def __init__(self, datatype, filenames, options): self.hfile = list() self.legend_text = list() for f in filenames: self.hfile.append(open(f, "r")) self.legend_text.append(f) self.block_length = options.block self.start = options.start self.sample_rate = options.sample_rate self.datatype = datatype if self.datatype is None: self.datatype = datatype_lookup[options.data_type] self.sizeof_data = self.datatype( ).nbytes # number of bytes per sample in file self.axis_font_size = 16 self.label_font_size = 18 self.title_font_size = 20 self.text_size = 22 # Setup PLOT self.fig = figure(1, figsize=(16, 9), facecolor='w') rcParams['xtick.labelsize'] = self.axis_font_size rcParams['ytick.labelsize'] = self.axis_font_size self.text_file_pos = figtext(0.10, 0.88, "File Position: ", weight="heavy", size=self.text_size) self.text_block = figtext(0.40, 0.88, ("Block Size: %d" % self.block_length), weight="heavy", size=self.text_size) self.text_sr = figtext(0.60, 0.88, ("Sample Rate: %.2f" % self.sample_rate), weight="heavy", size=self.text_size) self.make_plots() self.button_left_axes = self.fig.add_axes([0.45, 0.01, 0.05, 0.05], frameon=True) self.button_left = Button(self.button_left_axes, "<") self.button_left_callback = self.button_left.on_clicked( self.button_left_click) self.button_right_axes = self.fig.add_axes([0.50, 0.01, 0.05, 0.05], frameon=True) self.button_right = Button(self.button_right_axes, ">") self.button_right_callback = self.button_right.on_clicked( self.button_right_click) self.xlim = self.sp_f.get_xlim() self.manager = get_current_fig_manager() connect('key_press_event', self.click) show()
def __init__(self, datatype, filename, options): self.hfile = open(filename, "r") self.block_length = options.block self.start = options.start self.sample_rate = options.sample_rate self.psdfftsize = options.psd_size self.specfftsize = options.spec_size self.dospec = options.enable_spec # if we want to plot the spectrogram self.datatype = datatype if self.datatype is None: self.datatype = datatype_lookup[options.data_type] self.sizeof_data = self.datatype().nbytes # number of bytes per sample in file self.axis_font_size = 16 self.label_font_size = 18 self.title_font_size = 20 self.text_size = 22 # Setup PLOT self.fig = figure(1, figsize=(16, 12), facecolor='w') rcParams['xtick.labelsize'] = self.axis_font_size rcParams['ytick.labelsize'] = self.axis_font_size self.text_file = figtext(0.10, 0.95, ("File: %s" % filename), weight="heavy", size=self.text_size) self.text_file_pos = figtext(0.10, 0.92, "File Position: ", weight="heavy", size=self.text_size) self.text_block = figtext(0.35, 0.92, ("Block Size: %d" % self.block_length), weight="heavy", size=self.text_size) self.text_sr = figtext(0.60, 0.915, ("Sample Rate: %.2f" % self.sample_rate), weight="heavy", size=self.text_size) self.make_plots() self.button_left_axes = self.fig.add_axes([0.45, 0.01, 0.05, 0.05], frameon=True) self.button_left = Button(self.button_left_axes, "<") self.button_left_callback = self.button_left.on_clicked(self.button_left_click) self.button_right_axes = self.fig.add_axes([0.50, 0.01, 0.05, 0.05], frameon=True) self.button_right = Button(self.button_right_axes, ">") self.button_right_callback = self.button_right.on_clicked(self.button_right_click) self.xlim = numpy.array(self.sp_iq.get_xlim()) self.manager = get_current_fig_manager() connect('draw_event', self.zoom) connect('key_press_event', self.click) show()
def __init__(self, datatype, filenames, options): self.hfile = list() self.legend_text = list() for f in filenames: self.hfile.append(open(f, "r")) self.legend_text.append(f) self.block_length = options.block self.start = options.start self.sample_rate = options.sample_rate self.datatype = datatype if self.datatype is None: self.datatype = datatype_lookup[options.data_type] self.sizeof_data = self.datatype().nbytes # number of bytes per sample in file self.axis_font_size = 16 self.label_font_size = 18 self.title_font_size = 20 self.text_size = 22 # Setup PLOT self.fig = figure(1, figsize=(16, 9), facecolor='w') rcParams['xtick.labelsize'] = self.axis_font_size rcParams['ytick.labelsize'] = self.axis_font_size self.text_file_pos = figtext(0.10, 0.88, "File Position: ", weight="heavy", size=self.text_size) self.text_block = figtext(0.40, 0.88, ("Block Size: %d" % self.block_length), weight="heavy", size=self.text_size) self.text_sr = figtext(0.60, 0.88, ("Sample Rate: %.2f" % self.sample_rate), weight="heavy", size=self.text_size) self.make_plots() self.button_left_axes = self.fig.add_axes([0.45, 0.01, 0.05, 0.05], frameon=True) self.button_left = Button(self.button_left_axes, "<") self.button_left_callback = self.button_left.on_clicked(self.button_left_click) self.button_right_axes = self.fig.add_axes([0.50, 0.01, 0.05, 0.05], frameon=True) self.button_right = Button(self.button_right_axes, ">") self.button_right_callback = self.button_right.on_clicked(self.button_right_click) self.xlim = self.sp_f.get_xlim() self.manager = get_current_fig_manager() connect('key_press_event', self.click) show()
def __init__(self, datatype, filename, options): self.hfile = open(filename, "r") self.block_length = options.block self.start = options.start self.sample_rate = options.sample_rate self.psdfftsize = options.psd_size self.specfftsize = options.spec_size self.dospec = options.enable_spec # if we want to plot the spectrogram self.datatype = datatype if self.datatype is None: self.datatype = datatype_lookup[options.data_type] self.sizeof_data = self.datatype( ).nbytes # number of bytes per sample in file self.axis_font_size = 16 self.label_font_size = 18 self.title_font_size = 20 self.text_size = 22 # Setup PLOT self.fig = figure(1, figsize=(16, 12), facecolor='w') rcParams['xtick.labelsize'] = self.axis_font_size rcParams['ytick.labelsize'] = self.axis_font_size self.text_file = figtext(0.10, 0.95, ("File: %s" % filename), weight="heavy", size=self.text_size) self.text_file_pos = figtext(0.10, 0.92, "File Position: ", weight="heavy", size=self.text_size) self.text_block = figtext(0.35, 0.92, ("Block Size: %d" % self.block_length), weight="heavy", size=self.text_size) self.text_sr = figtext(0.60, 0.915, ("Sample Rate: %.2f" % self.sample_rate), weight="heavy", size=self.text_size) self.make_plots() self.button_left_axes = self.fig.add_axes([0.45, 0.01, 0.05, 0.05], frameon=True) self.button_left = Button(self.button_left_axes, "<") self.button_left_callback = self.button_left.on_clicked( self.button_left_click) self.button_right_axes = self.fig.add_axes([0.50, 0.01, 0.05, 0.05], frameon=True) self.button_right = Button(self.button_right_axes, ">") self.button_right_callback = self.button_right.on_clicked( self.button_right_click) self.xlim = numpy.array(self.sp_iq.get_xlim()) self.manager = get_current_fig_manager() connect('draw_event', self.zoom) connect('key_press_event', self.click) show()
