number of bytes per sample in file

        self.axis_font_size = 16
        self.label_font_size = 18
        self.title_font_size = 20
        self.text_size = 22

        # Setup PLOT
        self.fig = figure(1, figsize=(16, 12), facecolor='w')
        rcParams['xtick.labelsize'] = self.axis_font_size
        rcParams['ytick.labelsize'] = self.axis_font_size

        self.text_file     = figtext(0.10, 0.95, ("File: %s" % filename),
                                     weight="heavy", size=self.text_size)
        self.text_file_pos = figtext(0.10, 0.92, "File Position: ",
                                     weight="heavy", size=self.text_size)
        self.text_block    = figtext(0.35, 0.92, ("Block Size: %d" % self.block_length),
                                     weight="heavy", size=self.text_size)
        self.text_sr       = figtext(0.60, 0.915, ("Sample Rate: %.2f" % self.sample_rate),
                                     weight="heavy", size=self.text_size)
        self.make_plots()

        self.button_left_axes = self.fig.add_axes([0.45, 0.01, 0.05, 0.05], frameon=True)
        self.button_left = Button(self.button_left_axes, "<")
        self.button_left_callback = self.button_left.on_clicked(self.button_left_click)

        self.button_right_axes = self.fig.add_axes([0.50, 0.01, 0.05, 0.05], frameon=True)
        self.button_right = Button(self.button_right_axes, ">")
        self.button_right_callback = self.button_right.on_clicked(self.button_right_click)

        self.xlim = numpy.array(self.sp_iq.get_xlim())

        self.manager = get_current_fig_manager()
        connect('draw_event', self.zoom)
        connect('key_press_event', self.click)
        show()
Beispiel #3
0
    def __init__(self, datatype, filenames, options):
        self.hfile = list()
        self.legend_text = list()
        for f in filenames:
            self.hfile.append(open(f, "r"))
            self.legend_text.append(f)

        self.block_length = options.block
        self.start = options.start
        self.sample_rate = options.sample_rate

        self.datatype = datatype
        if self.datatype is None:
            self.datatype = datatype_lookup[options.data_type]
        self.sizeof_data = self.datatype().nbytes    # number of bytes per sample in file

        self.axis_font_size = 16
        self.label_font_size = 18
        self.title_font_size = 20
        self.text_size = 22

        # Setup PLOT
        self.fig = figure(1, figsize=(16, 9), facecolor='w')
        rcParams['xtick.labelsize'] = self.axis_font_size
        rcParams['ytick.labelsize'] = self.axis_font_size

        self.text_file_pos = figtext(0.10, 0.88, "File Position: ", weight="heavy", size=self.text_size)
        self.text_block    = figtext(0.40, 0.88, ("Block Size: %d" % self.block_length),
                                     weight="heavy", size=self.text_size)
        self.text_sr       = figtext(0.60, 0.88, ("Sample Rate: %.2f" % self.sample_rate),
                                     weight="heavy", size=self.text_size)
        self.make_plots()

        self.button_left_axes = self.fig.add_axes([0.45, 0.01, 0.05, 0.05], frameon=True)
        self.button_left = Button(self.button_left_axes, "<")
        self.button_left_callback = self.button_left.on_clicked(self.button_left_click)

        self.button_right_axes = self.fig.add_axes([0.50, 0.01, 0.05, 0.05], frameon=True)
        self.button_right = Button(self.button_right_axes, ">")
        self.button_right_callback = self.button_right.on_clicked(self.button_right_click)

        self.xlim = self.sp_f.get_xlim()

        self.manager = get_current_fig_manager()
        connect('key_press_event', self.click)
        show()
Beispiel #4
0
    def __init__(self, datatype, filename, options):
        self.hfile = open(filename, "r")
        self.block_length = options.block
        self.start = options.start
        self.sample_rate = options.sample_rate
        self.psdfftsize = options.psd_size
        self.specfftsize = options.spec_size

        self.dospec = options.enable_spec  # if we want to plot the spectrogram

        self.datatype = datatype
        if self.datatype is None:
            self.datatype = datatype_lookup[options.data_type]
        self.sizeof_data = self.datatype(
        ).nbytes  # number of bytes per sample in file

        self.axis_font_size = 16
        self.label_font_size = 18
        self.title_font_size = 20
        self.text_size = 22

        # Setup PLOT
        self.fig = figure(1, figsize=(16, 12), facecolor='w')
        rcParams['xtick.labelsize'] = self.axis_font_size
        rcParams['ytick.labelsize'] = self.axis_font_size

        self.text_file = figtext(0.10,
                                 0.95, ("File: %s" % filename),
                                 weight="heavy",
                                 size=self.text_size)
        self.text_file_pos = figtext(0.10,
                                     0.92,
                                     "File Position: ",
                                     weight="heavy",
                                     size=self.text_size)
        self.text_block = figtext(0.35,
                                  0.92, ("Block Size: %d" % self.block_length),
                                  weight="heavy",
                                  size=self.text_size)
        self.text_sr = figtext(0.60,
                               0.915, ("Sample Rate: %.2f" % self.sample_rate),
                               weight="heavy",
                               size=self.text_size)
        self.make_plots()

        self.button_left_axes = self.fig.add_axes([0.45, 0.01, 0.05, 0.05],
                                                  frameon=True)
        self.button_left = Button(self.button_left_axes, "<")
        self.button_left_callback = self.button_left.on_clicked(
            self.button_left_click)

        self.button_right_axes = self.fig.add_axes([0.50, 0.01, 0.05, 0.05],
                                                   frameon=True)
        self.button_right = Button(self.button_right_axes, ">")
        self.button_right_callback = self.button_right.on_clicked(
            self.button_right_click)

        self.xlim = numpy.array(self.sp_iq.get_xlim())

        self.manager = get_current_fig_manager()
        connect('draw_event', self.zoom)
        connect('key_press_event', self.click)
        show()
Beispiel #5
0
class plot_psd_base(object):
    def __init__(self, datatype, filename, options):
        self.hfile = open(filename, "r")
        self.block_length = options.block
        self.start = options.start
        self.sample_rate = options.sample_rate
        self.psdfftsize = options.psd_size
        self.specfftsize = options.spec_size

        self.dospec = options.enable_spec  # if we want to plot the spectrogram

        self.datatype = datatype
        if self.datatype is None:
            self.datatype = datatype_lookup[options.data_type]
        self.sizeof_data = self.datatype(
        ).nbytes  # number of bytes per sample in file

        self.axis_font_size = 16
        self.label_font_size = 18
        self.title_font_size = 20
        self.text_size = 22

        # Setup PLOT
        self.fig = figure(1, figsize=(16, 12), facecolor='w')
        rcParams['xtick.labelsize'] = self.axis_font_size
        rcParams['ytick.labelsize'] = self.axis_font_size

        self.text_file = figtext(0.10,
                                 0.95, ("File: %s" % filename),
                                 weight="heavy",
                                 size=self.text_size)
        self.text_file_pos = figtext(0.10,
                                     0.92,
                                     "File Position: ",
                                     weight="heavy",
                                     size=self.text_size)
        self.text_block = figtext(0.35,
                                  0.92, ("Block Size: %d" % self.block_length),
                                  weight="heavy",
                                  size=self.text_size)
        self.text_sr = figtext(0.60,
                               0.915, ("Sample Rate: %.2f" % self.sample_rate),
                               weight="heavy",
                               size=self.text_size)
        self.make_plots()

        self.button_left_axes = self.fig.add_axes([0.45, 0.01, 0.05, 0.05],
                                                  frameon=True)
        self.button_left = Button(self.button_left_axes, "<")
        self.button_left_callback = self.button_left.on_clicked(
            self.button_left_click)

        self.button_right_axes = self.fig.add_axes([0.50, 0.01, 0.05, 0.05],
                                                   frameon=True)
        self.button_right = Button(self.button_right_axes, ">")
        self.button_right_callback = self.button_right.on_clicked(
            self.button_right_click)

        self.xlim = numpy.array(self.sp_iq.get_xlim())

        self.manager = get_current_fig_manager()
        connect('draw_event', self.zoom)
        connect('key_press_event', self.click)
        show()

    def get_data(self):
        self.position = self.hfile.tell() / self.sizeof_data
        self.text_file_pos.set_text("File Position: %d" % self.position)
        try:
            self.iq = numpy.fromfile(self.hfile,
                                     dtype=self.datatype,
                                     count=self.block_length)
        except MemoryError:
            print("End of File")
            return False
        else:
            # retesting length here as newer version of numpy does not throw a MemoryError, just
            # returns a zero-length array
            if (len(self.iq) > 0):
                tstep = 1.0 / self.sample_rate
                #self.time = numpy.array([tstep*(self.position + i) for i in range(len(self.iq))])
                self.time = numpy.array(
                    [tstep * (i) for i in range(len(self.iq))])

                self.iq_psd, self.freq = self.dopsd(self.iq)
                return True
            else:
                print("End of File")
                return False

    def dopsd(self, iq):
        ''' Need to do this here and plot later so we can do the fftshift '''
        overlap = self.psdfftsize / 4
        winfunc = numpy.blackman
        psd, freq = mlab.psd(iq,
                             self.psdfftsize,
                             self.sample_rate,
                             window=lambda d: d * winfunc(self.psdfftsize),
                             noverlap=overlap)
        psd = 10.0 * numpy.log10(abs(psd))
        return (psd, freq)

    def make_plots(self):
        # if specified on the command-line, set file pointer
        self.hfile.seek(self.sizeof_data * self.start, 1)

        iqdims = [[0.075, 0.2, 0.4, 0.6], [0.075, 0.55, 0.4, 0.3]]
        psddims = [[0.575, 0.2, 0.4, 0.6], [0.575, 0.55, 0.4, 0.3]]
        specdims = [0.2, 0.125, 0.6, 0.3]