class plot_psd_base(object): def __init__(self, datatype, filename, options): self.hfile = open(filename, "r") self.block_length = options.block self.start = options.start self.sample_rate = options.sample_rate self.psdfftsize = options.psd_size self.specfftsize = options.spec_size self.dospec = options.enable_spec # if we want to plot the spectrogram self.datatype = datatype if self.datatype is None: self.datatype = datatype_lookup[options.data_type] self.sizeof_data = self.datatype( ).nbytes # number of bytes per sample in file self.axis_font_size = 16 self.label_font_size = 18 self.title_font_size = 20 self.text_size = 22 # Setup PLOT self.fig = figure(1, figsize=(16, 12), facecolor='w') rcParams['xtick.labelsize'] = self.axis_font_size rcParams['ytick.labelsize'] = self.axis_font_size self.text_file = figtext(0.10, 0.95, ("File: %s" % filename), weight="heavy", size=self.text_size) self.text_file_pos = figtext(0.10, 0.92, "File Position: ", weight="heavy", size=self.text_size) self.text_block = figtext(0.35, 0.92, ("Block Size: %d" % self.block_length), weight="heavy", size=self.text_size) self.text_sr = figtext(0.60, 0.915, ("Sample Rate: %.2f" % self.sample_rate), weight="heavy", size=self.text_size) self.make_plots() self.button_left_axes = self.fig.add_axes([0.45, 0.01, 0.05, 0.05], frameon=True) self.button_left = Button(self.button_left_axes, "<") self.button_left_callback = self.button_left.on_clicked( self.button_left_click) self.button_right_axes = self.fig.add_axes([0.50, 0.01, 0.05, 0.05], frameon=True) self.button_right = Button(self.button_right_axes, ">") self.button_right_callback = self.button_right.on_clicked( self.button_right_click) self.xlim = numpy.array(self.sp_iq.get_xlim()) self.manager = get_current_fig_manager() connect('draw_event', self.zoom) connect('key_press_event', self.click) show() def get_data(self): self.position = self.hfile.tell() / self.sizeof_data self.text_file_pos.set_text("File Position: %d" % self.position) try: self.iq = numpy.fromfile(self.hfile, dtype=self.datatype, count=self.block_length) except MemoryError: print("End of File") return False else: # retesting length here as newer version of numpy does not throw a MemoryError, just # returns a zero-length array if (len(self.iq) > 0): tstep = 1.0 / self.sample_rate #self.time = numpy.array([tstep*(self.position + i) for i in range(len(self.iq))]) self.time = numpy.array( [tstep * (i) for i in range(len(self.iq))]) self.iq_psd, self.freq = self.dopsd(self.iq) return True else: print("End of File") return False def dopsd(self, iq): ''' Need to do this here and plot later so we can do the fftshift ''' overlap = self.psdfftsize / 4 winfunc = numpy.blackman psd, freq = mlab.psd(iq, self.psdfftsize, self.sample_rate, window=lambda d: d * winfunc(self.psdfftsize), noverlap=overlap) psd = 10.0 * numpy.log10(abs(psd)) return (psd, freq) def make_plots(self): # if specified on the command-line, set file pointer self.hfile.seek(self.sizeof_data * self.start, 1) iqdims = [[0.075, 0.2, 0.4, 0.6], [0.075, 0.55, 0.4, 0.3]] psddims = [[0.575, 0.2, 0.4, 0.6], [0.575, 0.55, 0.4, 0.3]] specdims = [0.2, 0.125, 0.6, 0.3] # Subplot for real and imaginary parts of signal self.sp_iq = self.fig.add_subplot(2, 2, 1, position=iqdims[self.dospec]) self.sp_iq.set_title(("I&Q"), fontsize=self.title_font_size, fontweight="bold") self.sp_iq.set_xlabel("Time (s)", fontsize=self.label_font_size, fontweight="bold") self.sp_iq.set_ylabel("Amplitude (V)", fontsize=self.label_font_size, fontweight="bold") # Subplot for PSD plot self.sp_psd = self.fig.add_subplot(2, 2, 2, position=psddims[self.dospec]) self.sp_psd.set_title(("PSD"), fontsize=self.title_font_size, fontweight="bold") self.sp_psd.set_xlabel("Frequency (Hz)", fontsize=self.label_font_size, fontweight="bold") self.sp_psd.set_ylabel("Power Spectrum (dBm)", fontsize=self.label_font_size, fontweight="bold") r = self.get_data() self.plot_iq = self.sp_iq.plot([], 'bo-') # make plot for reals self.plot_iq += self.sp_iq.plot([], 'ro-') # make plot for imags self.draw_time(self.time, self.iq) # draw the plot self.plot_psd = self.sp_psd.plot([], 'b') # make plot for PSD self.draw_psd(self.freq, self.iq_psd) # draw the plot if self.dospec: # Subplot for spectrogram plot self.sp_spec = self.fig.add_subplot(2, 2, 3, position=specdims) self.sp_spec.set_title(("Spectrogram"), fontsize=self.title_font_size, fontweight="bold") self.sp_spec.set_xlabel("Time (s)", fontsize=self.label_font_size, fontweight="bold") self.sp_spec.set_ylabel("Frequency (Hz)", fontsize=self.label_font_size, fontweight="bold") self.draw_spec(self.time, self.iq) draw() def draw_time(self, t, iq): reals = iq.real imags = iq.imag self.plot_iq[0].set_data([t, reals]) self.plot_iq[1].set_data([t, imags]) self.sp_iq.set_xlim(t.min(), t.max()) self.sp_iq.set_ylim([ 1.5 * min([reals.min(), imags.min()]), 1.5 * max([reals.max(), imags.max()]) ]) def draw_psd(self, f, p): self.plot_psd[0].set_data([f, p]) self.sp_psd.set_ylim([p.min() - 10, p.max() + 10]) self.sp_psd.set_xlim([f.min(), f.max()]) def draw_spec(self, t, s): overlap = self.specfftsize / 4 winfunc = numpy.blackman self.sp_spec.clear() self.sp_spec.specgram(s, self.specfftsize, self.sample_rate, window=lambda d: d * winfunc(self.specfftsize), noverlap=overlap, xextent=[t.min(), t.max()]) def update_plots(self): self.draw_time(self.time, self.iq) self.draw_psd(self.freq, self.iq_psd) if self.dospec: self.draw_spec(self.time, self.iq) self.xlim = numpy.array( self.sp_iq.get_xlim()) # so zoom doesn't get called draw() def zoom(self, event): newxlim = numpy.array(self.sp_iq.get_xlim()) curxlim = numpy.array(self.xlim) if (newxlim[0] != curxlim[0] or newxlim[1] != curxlim[1]): #xmin = max(0, int(ceil(self.sample_rate*(newxlim[0] - self.position)))) #xmax = min(int(ceil(self.sample_rate*(newxlim[1] - self.position))), len(self.iq)) xmin = max(0, int(ceil(self.sample_rate * (newxlim[0])))) xmax = min(int(ceil(self.sample_rate * (newxlim[1]))), len(self.iq)) iq = numpy.array(self.iq[xmin:xmax]) time = numpy.array(self.time[xmin:xmax]) iq_psd, freq = self.dopsd(iq) self.draw_psd(freq, iq_psd) self.xlim = numpy.array(self.sp_iq.get_xlim()) draw() def