        # Subplot for real and imaginary parts of signal
        self.sp_iq = self.fig.add_subplot(2,
                                          2,
                                          1,
                                          position=iqdims[self.dospec])
        self.sp_iq.set_title(("I&Q"),
                             fontsize=self.title_font_size,
                             fontweight="bold")
        self.sp_iq.set_xlabel("Time (s)",
                              fontsize=self.label_font_size,
                              fontweight="bold")
        self.sp_iq.set_ylabel("Amplitude (V)",
                              fontsize=self.label_font_size,
                              fontweight="bold")

        # Subplot for PSD plot
        self.sp_psd = self.fig.add_subplot(2,
                                           2,
                                           2,
                                           position=psddims[self.dospec])
        self.sp_psd.set_title(("PSD"),
                              fontsize=self.title_font_size,
                              fontweight="bold")
        self.sp_psd.set_xlabel("Frequency (Hz)",
                               fontsize=self.label_font_size,
                               fontweight="bold")
        self.sp_psd.set_ylabel("Power Spectrum (dBm)",
                               fontsize=self.label_font_size,
                               fontweight="bold")

        r = self.get_data()

        self.plot_iq = self.sp_iq.plot([], 'bo-')  # make plot for reals
        self.plot_iq += self.sp_iq.plot([], 'ro-')  # make plot for imags
        self.draw_time(self.time, self.iq)  # draw the plot

        self.plot_psd = self.sp_psd.plot([], 'b')  # make plot for PSD
        self.draw_psd(self.freq, self.iq_psd)  # draw the plot

        if self.dospec:
            # Subplot for spectrogram plot
            self.sp_spec = self.fig.add_subplot(2, 2, 3, position=specdims)
            self.sp_spec.set_title(("Spectrogram"),
                                   fontsize=self.title_font_size,
                                   fontweight="bold")
            self.sp_spec.set_xlabel("Time (s)",
                                    fontsize=self.label_font_size,
                                    fontweight="bold")
            self.sp_spec.set_ylabel("Frequency (Hz)",
                                    fontsize=self.label_font_size,
                                    fontweight="bold")

            self.draw_spec(self.time, self.iq)

        draw()

    def draw_time(self, t, iq):
        reals = iq.real
        imags = iq.imag
        self.plot_iq[0].set_data([t, reals])
        self.plot_iq[1].set_data([t, imags])
        self.sp_iq.set_xlim(t.min(), t.max())
        self.sp_iq.set_ylim([
            1.5 * min([reals.min(), imags.min()]),
            1.5 * max([reals.max(), imags.max()])
        ])

    def draw_psd(self, f, p):
        self.plot_psd[0].set_data([f, p])
        self.sp_psd.set_ylim([p.min() - 10, p.max() + 10])
        self.sp_psd.set_xlim([f.min(), f.max()])

    def draw_spec(self, t, s):
        overlap = self.specfftsize / 4
        winfunc = numpy.blackman
        self.sp_spec.clear()
        self.sp_spec.specgram(s,
                              self.specfftsize,
                              self.sample_rate,
                              window=lambda d: d * winfunc(self.specfftsize),
                              noverlap=overlap,
                              xextent=[t.min(), t.max()])

    def update_plots(self):
        self.draw_time(self.time, self.iq)
        self.draw_psd(self.freq, self.iq_psd)

        if self.dospec:
            self.draw_spec(self.time, self.iq)

        self.xlim = numpy.array(
            self.sp_iq.get_xlim())  # so zoom doesn't get called

        draw()

    def zoom(self, event):
        newxlim = numpy.array(self.sp_iq.get_xlim())
        curxlim = numpy.array(self.xlim)
        if (newxlim[0] != curxlim[0] or newxlim[1] != curxlim[1]):
            #xmin = max(0, int(ceil(self.sample_rate*(newxlim[0] - self.position))))
            #xmax = min(int(ceil(self.sample_rate*(newxlim[1] - self.position))), len(self.iq))
            xmin = max(0, int(ceil(self.sample_rate * (newxlim[0]))))
            xmax = min(int(ceil(self.sample_rate * (newxlim[1]))),
                       len(self.iq))

            iq = numpy.array(self.iq[xmin:xmax])
            time = numpy.array(self.time[xmin:xmax])

            iq_psd, freq = self.dopsd(iq)

            self.draw_psd(freq, iq_psd)
            self.xlim = numpy.array(self.sp_iq.get_xlim())

            draw()

    def click(self, event):
        forward_valid_keys = [" ", "down", "right"]
        backward_valid_keys = ["up", "left"]

        if (find(event.key, forward_valid_keys)):
            self.step_forward()

        elif (find(event.key, backward_valid_keys)):
            self.step_backward()

    def button_left_click(self, event):
        self.step_backward()

    def button_right_click(self, event):
        self.step_forward()

    def step_forward(self):
        r = self.get_data()
        if (r):
            self.update_plots()

    def step_backward(self):
        # Step back in file position
        if (self.hfile.tell() >= 2 * self.sizeof_data * self.block_length):
            self.hfile.seek(-2 * self.sizeof_data * self.block_length, 1)
        else:
            self.hfile.seek(-self.hfile.tell(), 1)
        r = self.get_data()
        if (r):
            self.update_plots()

    @staticmethod
    def setup_options():
        description = "Takes a GNU Radio binary file (with specified data type using --data-type) and displays the I&Q data versus time as well as the power spectral density (PSD) plot. The y-axis values are plotted assuming volts as the amplitude of the I&Q streams and converted into dBm in the frequency domain (the 1/N power adjustment out of the FFT is performed internally). The script plots a certain block of data at a time, specified on the command line as -B or --block. The start position in the file can be set by specifying -s or --start and defaults to 0 (the start of the file). By default, the system assumes a sample rate of 1, so in time, each sample is plotted versus the sample number. To set a true time and frequency axis, set the sample rate (-R or --sample-rate) to the sample rate used when capturing the samples. Finally, the size of the FFT to use for the PSD and spectrogram plots can be set independently with --psd-size and --spec-size, respectively. The spectrogram plot does not display by default and is turned on with -S or --enable-spec."

        parser = ArgumentParser(conflict_handler="resolve",
                                description=description)
        parser.add_argument("-d",
                            "--data-type",
                            default="complex64",
                            choices=("complex64", "float32", "int32", "uint32",
                                     "int16", "uint16", "int8", "uint8"),
                            help="Specify the data type [default=%(default)r]")
        parser.add_argument(
            "-B",
            "--block",
            type=int,
            default=8192,
            help="Specify the block size [default=%(default)r]")
        parser.add_argument(
            "-s",
            "--start",
            type=int,
            default=0,
            help="Specify where to start in the file [default=%(default)r]")
        parser.add_argument(
            "-R",
            "--sample-rate",
            type=eng_float,
            default=1.0,
            help="Set the sampler rate of the data [default=%(default)r]")
        parser.add_argument(
            "--psd-size",
            type=int,
            default=1024,
            help="Set the size of the PSD FFT [default=%(default)r]")
        parser.add_argument(
            "--spec-size",
            type=int,
            default=256,
            help="Set the size of the spectrogram FFT [default=%(default)r]")
        parser.add_argument(
            "-S",
            "--enable-spec",
            action="store_true",
            help="Turn on plotting the spectrogram [default=%(default)r]")
        parser.add_argument("file",
                            metavar="FILE",
                            help="Input file with samples")

        return parser
Beispiel #6
0
class plot_fft_base(object):
    def __init__(self, datatype, filename, options):
        self.hfile = open(filename, "r")
        self.block_length = options.block
        self.start = options.start
        self.sample_rate = options.sample_rate

        self.datatype = datatype
        if self.datatype is None:
            self.datatype = datatype_lookup[options.data_type]
        self.sizeof_data = self.datatype().nbytes    # number of bytes per sample in file


        self.label_font_size = 18
        self.title_font_size = 20
        self.text_size = 22

        # Setup PLOT
        self.fig = figure(1, figsize=(16, 12), facecolor='w')
        rcParams['xtick.labelsize'] = self.axis_font_size
        rcParams['ytick.labelsize'] = self.axis_font_size

        self.text_file     = figtext(0.10, 0.94, ("File: %s" % filename), weight="heavy", size=self.text_size)
        self.text_file_pos = figtext(0.10, 0.88, "File Position: ", weight="heavy", size=self.text_size)
        self.text_block    = figtext(0.35, 0.88, ("Block Size: %d" % self.block_length),
                                     weight="heavy", size=self.text_size)
        self.text_sr       = figtext(0.60, 0.88, ("Sample Rate: %.2f" % self.sample_rate),
                                     weight="heavy", size=self.text_size)
        self.make_plots()

        self.button_left_axes = self.fig.add_axes([0.45, 0.01, 0.05, 0.05], frameon=True)
        self.button_left = Button(self.button_left_axes, "<")
        self.button_left_callback = self.button_left.on_clicked(self.button_left_click)

        self.button_right_axes = self.fig.add_axes([0.50, 0.01, 0.05, 0.05], frameon=True)
        self.button_right = Button(self.button_right_axes, ">")
        self.button_right_callback = self.button_right.on_clicked(self.button_right_click)

        self.xlim = self.sp_iq.get_xlim()

        self.manager = get_current_fig_manager()
        connect('draw_event', self.zoom)
        connect('key_press_event', self.click)
        show()

    def get_data(self):
        self.position = self.hfile.tell() / self.sizeof_data
        self.text_file_pos.set_text("File Position: %d" % (self.position))
        try:
            self.iq = numpy.fromfile(self.hfile, dtype=self.datatype, count=self.block_length)
        except MemoryError:
            print("End of File")
        else:
            self.iq_fft = self.dofft(self.iq)

            tstep = 1.0 / self.sample_rate
            #self.time = numpy.array([tstep*(self.position + i) for i in range(len(self.iq))])
            self.time = numpy.array([tstep*(i) for i in range(len(self.iq))])

            self.freq = self.calc_freq(self.time, self.sample_rate)

    def dofft(self, iq):
        N = len(iq)
        iq_fft = numpy.fft.fftshift(numpy.fft.fft(iq))       # fft and shift axis
        iq_fft = 20*numpy.log10(abs((iq_fft+1e-15) / N)) # convert to decibels, adjust power
        # adding 1e-15 (-300 dB) to protect against value errors if an item in iq_fft is 0
        return iq_fft

    def calc_freq(self, time, sample_rate):
        N = len(time)
        Fs = 1.0 / (max(time) - min(time))
        Fn = 0.5 * sample_rate
        freq = numpy.array([-Fn + i*Fs for i in range(N)])
        return freq

    def make_plots(self):
        # if specified on the command-line, set file pointer
        self.hfile.seek(self.sizeof_data*self.start, 1)

        # Subplot for real and imaginary parts of signal
        self.sp_iq = self.fig.add_subplot(2,2,1, position=[0.075, 0.2, 0.4, 0.6])
        self.sp_iq.set_title(("I&Q"), fontsize=self.title_font_size, fontweight="bold")
        self.sp_iq.set_xlabel("Time (s)", fontsize=self.label_font_size, fontweight="bold")
        self.sp_iq.set_ylabel("Amplitude (V)", fontsize=self.label_font_size, fontweight="bold")

        # Subplot for FFT plot
        self.sp_fft = self.fig.add_subplot(2,2,2, position=[0.575, 0.2, 0.4, 0.6])
        self.sp_fft.set_title(("FFT"), fontsize=self.title_font_size, fontweight="bold")
        self.sp_fft.set_xlabel("Frequency (Hz)", fontsize=self.label_font_size, fontweight="bold")
        self.sp_fft.set_ylabel("Power Spectrum (dBm)", fontsize=self.label_font_size, fontweight="bold")

        self.get_data()

        self.plot_iq  = self.sp_iq.plot([], 'bo-') # make plot for reals
        self.plot_iq += self.sp_iq.plot([], 'ro-') # make plot for imags
        self.draw_time()                           # draw the plot

        self.plot_fft = self.sp_fft.plot([], 'bo-')  # make plot for FFT
        self.draw_fft()                              # draw the plot

        draw()

    def draw_time(self):
        reals = self.iq.real
        imags = self.iq.imag
        self.plot_iq[0].set_data([self.time, reals])
        self.plot_iq[1].set_data([self.time, imags])
        self.sp_iq.set_xlim(self.time.min(), self.time.max())
        self.sp_iq.set_ylim([1.5*min([reals.min(), imags.min()]),
                             1.5*max([reals.max(), imags.max()])])

    def draw_fft(self):
        self.plot_fft[0].set_data([self.freq, self.iq_fft])
        self.sp_fft.set_xlim(self.freq.min(), self.freq.max())
        self.sp_fft.set_ylim([self.iq_fft.min()-10, self.iq_fft.max()+10])

    def update_plots(self):
        self.draw_time()
        self.draw_fft()

        self.xlim = self.sp_iq.get_xlim()
        draw()

    def zoom(self, event):
        newxlim = numpy.array(self.sp_iq.get_xlim())
        curxlim = numpy.array(self.xlim)
        if(newxlim[0] != curxlim[0] or newxlim[1] != curxlim[1]):
            self.xlim = newxlim
            #xmin = max(0, int(ceil(self.sample_rate*(self.xlim[0] - self.position))))
            #xmax = min(int(ceil(self.sample_rate*(self.xlim[1] - self.position))), len(self.iq))
            xmin = max(0, int(ceil(self.sample_rate*(self.xlim[0]))))
            xmax = min(int(ceil(self.sample_rate*(self.xlim[1]))), len(self.iq))

            iq = self.iq[xmin : xmax]
            time = self.time[xmin : xmax]

            iq_fft = self.dofft(iq)
            freq = self.calc_freq(time, self.sample_rate)

            self.plot_fft[0].set_data(freq, iq_fft)
            self.sp_fft.axis([freq.min(), freq.max(),
                              iq_fft.min()-10, iq_fft.max()+10])

            draw()

    def click(self, event):
        forward_valid_keys = [" ", "down", "right"]
        backward_valid_keys = ["up", "left"]

        if(find(event.key, forward_valid_keys)):
            self.step_forward()

        elif(find(event.key, backward_valid_keys)):
            self.step_backward()

    def button_left_click(self, event):
        self.step_backward()

    def button_right_click(self, event):
        self.step_forward()

    def step_forward(self):
        self.get_data()
        self.update_plots()

    def step_backward(self):
        # Step back in file position
        if(self.hfile.tell() >= 2*self.sizeof_data*self.block_length ):
            self.hfile.seek(-2*self.sizeof_data*self.block_length, 1)
        else:
            self.hfile.seek(-self.hfile.tell(),1)
        self.get_data()
        self.update_plots()

    @staticmethod
    def setup_options():
        description = "Takes a GNU Radio complex binary file and displays the I&Q data versus time as well as the frequency domain (FFT) plot. The y-axis values are plotted assuming volts as the amplitude of the I&Q streams and converted into dBm in the frequency domain (the 1/N power adjustment out of the FFT is performed internally). The script plots a certain block of data at a time, specified on the command line as -B or --block. This value defaults to 1000. The start position in the file can be set by specifying -s or --start and defaults to 0 (the start of the file). By default, the system assumes a sample rate of 1, so in time, each sample is plotted versus the sample number. To set a true time and frequency axis, set the sample rate (-R or --sample-rate) to the sample rate used when capturing the samples."

        parser = ArgumentParser(conflict_handler="resolve", description=description)
        parser.add_argument("-d", "--data-type", default="complex64",
                choices=("complex64", "float32", "uint32", "int32", "uint16",
                    "int16", "uint8", "int8"),
                help="Specify the data type [default=%(default)r]")
        parser.add_argument("-B", "--block", type=int, default=1000,
                help="Specify the block size [default=%(default)r]")
        parser.add_argument("-s", "--start", type=int, default=0,
                help="Specify where to start in the file [default=%(default)r]")
        parser.add_argument("-R", "--sample-rate", type=float, default=1.0,
                help="Set the sampler rate of the data [default=%(default)r]")
        parser.add_argument("file", metavar="FILE",
                help="Input file with samples")
        return parser
Beispiel #7
0
    def __init__(self, datatype, filename, options):
        self.hfile = open(filename, "r")
        self.block_length = options.block
        self.start = options.start
        self.sample_rate = options.sample_rate
        self.bw = options.sample_rate
        self.psdfftsize = options.psd_size
        self.specfftsize = options.spec_size
        self.sf = options.spreading_factor
        self.number_of_bins = 1 << self.sf
        self.samples_per_symbol = self.sample_rate * self.number_of_bins / self.bw

        self.datatype = datatype
        if self.datatype is None:
            self.datatype = datatype_lookup[options.data_type]
        self.sizeof_data = self.datatype(
        ).nbytes  # number of bytes per sample in file

        self.axis_font_size = 16
        self.label_font_size = 18
        self.title_font_size = 20
        self.text_size = 22
        # TODO fix this the right manner
        self.xlim = np.array([10, 20])