click(self, event): forward_valid_keys = [" ", "down", "right"] backward_valid_keys = ["up", "left"] if (find(event.key, forward_valid_keys)): self.step_forward() elif (find(event.key, backward_valid_keys)): self.step_backward() def button_left_click(self, event): self.step_backward() def button_right_click(self, event): self.step_forward() def step_forward(self): r = self.get_data() if (r): self.update_plots() def step_backward(self): # Step back in file position if (self.hfile.tell() >= 2 * self.sizeof_data * self.block_length): self.hfile.seek(-2 * self.sizeof_data * self.block_length, 1) else: self.hfile.seek(-self.hfile.tell(), 1) r = self.get_data() if (r): self.update_plots() @staticmethod def setup_options(): description = "Takes a GNU Radio binary file (with specified data type using --data-type) and displays the I&Q data versus time as well as the power spectral density (PSD) plot. The y-axis values are plotted assuming volts as the amplitude of the I&Q streams and converted into dBm in the frequency domain (the 1/N power adjustment out of the FFT is performed internally). The script plots a certain block of data at a time, specified on the command line as -B or --block. The start position in the file can be set by specifying -s or --start and defaults to 0 (the start of the file). By default, the system assumes a sample rate of 1, so in time, each sample is plotted versus the sample number. To set a true time and frequency axis, set the sample rate (-R or --sample-rate) to the sample rate used when capturing the samples. Finally, the size of the FFT to use for the PSD and spectrogram plots can be set independently with --psd-size and --spec-size, respectively. The spectrogram plot does not display by default and is turned on with -S or --enable-spec." parser = ArgumentParser(conflict_handler="resolve", description=description) parser.add_argument("-d", "--data-type", default="complex64", choices=("complex64", "float32", "int32", "uint32", "int16", "uint16", "int8", "uint8"), help="Specify the data type [default=%(default)r]") parser.add_argument( "-B", "--block", type=int, default=8192, help="Specify the block size [default=%(default)r]") parser.add_argument( "-s", "--start", type=int, default=0, help="Specify where to start in the file [default=%(default)r]") parser.add_argument( "-R", "--sample-rate", type=eng_float, default=1.0, help="Set the sampler rate of the data [default=%(default)r]") parser.add_argument( "--psd-size", type=int, default=1024, help="Set the size of the PSD FFT [default=%(default)r]") parser.add_argument( "--spec-size", type=int, default=256, help="Set the size of the spectrogram FFT [default=%(default)r]") parser.add_argument( "-S", "--enable-spec", action="store_true", help="Turn on plotting the spectrogram [default=%(default)r]") parser.add_argument("file", metavar="FILE", help="Input file with samples") return parser
class plot_fft_base(object): def __init__(self, datatype, filename, options): self.hfile = open(filename, "r") self.block_length = options.block self.start = options.start self.sample_rate = options.sample_rate self.datatype = datatype if self.datatype is None: self.datatype = datatype_lookup[options.data_type] self.sizeof_data = self.datatype().nbytes # number of bytes per sample in file self.label_font_size = 18 self.title_font_size = 20 self.text_size = 22 # Setup PLOT self.fig = figure(1, figsize=(16, 12), facecolor='w') rcParams['xtick.labelsize'] = self.axis_font_size rcParams['ytick.labelsize'] = self.axis_font_size self.text_file = figtext(0.10, 0.94, ("File: %s" % filename), weight="heavy", size=self.text_size) self.text_file_pos = figtext(0.10, 0.88, "File Position: ", weight="heavy", size=self.text_size) self.text_block = figtext(0.35, 0.88, ("Block Size: %d" % self.block_length), weight="heavy", size=self.text_size) self.text_sr = figtext(0.60, 0.88, ("Sample Rate: %.2f" % self.sample_rate), weight="heavy", size=self.text_size) self.make_plots() self.button_left_axes = self.fig.add_axes([0.45, 0.01, 0.05, 0.05], frameon=True) self.button_left = Button(self.button_left_axes, "<") self.button_left_callback = self.button_left.on_clicked(self.button_left_click) self.button_right_axes = self.fig.add_axes([0.50, 0.01, 0.05, 0.05], frameon=True) self.button_right = Button(self.button_right_axes, ">") self.button_right_callback = self.button_right.on_clicked(self.button_right_click) self.xlim = self.sp_iq.get_xlim() self.manager = get_current_fig_manager() connect('draw_event', self.zoom) connect('key_press_event', self.click) show() def get_data(self): self.position = self.hfile.tell() / self.sizeof_data self.text_file_pos.set_text("File Position: %d" % (self.position)) try: self.iq = numpy.fromfile(self.hfile, dtype=self.datatype, count=self.block_length) except MemoryError: print("End of File") else: self.iq_fft = self.dofft(self.iq) tstep = 1.0 / self.sample_rate #self.time = numpy.array([tstep*(self.position + i) for i in range(len(self.iq))]) self.time = numpy.array([tstep*(i) for i in range(len(self.iq))]) self.freq = self.calc_freq(self.time, self.sample_rate) def dofft(self, iq): N = len(iq) iq_fft = numpy.fft.fftshift(numpy.fft.fft(iq)) # fft and shift axis iq_fft = 20*numpy.log10(abs((iq_fft+1e-15) / N)) # convert to decibels, adjust power # adding 1e-15 (-300 dB) to protect against value errors if an item in iq_fft is 0 return iq_fft def calc_freq(self, time, sample_rate): N = len(time) Fs = 1.0 / (max(time) - min(time)) Fn = 0.5 * sample_rate freq = numpy.array([-Fn + i*Fs for i in range(N)]) return freq def make_plots(self): # if specified on the command-line, set file pointer self.hfile.seek(self.sizeof_data*self.start, 1) # Subplot for real and imaginary parts of signal self.sp_iq = self.fig.add_subplot(2,2,1, position=[0.075, 0.2, 0.4, 0.6]) self.sp_iq.set_title(("I&Q"), fontsize=self.title_font_size, fontweight="bold") self.sp_iq.set_xlabel("Time (s)", fontsize=self.label_font_size, fontweight="bold") self.sp_iq.set_ylabel("Amplitude (V)", fontsize=self.label_font_size, fontweight="bold") # Subplot for FFT plot self.sp_fft = self.fig.add_subplot(2,2,2, position=[0.575, 0.2, 0.4, 0.6]) self.sp_fft.set_title(("FFT"), fontsize=self.title_font_size, fontweight="bold") self.sp_fft.set_xlabel("Frequency (Hz)", fontsize=self.label_font_size, fontweight="bold") self.sp_fft.set_ylabel("Power Spectrum (dBm)", fontsize=self.label_font_size, fontweight="bold") self.get_data() self.plot_iq = self.sp_iq.plot([], 'bo-') # make plot for reals self.plot_iq += self.sp_iq.plot([], 