        # Setup PLOT
        self.fig = figure(1, figsize=(16, 12), facecolor='w')
        rcParams['xtick.labelsize'] = self.axis_font_size
        rcParams['ytick.labelsize'] = self.axis_font_size

        self.text_file = figtext(0.10,
                                 0.95, ("File: %s" % filename) +
                                 (" SF: %s" % self.sf),
                                 weight="heavy",
                                 size=self.text_size)
        self.text_file_pos = figtext(0.10,
                                     0.92,
                                     "Position: ",
                                     weight="heavy",
                                     size=self.text_size)
        self.text_block = figtext(0.35,
                                  0.92, ("Block Size: %d" % self.block_length),
                                  weight="heavy",
                                  size=self.text_size)
        self.text_sr = figtext(0.60,
                               0.915, ("Sample Rate: %.2f" % self.sample_rate),
                               weight="heavy",
                               size=self.text_size)
        self.make_plots()
        # info for buttons etc
        self.button_left_axes = self.fig.add_axes([0.45, 0.01, 0.05, 0.05],
                                                  frameon=True)
        self.button_left = Button(self.button_left_axes, "<")
        self.button_left_callback = self.button_left.on_clicked(
            self.button_left_click)

        self.button_right_axes = self.fig.add_axes([0.50, 0.01, 0.05, 0.05],
                                                   frameon=True)
        self.button_right = Button(self.button_right_axes, ">")
        self.button_right_callback = self.button_right.on_clicked(
            self.button_right_click)

        self.manager = get_current_fig_manager()
        connect('draw_event', self.zoom)
        connect('key_press_event', self.click)
        show()
Beispiel #8
0
class plot_lora(object):
    def __init__(self, datatype, filename, options):
        self.hfile = open(filename, "r")
        self.block_length = options.block
        self.start = options.start
        self.sample_rate = options.sample_rate
        self.bw = options.sample_rate
        self.psdfftsize = options.psd_size
        self.specfftsize = options.spec_size
        self.sf = options.spreading_factor
        self.number_of_bins = 1 << self.sf
        self.samples_per_symbol = self.sample_rate * self.number_of_bins / self.bw

        self.datatype = datatype
        if self.datatype is None:
            self.datatype = datatype_lookup[options.data_type]
        self.sizeof_data = self.datatype(
        ).nbytes  # number of bytes per sample in file

        self.axis_font_size = 16
        self.label_font_size = 18
        self.title_font_size = 20
        self.text_size = 22
        # TODO fix this the right manner
        self.xlim = np.array([10, 20])

        # Setup PLOT
        self.fig = figure(1, figsize=(16, 12), facecolor='w')
        rcParams['xtick.labelsize'] = self.axis_font_size
        rcParams['ytick.labelsize'] = self.axis_font_size

        self.text_file = figtext(0.10,
                                 0.95, ("File: %s" % filename) +
                                 (" SF: %s" % self.sf),
                                 weight="heavy",
                                 size=self.text_size)
        self.text_file_pos = figtext(0.10,
                                     0.92,
                                     "Position: ",
                                     weight="heavy",
                                     size=self.text_size)
        self.text_block = figtext(0.35,
                                  0.92, ("Block Size: %d" % self.block_length),
                                  weight="heavy",
                                  size=self.text_size)
        self.text_sr = figtext(0.60,
                               0.915, ("Sample Rate: %.2f" % self.sample_rate),
                               weight="heavy",
                               size=self.text_size)
        self.make_plots()
        # info for buttons etc
        self.button_left_axes = self.fig.add_axes([0.45, 0.01, 0.05, 0.05],
                                                  frameon=True)
        self.button_left = Button(self.button_left_axes, "<")
        self.button_left_callback = self.button_left.on_clicked(
            self.button_left_click)

        self.button_right_axes = self.fig.add_axes([0.50, 0.01, 0.05, 0.05],
                                                   frameon=True)
        self.button_right = Button(self.button_right_axes, ">")
        self.button_right_callback = self.button_right.on_clicked(
            self.button_right_click)

        self.manager = get_current_fig_manager()
        connect('draw_event', self.zoom)
        connect('key_press_event', self.click)
        show()

    def get_data(self):
        self.position = self.hfile.tell() / self.sizeof_data
        self.text_file_pos.set_text("Position: %d" % self.position)
        try:
            self.iq = numpy.fromfile(self.hfile,
                                     dtype=self.datatype,
                                     count=self.block_length)
        except MemoryError:
            print("End of File")
            return False
        else:
            # retesting length here as newer version of numpy does not throw a MemoryError, just
            # returns a zero-length array
            if (len(self.iq) > 0):
                tstep = 1.0 / self.sample_rate
                # self.time = numpy.array([tstep*(self.position + i) for i in range(len(self.iq))])
                self.time = numpy.array(
                    [tstep * (i) for i in range(len(self.iq))])
                self.iq_psd, self.freq = self.dopsd(self.iq)
                self.downchirped = self.downchrip()
                return True
            else:
                print("End of File")
                return False

    def dopsd(self, iq):
        ''' Need to do this here and plot later so we can do the fftshift '''
        overlap = self.psdfftsize / 4
        winfunc = numpy.blackman
        psd, freq = mlab.psd(iq,
                             self.psdfftsize,
                             self.sample_rate,
                             window=lambda d: d * winfunc(self.psdfftsize),
                             noverlap=overlap)
        psd = 10.0 * numpy.log10(abs(psd))
        return (psd, freq)

    def make_plots(self):
        # if specified on the command-line, set file pointer
        self.hfile.seek(self.sizeof_data * self.start, 1)

        # define positions default is fine for now
        iqdims = [0.075, 0.2, 0.4, 0.6]
        psddims = [0.575, 0.2, 0.4, 0.6]
        specdims = [0.575, 0.2, 0.4, 0.6]
        # get data set time etc
        r = self.get_data()

        # Subplot for spectrogram plot
        self.sp_spec = self.fig.add_subplot(2, 2, 1)
        self.sp_spec.set_title(("Spectrogram"),
                               fontsize=self.title_font_size,
                               fontweight="bold")
        self.sp_spec.set_xlabel("Time (s)",
                                fontsize=self.label_font_size,
                                fontweight="bold")
        self.sp_spec.set_ylabel("Frequency (Hz)",
                                fontsize=self.label_font_size,
                                fontweight="bold")
        self.draw_spec(self.time, self.iq)

        # Subplot for PSD plot
        self.sp_psd = self.fig.add_subplot(2, 2, 3)
        self.sp_psd.set_title(("PSD"),
                              fontsize=self.title_font_size,
                              fontweight="bold")
        self.sp_psd.set_xlabel("Frequency (Hz)",
                               fontsize=self.label_font_size,
                               fontweight="bold")
        self.sp_psd.set_ylabel("Power Spectrum (dBm)",
                               fontsize=self.label_font_size,
                               fontweight="bold")

        #run dechirped signal
        self.downchrip()
        self.sp_spec_dechirped = self.fig.add_subplot(2, 2, 2)
        self.sp_spec_dechirped.set_title(("Spectrogram demod"),
                                         fontsize=self.title_font_size,
                                         fontweight="bold")
        self.sp_spec_dechirped.set_xlabel("Time (s)",
                                          fontsize=self.label_font_size,
                                          fontweight="bold")
        self.sp_spec_dechirped.set_ylabel("Frequency (Hz)",
                                          fontsize=self.label_font_size,
                                          fontweight="bold")
        self.draw_spec_dechirped(self.time, self.downchirped)

        self.plot_psd = self.sp_psd.plot([], 'b')  # make plot for PSD
        self.draw_psd(self.freq, self.iq_psd)  # draw the plot

        draw()

    def downchrip(self):
        N = 1 << self.sf
        downchirp = np.zeros((2, 1), dtype=np.complex64)
        N_iq = self.iq.size

        for i in range(0, N_iq, N):

            for n in range(0, N):
                #calculate phase
                exp = np.exp(-2 * np.pi * (n * n / (2 * N) - 0.5 * n))
                #calculate real and imag part
                r = np.cos(exp)
                i = np.sin(exp) * 1j
                downchirp = np.vstack([downchirp, (r + i)])

            #delte initial zeros
            downchirp = numpy.delete(downchirp, (0), axis=0)
            downchirp = numpy.delete(downchirp, (0), axis=0)