'ro-') # make plot for imags self.draw_time() # draw the plot self.plot_fft = self.sp_fft.plot([], 'bo-') # make plot for FFT self.draw_fft() # draw the plot draw() def draw_time(self): reals = self.iq.real imags = self.iq.imag self.plot_iq[0].set_data([self.time, reals]) self.plot_iq[1].set_data([self.time, imags]) self.sp_iq.set_xlim(self.time.min(), self.time.max()) self.sp_iq.set_ylim([1.5*min([reals.min(), imags.min()]), 1.5*max([reals.max(), imags.max()])]) def draw_fft(self): self.plot_fft[0].set_data([self.freq, self.iq_fft]) self.sp_fft.set_xlim(self.freq.min(), self.freq.max()) self.sp_fft.set_ylim([self.iq_fft.min()-10, self.iq_fft.max()+10]) def update_plots(self): self.draw_time() self.draw_fft() self.xlim = self.sp_iq.get_xlim() draw() def zoom(self, event): newxlim = numpy.array(self.sp_iq.get_xlim()) curxlim = numpy.array(self.xlim) if(newxlim[0] != curxlim[0] or newxlim[1] != curxlim[1]): self.xlim = newxlim #xmin = max(0, int(ceil(self.sample_rate*(self.xlim[0] - self.position)))) #xmax = min(int(ceil(self.sample_rate*(self.xlim[1] - self.position))), len(self.iq)) xmin = max(0, int(ceil(self.sample_rate*(self.xlim[0])))) xmax = min(int(ceil(self.sample_rate*(self.xlim[1]))), len(self.iq)) iq = self.iq[xmin : xmax] time = self.time[xmin : xmax] iq_fft = self.dofft(iq) freq = self.calc_freq(time, self.sample_rate) self.plot_fft[0].set_data(freq, iq_fft) self.sp_fft.axis([freq.min(), freq.max(), iq_fft.min()-10, iq_fft.max()+10]) draw() def click(self, event): forward_valid_keys = [" ", "down", "right"] backward_valid_keys = ["up", "left"] if(find(event.key, forward_valid_keys)): self.step_forward() elif(find(event.key, backward_valid_keys)): self.step_backward() def button_left_click(self, event): self.step_backward() def button_right_click(self, event): self.step_forward() def step_forward(self): self.get_data() self.update_plots() def step_backward(self): # Step back in file position if(self.hfile.tell() >= 2*self.sizeof_data*self.block_length ): self.hfile.seek(-2*self.sizeof_data*self.block_length, 1) else: self.hfile.seek(-self.hfile.tell(),1) self.get_data() self.update_plots() @staticmethod def setup_options(): description = "Takes a GNU Radio complex binary file and displays the I&Q data versus time as well as the frequency domain (FFT) plot. The y-axis values are plotted assuming volts as the amplitude of the I&Q streams and converted into dBm in the frequency domain (the 1/N power adjustment out of the FFT is performed internally). The script plots a certain block of data at a time, specified on the command line as -B or --block. This value defaults to 1000. The start position in the file can be set by specifying -s or --start and defaults to 0 (the start of the file). By default, the system assumes a sample rate of 1, so in time, each sample is plotted versus the sample number. To set a true time and frequency axis, set the sample rate (-R or --sample-rate) to the sample rate used when capturing the samples." parser = ArgumentParser(conflict_handler="resolve", description=description) parser.add_argument("-d", "--data-type", default="complex64", choices=("complex64", "float32", "uint32", "int32", "uint16", "int16", "uint8", "int8"), help="Specify the data type [default=%(default)r]") parser.add_argument("-B", "--block", type=int, default=1000, help="Specify the block size [default=%(default)r]") parser.add_argument("-s", "--start", type=int, default=0, help="Specify where to start in the file [default=%(default)r]") parser.add_argument("-R", "--sample-rate", type=float, default=1.0, help="Set the sampler rate of the data [default=%(default)r]") parser.add_argument("file", metavar="FILE", help="Input file with samples") return parser
def __init__(self, datatype, filename, options): self.hfile = open(filename, "r") self.block_length = options.block self.start = options.start self.sample_rate = options.sample_rate self.bw = options.sample_rate self.psdfftsize = options.psd_size self.specfftsize = options.spec_size self.sf = options.spreading_factor self.number_of_bins = 1 << self.sf self.samples_per_symbol = self.sample_rate * self.number_of_bins / self.bw self.datatype = datatype if self.datatype is None: self.datatype = datatype_lookup[options.data_type] self.sizeof_data = self.datatype( ).nbytes # number of bytes per sample in file self.axis_font_size = 16 self.label_font_size = 18 self.title_font_size = 20 self.text_size = 22 # TODO fix this the right manner self.xlim = np.array([10, 20]) # Setup PLOT self.fig = figure(1, figsize=(16, 12), facecolor='w') rcParams['xtick.labelsize'] = self.axis_font_size rcParams['ytick.labelsize'] = self.axis_font_size self.text_file = figtext(0.10, 0.95, ("File: %s" % filename) + (" SF: %s" % self.sf), weight="heavy", size=self.text_size) self.text_file_pos = figtext(0.10, 0.92, "Position: ", weight="heavy", size=self.text_size) self.text_block = figtext(0.35, 0.92, ("Block Size: %d" % self.block_length), weight="heavy", size=self.text_size) self.text_sr = figtext(0.60, 0.915, ("Sample Rate: %.2f" % self.sample_rate), weight="heavy", size=self.text_size) self.make_plots() # info for buttons etc self.button_left_axes = self.fig.add_axes([0.45, 0.01, 0.05, 0.05], frameon=True) self.button_left = Button(self.button_left_axes, "<") self.button_left_callback = self.button_left.on_clicked( self.button_left_click) self.button_right_axes = self.fig.add_axes([0.50, 0.01, 0.05, 0.05], frameon=True) self.button_right = Button(self.button_right_axes, ">") self.button_right_callback = self.button_right.on_clicked( self.button_right_click) self.manager = get_current_fig_manager() connect('draw_event', self.zoom) connect('key_press_event', self.click) show()