        #to be sure resize vector
        downchirp = np.resize(downchirp, N_iq)
        #set downchirped values
        self.downchirped = np.multiply(downchirp, self.iq)
        print("test")

    def draw_time(self, t, iq):
        self.sp_spec.set_xlim(t.min(), t.max())

    def draw_psd(self, f, p):
        self.plot_psd[0].set_data([f, p])
        self.sp_psd.set_ylim([p.min() - 10, p.max() + 10])
        self.sp_psd.set_xlim([f.min(), f.max()])

    def draw_spec(self, t, s):
        overlap = self.specfftsize / 4
        winfunc = numpy.blackman
        self.sp_spec.clear()
        self.sp_spec.specgram(s,
                              self.specfftsize,
                              self.sample_rate,
                              window=lambda d: d * winfunc(self.specfftsize),
                              noverlap=overlap,
                              xextent=[t.min(), t.max()])

    def draw_spec_dechirped(self, t, s):
        overlap = self.specfftsize / 4
        winfunc = numpy.blackman
        self.sp_spec_dechirped.clear()
        self.sp_spec_dechirped.specgram(
            s,
            self.specfftsize,
            self.sample_rate,
            window=lambda d: d * winfunc(self.specfftsize),
            noverlap=overlap,
            xextent=[t.min(), t.max()])

    def draw_demod(self, t, s):
        # demod = gr.ex
        overlap = self.specfftsize / 4
        winfunc = numpy.blackman
        self.sp_spec.clear()
        self.sp_spec.specgram(np.abs(s),
                              self.specfftsize,
                              self.sample_rate,
                              window=lambda d: d * winfunc(self.specfftsize),
                              noverlap=overlap,
                              xextent=[t.min(), t.max()])

    def update_plots(self):
        self.draw_time(self.time, self.iq)
        self.draw_psd(self.freq, self.iq_psd)
        self.draw_spec(self.time, self.iq)
        self.downchrip()
        self.draw_spec_dechirped(self.time, self.downchirped)
        self.xlim = numpy.array(
            self.sp_spec.get_xlim())  # so zoom doesn't get called

        draw()

    def zoom(self, event):
        newxlim = numpy.array(self.sp_spec.get_xlim())
        curxlim = numpy.array(self.xlim)
        if (newxlim[0] != curxlim[0] or newxlim[1] != curxlim[1]):
            # xmin = max(0, int(ceil(self.sample_rate*(newxlim[0] - self.position))))
            # xmax = min(int(ceil(self.sample_rate*(newxlim[1] - self.position))), len(self.iq))
            xmin = max(0, int(ceil(self.sample_rate * (newxlim[0]))))
            xmax = min(int(ceil(self.sample_rate * (newxlim[1]))),
                       len(self.iq))

            iq = numpy.array(self.iq[xmin:xmax])
            time = numpy.array(self.time[xmin:xmax])

            iq_psd, freq = self.dopsd(iq)

            self.draw_psd(freq, iq_psd)
            self.xlim = numpy.array(self.sp_spec.get_xlim())

            draw()

    def click(self, event):
        forward_valid_keys = [" ", "down", "right"]
        backward_valid_keys = ["up", "left"]

        if (find(event.key, forward_valid_keys)):
            self.step_forward()

        elif (find(event.key, backward_valid_keys)):
            self.step_backward()

    def button_left_click(self, event):
        self.step_backward()

    def button_right_click(self, event):
        self.step_forward()

    def step_forward(self):
        r = self.get_data()
        if (r):
            self.update_plots()

    def step_backward(self):
        # Step back in file position
        if (self.hfile.tell() >= 2 * self.sizeof_data * self.block_length):
            self.hfile.seek(-2 * self.sizeof_data * self.block_length, 1)
        else:
            self.hfile.seek(-self.hfile.tell(), 1)
        r = self.get_data()
        if (r):
            self.update_plots()

    @staticmethod
    def setup_options():
        description = "."

        parser = ArgumentParser(conflict_handler="resolve",
                                description=description)
        parser.add_argument("-d",
                            "--data-type",
                            default="complex64",
                            choices=("complex64", "float32", "int32", "uint32",
                                     "int16", "uint16", "int8", "uint8"),
                            help="Specify the data type [default=%(default)r]")
        parser.add_argument(
            "-B",
            "--block",
            type=int,
            default=8192,
            help="Specify the block size [default=%(default)r]")
        parser.add_argument(
            "-s",
            "--start",
            type=int,
            default=0,
            help="Specify where to start in the file [default=%(default)r]")
        parser.add_argument(
            "-R",
            "--sample-rate",
            type=eng_float,
            default=1.0,
            help="Set the sampler rate of the data [default=%(default)r]")
        parser.add_argument(
            "--psd-size",
            type=int,
            default=1024,
            help="Set the size of the PSD FFT [default=%(default)r]")
        parser.add_argument(
            "--spec-size",
            type=int,
            default=256,
            help="Set the size of the spectrogram FFT [default=%(default)r]")
        parser.add_argument(
            "-S",
            "--enable-spec",
            action="store_true",
            help="Turn on plotting the spectrogram [default=%(default)r]")
        parser.add_argument("file",
                            metavar="FILE",
                            help="Input file with samples")

        return parser
Beispiel #9
0
class plot_data(object):
    def __init__(self, datatype, filenames, options):
        self.hfile = list()
        self.legend_text = list()
        for f in filenames:
            self.hfile.append(open(f, "r"))
            self.legend_text.append(f)

        self.block_length = options.block
        self.start = options.start
        self.sample_rate = options.sample_rate

        self.datatype = datatype
        if self.datatype is None:
            self.datatype = datatype_lookup[options.data_type]
        self.sizeof_data = self.datatype().nbytes    # number of bytes per sample in file

        self.axis_font_size = 16
        self.label_font_size = 18
        self.title_font_size = 20
        self.text_size = 22

        # Setup PLOT
        self.fig = figure(1, figsize=(16, 9), facecolor='w')
        rcParams['xtick.labelsize'] = self.axis_font_size
        rcParams['ytick.labelsize'] = self.axis_font_size

        self.text_file_pos = figtext(0.10, 0.88, "File Position: ", weight="heavy", size=self.text_size)
        self.text_block    = figtext(0.40, 0.88, ("Block Size: %d" % self.block_length),
                                     weight="heavy", size=self.text_size)
        self.text_sr       = figtext(0.60, 0.88, ("Sample Rate: %.2f" % self.sample_rate),
                                     weight="heavy", size=self.text_size)
        self.make_plots()

        self.button_left_axes = self.fig.add_axes([0.45, 0.01, 0.05, 0.05], frameon=True)
        self.button_left = Button(self.button_left_axes, "<")
        self.button_left_callback = self.button_left.on_clicked(self.button_left_click)

        self.button_right_axes = self.fig.add_axes([0.50, 0.01, 0.05, 0.05], frameon=True)
        self.button_right = Button(self.button_right_axes, ">")
        self.button_right_callback = self.button_right.on_clicked(self.button_right_click)

        self.xlim = self.sp_f.get_xlim()

        self.manager = get_current_fig_manager()
        connect('key_press_event', self.click)
        show()

    def get_data(self, hfile):
        self.text_file_pos.set_text("File Position: %d" % (hfile.tell()//self.sizeof_data))
        try:
            f = numpy.fromfile(hfile, dtype=self.datatype, count=self.block_length)
        except MemoryError:
            print("End of File")
        else:
            self.f = numpy.array(f)
            self.time = numpy.array([i*(1 / self.sample_rate) for i in range(len(self.f))])

    def make_plots(self):
        self.sp_f = self.fig.add_subplot(2,1,1, position=[0.075, 0.2, 0.875, 0.6])
        self.sp_f.set_title(("Amplitude"), fontsize=self.title_font_size, fontweight="bold")
        self.sp_f.set_xlabel("Time (s)", fontsize=self.label_font_size, fontweight="bold")
        self.sp_f.set_ylabel("Amplitude (V)", fontsize=self.label_font_size, fontweight="bold")
        self.plot_f = list()

        maxval = -1e12
        minval = 1e12

        for hf in self.hfile:
            # if specified on the command-line, set file pointer
            hf.seek(self.sizeof_data*self.start, 1)

            self.get_data(hf)

            # Subplot for real and imaginary parts of signal
            self.plot_f += plot(self.time, self.f, 'o-')
            maxval = max(maxval, self.f.max())
            minval = min(minval, self.f.min())

        self.sp_f.set_ylim([1.5*minval, 1.5*maxval])

        self.leg = self.sp_f.legend(self.plot_f, self.legend_text)

        draw()

    def update_plots(self):
        maxval = -1e12
        minval = 1e12
        for hf,p in zip(self.hfile,self.plot_f):
            self.get_data(hf)
            p.set_data([self.time, self.f])
            maxval = max(maxval, self.f.max())
            minval = min(minval, self.f.min())

        self.sp_f.set_ylim([1.5*minval, 1.5*maxval])

        draw()

    def click(self, event):
        forward_valid_keys = [" ", "down", "right"]
        backward_valid_keys = ["up", "left"]

        if(find(event.key, forward_valid_keys)):
            self.step_forward()

        elif(find(event.key, backward_valid_keys)):
            self.step_backward()

    def button_left_click(self, event):
        self.step_backward()

    def button_right_click(self, event):
        self.step_forward()

    def step_forward(self):
        self.update_plots()

    def step_backward(self):
        for hf in self.hfile:
            # Step back in file position
            if(hf.tell() >= 2*self.sizeof_data*self.block_length ):
                hf.seek(-2*self.sizeof_data*self.block_length, 1)
            else:
                hf.seek(-hf.tell(),1)
        self.update_plots()