class plot_lora(object): def __init__(self, datatype, filename, options): self.hfile = open(filename, "r") self.block_length = options.block self.start = options.start self.sample_rate = options.sample_rate self.bw = options.sample_rate self.psdfftsize = options.psd_size self.specfftsize = options.spec_size self.sf = options.spreading_factor self.number_of_bins = 1 << self.sf self.samples_per_symbol = self.sample_rate * self.number_of_bins / self.bw self.datatype = datatype if self.datatype is None: self.datatype = datatype_lookup[options.data_type] self.sizeof_data = self.datatype( ).nbytes # number of bytes per sample in file self.axis_font_size = 16 self.label_font_size = 18 self.title_font_size = 20 self.text_size = 22 # TODO fix this the right manner self.xlim = np.array([10, 20]) # Setup PLOT self.fig = figure(1, figsize=(16, 12), facecolor='w') rcParams['xtick.labelsize'] = self.axis_font_size rcParams['ytick.labelsize'] = self.axis_font_size self.text_file = figtext(0.10, 0.95, ("File: %s" % filename) + (" SF: %s" % self.sf), weight="heavy", size=self.text_size) self.text_file_pos = figtext(0.10, 0.92, "Position: ", weight="heavy", size=self.text_size) self.text_block = figtext(0.35, 0.92, ("Block Size: %d" % self.block_length), weight="heavy", size=self.text_size) self.text_sr = figtext(0.60, 0.915, ("Sample Rate: %.2f" % self.sample_rate), weight="heavy", size=self.text_size) self.make_plots() # info for buttons etc self.button_left_axes = self.fig.add_axes([0.45, 0.01, 0.05, 0.05], frameon=True) self.button_left = Button(self.button_left_axes, "<") self.button_left_callback = self.button_left.on_clicked( self.button_left_click) self.button_right_axes = self.fig.add_axes([0.50, 0.01, 0.05, 0.05], frameon=True) self.button_right = Button(self.button_right_axes, ">") self.button_right_callback = self.button_right.on_clicked( self.button_right_click) self.manager = get_current_fig_manager() connect('draw_event', self.zoom) connect('key_press_event', self.click) show() def get_data(self): self.position = self.hfile.tell() / self.sizeof_data self.text_file_pos.set_text("Position: %d" % self.position) try: self.iq = numpy.fromfile(self.hfile, dtype=self.datatype, count=self.block_length) except MemoryError: print("End of File") return False else: # retesting length here as newer version of numpy does not throw a MemoryError, just # returns a zero-length array if (len(self.iq) > 0): tstep = 1.0 / self.sample_rate # self.time = numpy.array([tstep*(self.position + i) for i in range(len(self.iq))]) self.time = numpy.array( [tstep * (i) for i in range(len(self.iq))]) self.iq_psd, self.freq = self.dopsd(self.iq) self.downchirped = self.downchrip() return True else: print("End of File") return False def dopsd(self, iq): ''' Need to do this here and plot later so we can do the fftshift ''' overlap = self.psdfftsize / 4 winfunc = numpy.blackman psd, freq = mlab.psd(iq, self.psdfftsize, self.sample_rate, window=lambda d: d * winfunc(self.psdfftsize), noverlap=overlap) psd = 10.0 * numpy.log10(abs(psd)) return (psd, freq) def make_plots(self): # if specified on the command-line, set file pointer self.hfile.seek(self.sizeof_data * self.start, 1) # define positions default is fine for now iqdims = [0.075, 0.2, 0.4, 0.6] psddims = [0.575, 0.2, 0.4, 0.6] specdims = [0.575, 0.2, 0.4, 0.6] # get data set time etc r = self.get_data() # Subplot for spectrogram plot self.sp_spec = self.fig.add_subplot(2, 2, 1) self.sp_spec.set_title(("Spectrogram"), fontsize=self.title_font_size, fontweight="bold") self.sp_spec.set_xlabel("Time (s)", fontsize=self.label_font_size, fontweight="bold") self.sp_spec.set_ylabel("Frequency (Hz)", fontsize=self.label_font_size, fontweight="bold") self.draw_spec(self.time, self.iq) # Subplot for PSD plot self.sp_psd = self.fig.add_subplot(2, 2, 3) self.sp_psd.set_title(("PSD"), fontsize=self.title_font_size, fontweight="bold") self.sp_psd.set_xlabel("Frequency (Hz)", fontsize=self.label_font_size, fontweight="bold") self.sp_psd.set_ylabel("Power Spectrum (dBm)", fontsize=self.label_font_size, fontweight="bold") #run dechirped signal self.downchrip() self.sp_spec_dechirped = self.fig.add_subplot(2, 2, 2) self.sp_spec_dechirped.set_title(("Spectrogram demod"), fontsize=self.title_font_size, fontweight="bold") self.sp_spec_dechirped.set_xlabel("Time (s)", fontsize=self.label_font_size, fontweight="bold") self.sp_spec_dechirped.set_ylabel("Frequency (Hz)", fontsize=self.label_font_size, fontweight="bold") self.draw_spec_dechirped(self.time, self.downchirped) self.plot_psd = self.sp_psd.plot([], 'b') # make plot for PSD self.draw_psd(self.freq, self.iq_psd) # draw the plot draw() def downchrip(self): N = 1 << self.sf downchirp = np.zeros((2, 1), dtype=np.complex64) N_iq = self.iq.size for i in range(0, N_iq, N): for n in range(0, N): #calculate phase exp = np.exp(-2 * np.pi * (n * n / (2 * N) - 0.5 * n)) #calculate real and imag part r = np.cos(exp) i = np.sin(exp) * 1j downchirp = np.vstack([downchirp, (r + i)]) #delte initial zeros downchirp = numpy.delete(downchirp, (0), axis=0) downchirp = numpy.delete(downchirp, (0), axis=0) #to be sure resize vector downchirp = np.resize(downchirp, N_iq) #set downchirped values self.downchirped = np.multiply(downchirp, self.iq) print("test") def draw_time(self, t, iq): self.sp_spec.set_xlim(t.min(), t.max()) def draw_psd(self, f, p): self.plot_psd[0].set_data([f, p]) self.sp_psd.set_ylim([p.min() - 10, p.max() + 10]) self.sp_psd.set_xlim([f.min(), f.max()]) def draw_spec(self, t, s): overlap = self.specfftsize / 4 winfunc = numpy.blackman self.sp_spec.clear() self.sp_spec.specgram(s, self.specfftsize, self.sample_rate, window=lambda d: d * winfunc(self.specfftsize), noverlap=overlap, xextent=[t.min(), t.max()]) def draw_spec_dechirped(self, t, s): overlap = self.specfftsize / 4 winfunc = numpy.blackman self.sp_spec_dechirped.clear() self.sp_spec_dechirped.specgram( s, self.specfftsize, self.sample_rate, window=lambda d: d * winfunc(self.specfftsize), noverlap=overlap, xextent=[t.min(), t.max()]) def draw_demod(self, t, s): # demod = gr.ex overlap = self.specfftsize / 4 winfunc = numpy.blackman self.sp_spec.clear() self.sp_spec.specgram(np.abs(s), self.specfftsize, self.sample_rate, window=lambda d: d * winfunc(self.specfftsize), noverlap=overlap, xextent=[t.min(), t.max()]) def update_plots(self): self.draw_time(self.time, self.iq) self.draw_psd(self.freq, self.iq_psd) self.draw_spec(self.time, self.iq) self.downchrip() self.draw_spec_dechirped(self.time, self.downchirped) self.xlim = numpy.array( self.sp_spec.get_xlim()) # so zoom doesn't get called draw() def zoom(self, event): newxlim = numpy.array(self.sp_spec.get_xlim()) curxlim = numpy.array(self.xlim) if (newxlim[0] != curxlim[0] or newxlim[1] != curxlim[1]): # xmin = max(0, int(ceil(self.sample_rate*(newxlim[0] - self.position)))) # xmax = min(int(ceil(self.sample_rate*(newxlim[1] - self.position))), len(self.iq)) xmin = max(0, int(ceil(self.sample_rate * (newxlim[0])))) xmax = min(int(ceil(self.sample_rate * (newxlim[1]))), len(self.iq)) iq = numpy.array(self.iq[xmin:xmax]) time = numpy.array(self.time[xmin:xmax]) iq_psd, freq = self.dopsd(iq) self.draw_psd(freq, iq_psd) self.xlim = numpy.array(self.sp_spec.get_xlim()) draw() def click(self, event): forward_valid_keys = [" ", "down", "right"] backward_valid_keys = ["up", "left"] if (find(event.key, forward_valid_keys)): self.step_forward() elif (find(event.key, backward_valid_keys)): self.step_backward() def button_left_click(self, event): self.step_backward() def button_right_click(self, event): self.step_forward() def step_forward(self): r = self.get_data() if (r): self.update_plots() def step_backward(self): # Step back in file position if (self.hfile.tell() >= 2 * self.sizeof_data * self.block_length): self.hfile.seek(-2 * self.sizeof_data * self.block_length, 1) else: self.hfile.seek(-self.hfile.tell(), 1) r = self.get_data() if (r): self.update_plots() @staticmethod def setup_options(): description = "." parser = ArgumentParser(conflict_handler="resolve", description=description) parser.add_argument("-d", "--data-type", default="complex64", choices=("complex64", "float32", "int32", "uint32", "int16", "uint16", "int8", "uint8"), help="Specify the data type [default=%(default)r]") parser.add_argument( "-B", "--block", type=int, default=8192, help="Specify the block size [default=%(default)r]") parser.add_argument( "-s", "--start", type=int, default=0, help="Specify where to start in the file [default=%(default)r]") parser.add_argument( "-R", "--sample-rate", type=eng_float, default=1.0, help="Set the sampler rate of the data [default=%(default)r]") parser.add_argument( "--psd-size", type=int, default=1024, help="Set the size of the PSD FFT [default=%(default)r]") parser.add_argument( "--spec-size", type=int, default=256, help="Set the size of the spectrogram FFT [default=%(default)r]") parser.add_argument( "-S", "--enable-spec", action="store_true", help="Turn on plotting the spectrogram [default=%(default)r]") parser.add_argument("file", metavar="FILE", help="Input file with samples") return parser
class plot_data(object): def __init__(self, datatype, filenames, options): self.hfile = list() self.legend_text = list() for f in filenames: self.hfile.append(open(f, "r")) self.legend_text.append(f) self.block_length = options.block self.start = options.start self.sample_rate = options.sample_rate self.datatype = datatype if self.datatype is None: self.datatype = datatype_lookup[options.data_type] self.sizeof_data = self.datatype().nbytes # number of bytes per sample in file self.axis_font_size = 16 self.label_font_size = 18 self.title_font_size = 20 self.text_size = 22 # Setup PLOT self.fig = figure(1, figsize=(16, 9), facecolor='w') rcParams['xtick.labelsize'] = self.axis_font_size rcParams['ytick.labelsize'] = self.axis_font_size self.text_file_pos = figtext(0.10, 0.88, "File Position: ", weight="heavy", size=self.text_size) self.text_block = figtext(0.40, 0.88, ("Block Size: %d" % self.block_length), weight="heavy", size=self.text_size) self.text_sr = figtext(0.60, 0.88, ("Sample Rate: %.2f" % self.sample_rate), weight="heavy", size=self.text_size) self.make_plots() self.button_left_axes = self.fig.add_axes([0.45, 0.01, 0.05, 0.05], frameon=True) self.button_left = Button(self.button_left_axes, "<") self.button_left_callback = self.button_left.on_clicked(self.button_left_click) self.button_right_axes = self.fig.add_axes([0.50, 0.01, 0.05, 0.05], frameon=True) self.button_right = Button(self.button_right_axes, ">") self.button_right_callback = self.button_right.on_clicked(self.button_right_click) self.xlim = self.sp_f.get_xlim() self.manager = get_current_fig_manager() connect('key_press_event', self.click) show() def get_data(self, hfile): self.text_file_pos.set_text("File Position: %d" % (hfile.tell()//self.sizeof_data)) try: f = numpy.fromfile(hfile, dtype=self.datatype, count=self.block_length) except MemoryError: print("End of File") else: self.f = numpy.array(f) self.time = numpy.array([i*(1 / self.sample_rate) for i in range(len(self.f))]) def make_plots(self): self.sp_f = self.fig.add_subplot(2,1,1, position=[0.075, 0.2, 0.875, 0.6]) self.sp_f.set_title(("Amplitude"), fontsize=self.title_font_size, fontweight="bold") self.sp_f.set_xlabel("Time (s)", fontsize=self.label_font_size, fontweight="bold") self.sp_f.set_ylabel("Amplitude (V)", fontsize=self.label_font_size, fontweight="bold") self.plot_f = list() maxval = -1e12 minval = 1e12 for hf in self.hfile: # if specified on the command-line, set file pointer hf.seek(self.sizeof_data*self.start, 1) self.get_data(hf) # Subplot for real and imaginary parts of signal self.plot_f += plot(self.time, self.f, 'o-') maxval = max(maxval, self.f.max()) minval = min(minval, self.f.min()) self.sp_f.set_ylim([1.5*minval, 1.5*maxval]) self.leg = self.sp_f.legend(self.plot_f, self.legend_text) draw() def update_plots(self): maxval = -1e12 minval = 1e12 for hf,p in zip(self.hfile,self.plot_f): self.get_data(hf) p.set_data([self.time, self.f]) maxval = max(maxval, self.f.max()) minval = min(minval, self.f.min()) self.sp_f.set_ylim([1.5*minval, 1.5*maxval]) draw() def click(self, event): forward_valid_keys = [" ", "down", "right"] backward_valid_keys = ["up", "left"] if(find(event.key, forward_valid_keys)): self.step_forward() elif(find(event.key, backward_valid_keys)): self.step_backward() def button_left_click(self, event): self.step_backward() def button_right_click(self, event): self.step_forward() def step_forward(self): self.update_plots() def step_backward(self): for hf in self.hfile: # Step back in file position if(hf.tell() >= 2*self.sizeof_data*self.block_length ): hf.seek(-2*self.sizeof_data*self.block_length, 1) else: hf.seek(-hf.tell(),1) self.update_plots() @staticmethod def setup_options(): description = "Takes a GNU Radio binary file and displays the samples versus time. You can set the block size to specify how many points to read in at a time and the start position in the file. By default, the system assumes a sample rate of 1, so in time, each sample is plotted versus the sample number. To set a true time axis, set the sample rate (-R or --sample-rate) to the sample rate used when capturing the samples." parser = ArgumentParser(conflict_handler="resolve", description=description) parser.add_argument("-d", "--data-type", default="complex64", choices=("complex64", "float32", "uint32", "int32", "uint16", "int16", "uint8", "int8"), help="Specify the data type [default=%(default)r]") parser.add_argument("-B", "--block", type=int, default=1000, help="Specify the block size [default=%(default)r]") parser.add_argument("-s", "--start", type=int, default=0, help="Specify where to start in the file [default=%(default)r]") parser.add_argument("-R", "--sample-rate", type=float, default=1.0, help="Set the sampler rate of the data [default=%(default)r]") parser.add_argument("files", metavar="FILE", nargs='+', help="Input file with samples") return parser