    @staticmethod
    def setup_options():
        description = "Takes a GNU Radio binary file and displays the samples versus time. You can set the block size to specify how many points to read in at a time and the start position in the file. By default, the system assumes a sample rate of 1, so in time, each sample is plotted versus the sample number. To set a true time axis, set the sample rate (-R or --sample-rate) to the sample rate used when capturing the samples."

        parser = ArgumentParser(conflict_handler="resolve", description=description)
        parser.add_argument("-d", "--data-type", default="complex64",
                choices=("complex64", "float32", "uint32", "int32", "uint16",
                    "int16", "uint8", "int8"),
                help="Specify the data type [default=%(default)r]")
        parser.add_argument("-B", "--block", type=int, default=1000,
                help="Specify the block size [default=%(default)r]")
        parser.add_argument("-s", "--start", type=int, default=0,
                help="Specify where to start in the file [default=%(default)r]")
        parser.add_argument("-R", "--sample-rate", type=float, default=1.0,
                help="Set the sampler rate of the data [default=%(default)r]")
        parser.add_argument("files", metavar="FILE", nargs='+',
                help="Input file with samples")
        return parser
Beispiel #10
0
class plot_data(object):
    def __init__(self, datatype, filenames, options):
        self.hfile = list()
        self.legend_text = list()
        for f in filenames:
            self.hfile.append(open(f, "r"))
            self.legend_text.append(f)

        self.block_length = options.block
        self.start = options.start
        self.sample_rate = options.sample_rate

        self.datatype = datatype
        if self.datatype is None:
            self.datatype = datatype_lookup[options.data_type]
        self.sizeof_data = self.datatype(
        ).nbytes  # number of bytes per sample in file

        self.axis_font_size = 16
        self.label_font_size = 18
        self.title_font_size = 20
        self.text_size = 22

        # Setup PLOT
        self.fig = figure(1, figsize=(16, 9), facecolor='w')
        rcParams['xtick.labelsize'] = self.axis_font_size
        rcParams['ytick.labelsize'] = self.axis_font_size

        self.text_file_pos = figtext(0.10,
                                     0.88,
                                     "File Position: ",
                                     weight="heavy",
                                     size=self.text_size)
        self.text_block = figtext(0.40,
                                  0.88, ("Block Size: %d" % self.block_length),
                                  weight="heavy",
                                  size=self.text_size)
        self.text_sr = figtext(0.60,
                               0.88, ("Sample Rate: %.2f" % self.sample_rate),
                               weight="heavy",
                               size=self.text_size)
        self.make_plots()

        self.button_left_axes = self.fig.add_axes([0.45, 0.01, 0.05, 0.05],
                                                  frameon=True)
        self.button_left = Button(self.button_left_axes, "<")
        self.button_left_callback = self.button_left.on_clicked(
            self.button_left_click)

        self.button_right_axes = self.fig.add_axes([0.50, 0.01, 0.05, 0.05],
                                                   frameon=True)
        self.button_right = Button(self.button_right_axes, ">")
        self.button_right_callback = self.button_right.on_clicked(
            self.button_right_click)

        self.xlim = self.sp_f.get_xlim()

        self.manager = get_current_fig_manager()
        connect('key_press_event', self.click)
        show()

    def get_data(self, hfile):
        self.text_file_pos.set_text("File Position: %d" %
                                    (hfile.tell() // self.sizeof_data))
        try:
            f = numpy.fromfile(hfile,
                               dtype=self.datatype,
                               count=self.block_length)
        except MemoryError:
            print("End of File")
        else:
            self.f = numpy.array(f)
            self.time = numpy.array(
                [i * (1 / self.sample_rate) for i in range(len(self.f))])

    def make_plots(self):
        self.sp_f = self.fig.add_subplot(2,
                                         1,
                                         1,
                                         position=[0.075, 0.2, 0.875, 0.6])
        self.sp_f.set_title(("Amplitude"),
                            fontsize=self.title_font_size,
                            fontweight="bold")
        self.sp_f.set_xlabel("Time (s)",
                             fontsize=self.label_font_size,
                             fontweight="bold")
        self.sp_f.set_ylabel("Amplitude (V)",
                             fontsize=self.label_font_size,
                             fontweight="bold")
        self.plot_f = list()

        maxval = -1e12
        minval = 1e12

        for hf in self.hfile:
            # if specified on the command-line, set file pointer
            hf.seek(self.sizeof_data * self.start, 1)

            self.get_data(hf)

            # Subplot for real and imaginary parts of signal
            self.plot_f += plot(self.time, self.f, 'o-')
            maxval = max(maxval, self.f.max())
            minval = min(minval, self.f.min())

        self.sp_f.set_ylim([1.5 * minval, 1.5 * maxval])

        self.leg = self.sp_f.legend(self.plot_f, self.legend_text)

        draw()

    def update_plots(self):
        maxval = -1e12
        minval = 1e12
        for hf, p in zip(self.hfile, self.plot_f):
            self.get_data(hf)
            p.set_data([self.time, self.f])
            maxval = max(maxval, self.f.max())
            minval = min(minval, self.f.min())

        self.sp_f.set_ylim([1.5 * minval, 1.5 * maxval])

        draw()

    def click(self, event):
        forward_valid_keys = [" ", "down", "right"]
        backward_valid_keys = ["up", "left"]

        if (find(event.key, forward_valid_keys)):
            self.step_forward()

        elif (find(event.key, backward_valid_keys)):
            self.step_backward()

    def button_left_click(self, event):
        self.step_backward()

    def button_right_click(self, event):
        self.step_forward()

    def step_forward(self):
        self.update_plots()

    def step_backward(self):
        for hf in self.hfile:
            # Step back in file position
            if (hf.tell() >= 2 * self.sizeof_data * self.block_length):
                hf.seek(-2 * self.sizeof_data * self.block_length, 1)
            else:
                hf.seek(-hf.tell(), 1)
        self.update_plots()

    @staticmethod
    def setup_options():
        description = "Takes a GNU Radio binary file and displays the samples versus time. You can set the block size to specify how many points to read in at a time and the start position in the file. By default, the system assumes a sample rate of 1, so in time, each sample is plotted versus the sample number. To set a true time axis, set the sample rate (-R or --sample-rate) to the sample rate used when capturing the samples."

        parser = ArgumentParser(conflict_handler="resolve",
                                description=description)
        parser.add_argument("-d",
                            "--data-type",
                            default="complex64",
                            choices=("complex64", "float32", "uint32", "int32",
                                     "uint16", "int16", "uint8", "int8"),
                            help="Specify the data type [default=%(default)r]")
        parser.add_argument(
            "-B",
            "--block",
            type=int,
            default=1000,
            help="Specify the block size [default=%(default)r]")
        parser.add_argument(
            "-s",
            "--start",
            type=int,
            default=0,
            help="Specify where to start in the file [default=%(default)r]")
        parser.add_argument(
            "-R",
            "--sample-rate",
            type=float,
            default=1.0,
            help="Set the sampler rate of the data [default=%(default)r]")
        parser.add_argument("files",
                            metavar="FILE",
                            nargs='+',
                            help="Input file with samples")
        return parser
Beispiel #11
0
class plot_fft_base(object):
    def __init__(self, datatype, filename, options):
        self.hfile = open(filename, "r")
        self.block_length = options.block
        self.start = options.start
        self.sample_rate = options.sample_rate

        self.datatype = datatype
        if self.datatype is None:
            self.datatype = datatype_lookup[options.data_type]
        self.sizeof_data = self.datatype().nbytes    # number of bytes per sample in file

        self.axis_font_size = 16
        self.label_font_size = 18
        self.title_font_size = 20
        self.text_size = 22

        # Setup PLOT
        self.fig = figure(1, figsize=(16, 12), facecolor='w')
        rcParams['xtick.labelsize'] = self.axis_font_size
        rcParams['ytick.labelsize'] = self.axis_font_size

        self.text_file     = figtext(0.10, 0.94, ("File: %s" % filename), weight="heavy", size=self.text_size)
        self.text_file_pos = figtext(0.10, 0.88, "File Position: ", weight="heavy", size=self.text_size)
        self.text_block    = figtext(0.35, 0.88, ("Block Size: %d" % self.block_length),
                                     weight="heavy", size=self.text_size)
        self.text_sr       = figtext(0.60, 0.88, ("Sample Rate: %.2f" % self.sample_rate),
                                     weight="heavy", size=self.text_size)
        self.make_plots()

        self.button_left_axes = self.fig.add_axes([0.45, 0.01, 0.05, 0.05], frameon=True)
        self.button_left = Button(self.button_left_axes, "<")
        self.button_left_callback = self.button_left.on_clicked(self.button_left_click)

        self.button_right_axes = self.fig.add_axes([0.50, 0.01, 0.05, 0.05], frameon=True)
        self.button_right = Button(self.button_right_axes, ">")
        self.button_right_callback = self.button_right.on_clicked(self.button_right_click)

        self.xlim = self.sp_iq.get_xlim()

        self.manager = get_current_fig_manager()
        connect('draw_event', self.zoom)
        connect('key_press_event', self.click)
        show()

    def get_data(self):
        self.position = self.hfile.tell() / self.sizeof_data
        self.text_file_pos.set_text("File Position: %d" % (self.position))
        try:
            self.iq = numpy.fromfile(self.hfile, dtype=self.datatype, count=self.block_length)
        except MemoryError:
            print("End of File")
        else:
            self.iq_fft = self.dofft(self.iq)

            tstep = 1.0 / self.sample_rate
            #self.time = numpy.array([tstep*(self.position + i) for i in range(len(self.iq))])
            self.time = numpy.array([tstep*(i) for i in range(len(self.iq))])

            self.freq = self.calc_freq(self.time, self.sample_rate)

    def dofft(self, iq):
        N = len(iq)
        iq_fft = numpy.fft.fftshift(fftpack.fft(iq))       # fft and shift axis
        iq_fft = 20*numpy.log10(abs((iq_fft+1e-15) / N)) # convert to decibels, adjust power
        # adding 1e-15 (-300 dB) to protect against value errors if an item in iq_fft is 0
        return iq_fft

    def calc_freq(self, time, sample_rate):
        N = len(time)
        Fs = 1.0 / (max(time) - min(time))
        Fn = 0.5 * sample_rate
        freq = numpy.array([-Fn + i*Fs for i in range(N)])
        return freq

    def make_plots(self):
        # if specified on the command-line, set file pointer
        self.hfile.seek(self.sizeof_data*self.start, 1)

        # Subplot for real and imaginary parts of signal
        self.sp_iq = self.fig.add_subplot(2,2,1, position=[0.075, 0.2, 0.4, 0.6])
        self.sp_iq.set_title(("I&Q"), fontsize=self.title_font_size, fontweight="bold")
        self.sp_iq.set_xlabel("Time (s)", fontsize=self.label_font_size, fontweight="bold")
        self.sp_iq.set_ylabel("Amplitude (V)", fontsize=self.label_font_size, fontweight="bold")

        # Subplot for FFT plot
        self.sp_fft = self.fig.add_subplot(2,2,2, position=[0.575, 0.2, 0.4, 0.6])
        self.sp_fft.set_title(("FFT"), fontsize=self.title_font_size, fontweight="bold")
        self.sp_fft.set_xlabel("Frequency (Hz)", fontsize=self.label_font_size, fontweight="bold")
        self.sp_fft.set_ylabel("Power Spectrum (dBm)", fontsize=self.label_font_size, fontweight="bold")

        self.get_data()

        self.plot_iq  = self.sp_iq.plot([], 'bo-') # make plot for reals
        self.plot_iq += self.sp_iq.plot([], 'ro-') # make plot for imags
        self.draw_time()                           # draw the plot

        self.plot_fft = self.sp_fft.plot([], 'bo-')  # make plot for FFT
        self.draw_fft()                              # draw the plot

        draw()

    def draw_time(self):
        reals = self.iq.real
        imags = self.iq.imag
        self.plot_iq[0].set_data([self.time, reals])
        self.plot_iq[1].set_data([self.time, imags])
        self.sp_iq.set_xlim(self.time.min(), self.time.max())
        self.sp_iq.set_ylim([1.5*min([reals.min(), imags.min()]),
                             1.5*max([reals.max(), imags.max()])])

    def draw_fft(self):
        self.plot_fft[0].set_data([self.freq, self.iq_fft])
        self.sp_fft.set_xlim(self.freq.min(), self.freq.max())
        self.sp_fft.set_ylim([self.iq_fft.min()-10, self.iq_fft.max()+10])

    def update_plots(self):
        self.draw_time()
        self.draw_fft()

        self.xlim = self.sp_iq.get_xlim()
        draw()

    def zoom(self, event):
        newxlim = numpy.array(self.sp_iq.get_xlim())
        curxlim = numpy.array(self.xlim)
        if(newxlim[0] != curxlim[0] or newxlim[1] != curxlim[1]):
            self.xlim = newxlim
            #xmin = max(0, int(ceil(self.sample_rate*(self.xlim[0] - self.position))))
            #xmax = min(int(ceil(self.sample_rate*(self.xlim[1] - self.position))), len(self.iq))
            xmin = max(0, int(ceil(self.sample_rate*(self.xlim[0]))))
            xmax = min(int(ceil(self.sample_rate*(self.xlim[1]))), len(self.iq))

            iq = self.iq[xmin : xmax]
            time = self.time[xmin : xmax]

            iq_fft = self.dofft(iq)
            freq = self.calc_freq(time, self.sample_rate)

            self.plot_fft[0].set_data(freq, iq_fft)
            self.sp_fft.axis([freq.min(), freq.max(),
                              iq_fft.min()-10, iq_fft.max()+10])

            draw()

    def click(self, event):
        forward_valid_keys = [" ", "down", "right"]
        backward_valid_keys = ["up", "left"]

        if(find(event.key, forward_valid_keys)):
            self.step_forward()

        elif(find(event.key, backward_valid_keys)):
            self.step_backward()

    def button_left_click(self, event):
        self.step_backward()

    def button_right_click(self, event):
        self.step_forward()

    def step_forward(self):
        self.get_data()
        self.update_plots()

    def step_backward(self):
        # Step back in file position
        if(self.hfile.tell() >= 2*self.sizeof_data*self.block_length ):
            self.hfile.seek(-2*self.sizeof_data*self.block_length, 1)
        else:
            self.hfile.seek(-self.hfile.tell(),1)
        self.get_data()
        self.update_plots()

    @staticmethod
    def setup_options():
        description = "Takes a GNU Radio complex binary file and displays the I&Q data versus time as well as the frequency domain (FFT) plot. The y-axis values are plotted assuming volts as the amplitude of the I&Q streams and converted into dBm in the frequency domain (the 1/N power adjustment out of the FFT is performed internally). The script plots a certain block of data at a time, specified on the command line as -B or --block. This value defaults to 1000. The start position in the file can be set by specifying -s or --start and defaults to 0 (the start of the file). By default, the system assumes a sample rate of 1, so in time, each sample is plotted versus the sample number. To set a true time and frequency axis, set the sample rate (-R or --sample-rate) to the sample rate used when capturing the samples."

        parser = ArgumentParser(conflict_handler="resolve", description=description)
        parser.add_argument("-d", "--data-type", default="complex64",
                choices=("complex64", "float32", "uint32", "int32", "uint16",
                    "int16", "uint8", "int8"),
                help="Specify the data type [default=%(default)r]")
        parser.add_argument("-B", "--block", type=int, default=1000,
                help="Specify the block size [default=%(default)r]")
        parser.add_argument("-s", "--start", type=int, default=0,
                help="Specify where to start in the file [default=%(default)r]")
        parser.add_argument("-R", "--sample-rate", type=float, default=1.0,
                help="Set the sampler rate of the data [default=%(default)r]")
        parser.add_argument("file", metavar="FILE",
                help="Input file with samples")
        return parser
Beispiel #12
0
class plot_psd_base(object):
    def __init__(self, datatype, filename, options):
        self.hfile = open(filename, "r")
        self.block_length = options.block
        self.start = options.start
        self.sample_rate = options.sample_rate
        self.psdfftsize = options.psd_size
        self.specfftsize = options.spec_size

        self.dospec = options.enable_spec  # if we want to plot the spectrogram

        self.datatype = datatype
        if self.datatype is None:
            self.datatype = datatype_lookup[options.data_type]
        self.sizeof_data = self.datatype().nbytes    # number of bytes per sample in file

        self.axis_font_size = 16
        self.label_font_size = 18
        self.title_font_size = 20
        self.text_size = 22

        # Setup PLOT
        self.fig = figure(1, figsize=(16, 12), facecolor='w')
        rcParams['xtick.labelsize'] = self.axis_font_size
        rcParams['ytick.labelsize'] = self.axis_font_size

        self.text_file     = figtext(0.10, 0.95, ("File: %s" % filename),
                                     weight="heavy", size=self.text_size)
        self.text_file_pos = figtext(0.10, 0.92, "File Position: ",
                                     weight="heavy", size=self.text_size)
        self.text_block    = figtext(0.35, 0.92, ("Block Size: %d" % self.block_length),
                                     weight="heavy", size=self.text_size)
        self.text_sr       = figtext(0.60, 0.915, ("Sample Rate: %.2f" % self.sample_rate),
                                     weight="heavy", size=self.text_size)
        self.make_plots()

        self.button_left_axes = self.fig.add_axes([0.45, 0.01, 0.05, 0.05], frameon=True)
        self.button_left = Button(self.button_left_axes, "<")
        self.button_left_callback = self.button_left.on_clicked(self.button_left_click)

        self.button_right_axes = self.fig.add_axes([0.50, 0.01, 0.05, 0.05], frameon=True)
        self.button_right = Button(self.button_right_axes, ">")
        self.button_right_callback = self.button_right.on_clicked(self.button_right_click)

        self.xlim = numpy.array(self.sp_iq.get_xlim())

        self.manager = get_current_fig_manager()
        connect('draw_event', self.zoom)
        connect('key_press_event', self.click)
        show()

    def get_data(self):
        self.position = self.hfile.tell() / self.sizeof_data
        self.text_file_pos.set_text("File Position: %d" % self.position)
        try:
            self.iq = numpy.fromfile(self.hfile, dtype=self.datatype, count=self.block_length)
        except MemoryError:
            print("End of File")
            return False
        else:
            # retesting length here as newer version of numpy does not throw a MemoryError, just
            # returns a zero-length array
            if(len(self.iq) > 0):
                tstep = 1.0 / self.sample_rate
                #self.time = numpy.array([tstep*(self.position + i) for i in range(len(self.iq))])
                self.time = numpy.array([tstep*(i) for i in range(len(self.iq))])

                self.iq_psd, self.freq = self.dopsd(self.iq)
                return True
            else:
                print("End of File")
                return False

    def dopsd(self, iq):
        ''' Need to do this here and plot later so we can do the fftshift '''
        overlap = self.psdfftsize / 4
        winfunc = numpy.blackman
        psd,freq = mlab.psd(iq, self.psdfftsize, self.sample_rate,
                            window = lambda d: d*winfunc(self.psdfftsize),
                            noverlap = overlap)
        psd = 10.0*numpy.log10(abs(psd))
        return (psd, freq)

    def make_plots(self):
        # if specified on the command-line, set file pointer
        self.hfile.seek(self.sizeof_data*self.start, 1)

        iqdims = [[0.075, 0.2, 0.4, 0.6], [0.075, 0.55, 0.4, 0.3]]
        psddims = [[0.575, 0.2, 0.4, 0.6], [0.575, 0.55, 0.4, 0.3]]
        specdims = [0.2, 0.125, 0.6, 0.3]

        # Subplot for real and imaginary parts of signal
        self.sp_iq = self.fig.add_subplot(2,2,1, position=iqdims[self.dospec])
        self.sp_iq.set_title(("I&Q"), fontsize=self.title_font_size, fontweight="bold")
        self.sp_iq.set_xlabel("Time (s)", fontsize=self.label_font_size, fontweight="bold")
        self.sp_iq.set_ylabel("Amplitude (V)", fontsize=self.label_font_size, fontweight="bold")

        # Subplot for PSD plot
        self.sp_psd = self.fig.add_subplot(2,2,2, position=psddims[self.dospec])
        self.sp_psd.set_title(("PSD"), fontsize=self.title_font_size, fontweight="bold")
        self.sp_psd.set_xlabel("Frequency (Hz)", fontsize=self.label_font_size, fontweight="bold")
        self.sp_psd.set_ylabel("Power Spectrum (dBm)", fontsize=self.label_font_size, fontweight="bold")

        r = self.get_data()

        self.plot_iq  = self.sp_iq.plot([], 'bo-') # make plot for reals
        self.plot_iq += self.sp_iq.plot([], 'ro-') # make plot for imags
        self.draw_time(self.time, self.iq)         # draw the plot

        self.plot_psd = self.sp_psd.plot([], 'b')  # make plot for PSD
        self.draw_psd(self.freq, self.iq_psd)      # draw the plot


        if self.dospec:
            # Subplot for spectrogram plot
            self.sp_spec = self.fig.add_subplot(2,2,3, position=specdims)
            self.sp_spec.set_title(("Spectrogram"), fontsize=self.title_font_size, fontweight="bold")
            self.sp_spec.set_xlabel("Time (s)", fontsize=self.label_font_size, fontweight="bold")
            self.sp_spec.set_ylabel("Frequency (Hz)", fontsize=self.label_font_size, fontweight="bold")

            self.draw_spec(self.time, self.iq)

        draw()

    def draw_time(self, t, iq):
        reals = iq.real
        imags = iq.imag
        self.plot_iq[0].set_data([t, reals])
        self.plot_iq[1].set_data([t, imags])
        self.sp_iq.set_xlim(t.min(), t.max())
        self.sp_iq.set_ylim([1.5*min([reals.min(), imags.min()]),
                             1.5*max([reals.max(), imags.max()])])

    def draw_psd(self, f, p):
        self.plot_psd[0].set_data([f, p])
        self.sp_psd.set_ylim([p.min()-10, p.max()+10])
        self.sp_psd.set_xlim([f.min(), f.max()])

    def draw_spec(self, t, s):
        overlap = self.specfftsize / 4
        winfunc = numpy.blackman
        self.sp_spec.clear()
        self.sp_spec.specgram(s, self.specfftsize, self.sample_rate,
                              window = lambda d: d*winfunc(self.specfftsize),
                              noverlap = overlap, xextent=[t.min(), t.max()])

    def update_plots(self):
        self.draw_time(self.time, self.iq)
        self.draw_psd(self.freq, self.iq_psd)

        if self.dospec:
            self.draw_spec(self.time, self.iq)

        self.xlim = numpy.array(self.sp_iq.get_xlim()) # so zoom doesn't get called

        draw()

    def zoom(self, event):
        newxlim = numpy.array(self.sp_iq.get_xlim())
        curxlim = numpy.array(self.xlim)
        if(newxlim[0] != curxlim[0] or newxlim[1] != curxlim[1]):
            #xmin = max(0, int(ceil(self.sample_rate*(newxlim[0] - self.position))))
            #xmax = min(int(ceil(self.sample_rate*(newxlim[1] - self.position))), len(self.iq))
            xmin = max(0, int(ceil(self.sample_rate*(newxlim[0]))))
            xmax = min(int(ceil(self.sample_rate*(newxlim[1]))), len(self.iq))

            iq = numpy.array(self.iq[xmin : xmax])
            time = numpy.array(self.time[xmin : xmax])

            iq_psd, freq = self.dopsd(iq)

            self.draw_psd(freq, iq_psd)
            self.xlim = numpy.array(self.sp_iq.get_xlim())

            draw()

    def click(self, event):
        forward_valid_keys = [" ", "down", "right"]
        backward_valid_keys = ["up", "left"]

        if(find(event.key, forward_valid_keys)):
            self.step_forward()

        elif(find(event.key, backward_valid_keys)):
            self.step_backward()

    def button_left_click(self, event):
        self.step_backward()

    def button_right_click(self, event):
        self.step_forward()

    def step_forward(self):
        r = self.get_data()
        if(r):
            self.update_plots()

    def step_backward(self):
        # Step back in file position
        if(self.hfile.tell() >= 2*self.sizeof_data*self.block_length ):
            self.hfile.seek(-2*self.sizeof_data*self.block_length, 1)
        else:
            self.hfile.seek(-self.hfile.tell(),1)
        r = self.get_data()
        if(r):
            self.update_plots()

    @staticmethod
    def setup_options():
        description = "Takes a GNU Radio binary file (with specified data type using --data-type) and displays the I&Q data versus time as well as the power spectral density (PSD) plot. The y-axis values are plotted assuming volts as the amplitude of the I&Q streams and converted into dBm in the frequency domain (the 1/N power adjustment out of the FFT is performed internally). The script plots a certain block of data at a time, specified on the command line as -B or --block. The start position in the file can be set by specifying -s or --start and defaults to 0 (the start of the file). By default, the system assumes a sample rate of 1, so in time, each sample is plotted versus the sample number. To set a true time and frequency axis, set the sample rate (-R or --sample-rate) to the sample rate used when capturing the samples. Finally, the size of the FFT to use for the PSD and spectrogram plots can be set independently with --psd-size and --spec-size, respectively. The spectrogram plot does not display by default and is turned on with -S or --enable-spec."

        parser = ArgumentParser(conflict_handler="resolve", description=description)
        parser.add_argument("-d", "--data-type", default="complex64",
                choices=("complex64", "float32", "int32", "uint32", "int16",
                    "uint16", "int8", "uint8" ),
                help="Specify the data type [default=%(default)r]")
        parser.add_argument("-B", "--block", type=int, default=8192,
                help="Specify the block size [default=%(default)r]")
        parser.add_argument("-s", "--start", type=int, default=0,
                help="Specify where to start in the file [default=%(default)r]")
        parser.add_argument("-R", "--sample-rate", type=eng_float, default=1.0,
                help="Set the sampler rate of the data [default=%(default)r]")
        parser.add_argument("--psd-size", type=int, default=1024,
                help="Set the size of the PSD FFT [default=%(default)r]")
        parser.add_argument("--spec-size", type=int, default=256,
                help="Set the size of the spectrogram FFT [default=%(default)r]")
        parser.add_argument("-S", "--enable-spec", action="store_true",
                help="Turn on plotting the spectrogram [default=%(default)r]")
        parser.add_argument("file", metavar="FILE",
                help="Input file with samples")

        return parser