class plot_data(object): def __init__(self, datatype, filenames, options): self.hfile = list() self.legend_text = list() for f in filenames: self.hfile.append(open(f, "r")) self.legend_text.append(f) self.block_length = options.block self.start = options.start self.sample_rate = options.sample_rate self.datatype = datatype if self.datatype is None: self.datatype = datatype_lookup[options.data_type] self.sizeof_data = self.datatype( ).nbytes # number of bytes per sample in file self.axis_font_size = 16 self.label_font_size = 18 self.title_font_size = 20 self.text_size = 22 # Setup PLOT self.fig = figure(1, figsize=(16, 9), facecolor='w') rcParams['xtick.labelsize'] = self.axis_font_size rcParams['ytick.labelsize'] = self.axis_font_size self.text_file_pos = figtext(0.10, 0.88, "File Position: ", weight="heavy", size=self.text_size) self.text_block = figtext(0.40, 0.88, ("Block Size: %d" % self.block_length), weight="heavy", size=self.text_size) self.text_sr = figtext(0.60, 0.88, ("Sample Rate: %.2f" % self.sample_rate), weight="heavy", size=self.text_size) self.make_plots() self.button_left_axes = self.fig.add_axes([0.45, 0.01, 0.05, 0.05], frameon=True) self.button_left = Button(self.button_left_axes, "<") self.button_left_callback = self.button_left.on_clicked( self.button_left_click) self.button_right_axes = self.fig.add_axes([0.50, 0.01, 0.05, 0.05], frameon=True) self.button_right = Button(self.button_right_axes, ">") self.button_right_callback = self.button_right.on_clicked( self.button_right_click) self.xlim = self.sp_f.get_xlim() self.manager = get_current_fig_manager() connect('key_press_event', self.click) show() def get_data(self, hfile): self.text_file_pos.set_text("File Position: %d" % (hfile.tell() // self.sizeof_data)) try: f = numpy.fromfile(hfile, dtype=self.datatype, count=self.block_length) except MemoryError: print("End of File") else: self.f = numpy.array(f) self.time = numpy.array( [i * (1 / self.sample_rate) for i in range(len(self.f))]) def make_plots(self): self.sp_f = self.fig.add_subplot(2, 1, 1, position=[0.075, 0.2, 0.875, 0.6]) self.sp_f.set_title(("Amplitude"), fontsize=self.title_font_size, fontweight="bold") self.sp_f.set_xlabel("Time (s)", fontsize=self.label_font_size, fontweight="bold") self.sp_f.set_ylabel("Amplitude (V)", fontsize=self.label_font_size, fontweight="bold") self.plot_f = list() maxval = -1e12 minval = 1e12 for hf in self.hfile: # if specified on the command-line, set file pointer hf.seek(self.sizeof_data * self.start, 1) self.get_data(hf) # Subplot for real and imaginary parts of signal self.plot_f += plot(self.time, self.f, 'o-') maxval = max(maxval, self.f.max()) minval = min(minval, self.f.min()) self.sp_f.set_ylim([1.5 * minval, 1.5 * maxval]) self.leg = self.sp_f.legend(self.plot_f, self.legend_text) draw() def update_plots(self): maxval = -1e12 minval = 1e12 for hf, p in zip(self.hfile, self.plot_f): self.get_data(hf) p.set_data([self.time, self.f]) maxval = max(maxval, self.f.max()) minval = min(minval, self.f.min()) self.sp_f.set_ylim([1.5 * minval, 1.5 * maxval]) draw() def click(self, event): forward_valid_keys = [" ", "down", "right"] backward_valid_keys = ["up", "left"] if (find(event.key, forward_valid_keys)): self.step_forward() elif (find(event.key, backward_valid_keys)): self.step_backward() def button_left_click(self, event): self.step_backward() def button_right_click(self, event): self.step_forward() def step_forward(self): self.update_plots() def step_backward(self): for hf in self.hfile: # Step back in file position if (hf.tell() >= 2 * self.sizeof_data * self.block_length): hf.seek(-2 * self.sizeof_data * self.block_length, 1) else: hf.seek(-hf.tell(), 1) self.update_plots() @staticmethod def setup_options(): description = "Takes a GNU Radio binary file and displays the samples versus time. You can set the block size to specify how many points to read in at a time and the start position in the file. By default, the system assumes a sample rate of 1, so in time, each sample is plotted versus the sample number. To set a true time axis, set the sample rate (-R or --sample-rate) to the sample rate used when capturing the samples." parser = ArgumentParser(conflict_handler="resolve", description=description) parser.add_argument("-d", "--data-type", default="complex64", choices=("complex64", "float32", "uint32", "int32", "uint16", "int16", "uint8", "int8"), help="Specify the data type [default=%(default)r]") parser.add_argument( "-B", "--block", type=int, default=1000, help="Specify the block size [default=%(default)r]") parser.add_argument( "-s", "--start", type=int, default=0, help="Specify where to start in the file [default=%(default)r]") parser.add_argument( "-R", "--sample-rate", type=float, default=1.0, help="Set the sampler rate of the data [default=%(default)r]") parser.add_argument("files", metavar="FILE", nargs='+', help="Input file with samples") return parser
class plot_fft_base(object): def __init__(self, datatype, filename, options): self.hfile = open(filename, "r") self.block_length = options.block self.start = options.start self.sample_rate = options.sample_rate self.datatype = datatype if self.datatype is None: self.datatype = datatype_lookup[options.data_type] self.sizeof_data = self.datatype().nbytes # number of bytes per sample in file self.axis_font_size = 16 self.label_font_size = 18 self.title_font_size = 20 self.text_size = 22 # Setup PLOT self.fig = figure(1, figsize=(16, 12), facecolor='w') rcParams['xtick.labelsize'] = self.axis_font_size rcParams['ytick.labelsize'] = self.axis_font_size self.text_file = figtext(0.10, 0.94, ("File: %s" % filename), weight="heavy", size=self.text_size) self.text_file_pos = figtext(0.10, 0.88, "File Position: ", weight="heavy", size=self.text_size) self.text_block = figtext(0.35, 0.88, ("Block Size: %d" % self.block_length), weight="heavy", size=self.text_size) self.text_sr = figtext(0.60, 0.88, ("Sample Rate: %.2f" % self.sample_rate), weight="heavy", size=self.text_size) self.make_plots() self.button_left_axes = self.fig.add_axes([0.45, 0.01, 0.05, 0.05], frameon=True) self.button_left = Button(self.button_left_axes, "<") self.button_left_callback = self.button_left.on_clicked(self.button_left_click) self.button_right_axes = self.fig.add_axes([0.50, 0.01, 0.05, 0.05], frameon=True) self.button_right = Button(self.button_right_axes, ">") self.button_right_callback = self.button_right.on_clicked(self.button_right_click) self.xlim = self.sp_iq.get_xlim() self.manager = get_current_fig_manager() connect('draw_event', self.zoom) connect('key_press_event', self.click) show() def get_data(self): self.position = self.hfile.tell() / self.sizeof_data self.text_file_pos.set_text("File Position: %d" % (self.position)) try: self.iq = numpy.fromfile(self.hfile, dtype=self.datatype, count=self.block_length) except MemoryError: print("End of File") else: self.iq_fft = self.dofft(self.iq) tstep = 1.0 / self.sample_rate #self.time = numpy.array([tstep*(self.position + i) for i in range(len(self.iq))]) self.time = numpy.array([tstep*(i) for i in range(len(self.iq))]) self.freq = self.calc_freq(self.time, self.sample_rate) def dofft(self, iq): N = len(iq) iq_fft = numpy.fft.fftshift(fftpack.fft(iq)) # fft and shift axis iq_fft = 20*numpy.log10(abs((iq_fft+1e-15) / N)) # convert to decibels, adjust power # adding 1e-15 (-300 dB) to protect against value errors if an item in iq_fft is 0 return iq_fft def calc_freq(self, time, sample_rate): N = len(time) Fs = 1.0 / (max(time) - min(time)) Fn = 0.5 * sample_rate freq = numpy.array([-Fn + i*Fs for i in range(N)]) return freq def make_plots(self): # if specified on the command-line, set file pointer self.hfile.seek(self.sizeof_data*self.start, 1) # Subplot for real and imaginary parts of signal self.sp_iq = self.fig.add_subplot(2,2,1, position=[0.075, 0.2, 0.4, 0.6]) self.sp_iq.set_title(("I&Q"), fontsize=self.title_font_size, fontweight="bold") self.sp_iq.set_xlabel("Time (s)", fontsize=self.label_font_size, fontweight="bold") self.sp_iq.set_ylabel("Amplitude (V)", fontsize=self.label_font_size, fontweight="bold") # Subplot for FFT plot self.sp_fft = self.fig.add_subplot(2,2,2, position=[0.575, 0.2, 0.4, 0.6]) self.sp_fft.set_title(("FFT"), fontsize=self.title_font_size, fontweight="bold") self.sp_fft.set_xlabel("Frequency (Hz)", fontsize=self.label_font_size, fontweight="bold") self.sp_fft.set_ylabel("Power Spectrum (dBm)", fontsize=self.label_font_size, fontweight="bold") self.get_data() self.plot_iq = self.sp_iq.plot([], 'bo-') # make plot for reals self.plot_iq += self.sp_iq.plot([], 'ro-') # make plot for imags self.draw_time() # draw the plot self.plot_fft = self.sp_fft.plot([], 'bo-') # make plot for FFT self.draw_fft() # draw the plot draw() def draw_time(self): reals = self.iq.real imags = self.iq.imag self.plot_iq[0].set_data([self.time, reals]) self.plot_iq[1].set_data([self.time, imags]) self.sp_iq.set_xlim(self.time.min(), self.time.max()) self.sp_iq.set_ylim([1.5*min([reals.min(), imags.min()]), 1.5*max([reals.max(), imags.max()])]) def draw_fft(self): self.plot_fft[0].set_data([self.freq, self.iq_fft]) self.sp_fft.set_xlim(self.freq.min(), self.freq.max()) self.sp_fft.set_ylim([self.iq_fft.min()-10, self.iq_fft.max()+10]) def update_plots(self): self.draw_time() self.draw_fft() self.xlim = self.sp_iq.get_xlim() draw() def zoom(self, event): newxlim = numpy.array(self.sp_iq.get_xlim()) curxlim = numpy.array(self.xlim) if(newxlim[0] != curxlim[0] or newxlim[1] != curxlim[1]): self.xlim = newxlim #xmin = max(0, int(ceil(self.sample_rate*(self.xlim[0] - self.position)))) #xmax = min(int(ceil(self.sample_rate*(self.xlim[1] - self.position))), len(self.iq)) xmin = max(0, int(ceil(self.sample_rate*(self.xlim[0])))) xmax = min(int(ceil(self.sample_rate*(self.xlim[1]))), len(self.iq)) iq = self.iq[xmin : xmax] time = self.time[xmin : xmax] iq_fft = self.dofft(iq) freq = self.calc_freq(time, self.sample_rate) self.plot_fft[0].set_data(freq, iq_fft) self.sp_fft.axis([freq.min(), freq.max(), iq_fft.min()-10, iq_fft.max()+10]) draw() def click(self, event): forward_valid_keys = [" ", "down", "right"] backward_valid_keys = ["up", "left"] if(find(event.key, forward_valid_keys)): self.step_forward() elif(find(event.key, backward_valid_keys)): self.step_backward() def button_left_click(self, event): self.step_backward() def button_right_click(self, event): self.step_forward() def step_forward(self): self.get_data() self.update_plots() def step_backward(self): # Step back in file position if(self.hfile.tell() >= 2*self.sizeof_data*self.block_length ): self.hfile.seek(-2*self.sizeof_data*self.block_length, 1) else: self.hfile.seek(-self.hfile.tell(),1) self.get_data() self.update_plots() @staticmethod def setup_options(): description = "Takes a GNU Radio complex binary file and displays the I&Q data versus time as well as the frequency domain (FFT) plot. The y-axis values are plotted assuming volts as the amplitude of the I&Q streams and converted into dBm in the frequency domain (the 1/N power adjustment out of the FFT is performed internally). The script plots a certain block of data at a time, specified on the command line as -B or --block. This value defaults to 1000. The start position in the file can be set by specifying -s or --start and defaults to 0 (the start of the file). By default, the system assumes a sample rate of 1, so in time, each sample is plotted versus the sample number. To set a true time and frequency axis, set the sample rate (-R or --sample-rate) to the sample rate used when capturing the samples." parser = ArgumentParser(conflict_handler="resolve", description=description) parser.add_argument("-d", "--data-type", default="complex64", choices=("complex64", "float32", "uint32", "int32", "uint16", "int16", "uint8", "int8"), help="Specify the data type [default=%(default)r]") parser.add_argument("-B", "--block", type=int, default=1000, help="Specify the block size [default=%(default)r]") parser.add_argument("-s", "--start", type=int, default=0, help="Specify where to start in the file [default=%(default)r]") parser.add_argument("-R", "--sample-rate", type=float, default=1.0, help="Set the sampler rate of the data [default=%(default)r]") parser.add_argument("file", metavar="FILE", help="Input file with samples") return parser
class plot_psd_base(object): def __init__(self, datatype, filename, options): self.hfile = open(filename, "r") self.block_length = options.block self.start = options.start self.sample_rate = options.sample_rate self.psdfftsize = options.psd_size self.specfftsize = options.spec_size self.dospec = options.enable_spec # if we want to plot the spectrogram self.datatype = datatype if self.datatype is None: self.datatype = datatype_lookup[options.data_type] self.sizeof_data = self.datatype().nbytes # number of bytes per sample in file self.axis_font_size = 16 self.label_font_size = 18 self.title_font_size = 20 self.text_size = 22 # Setup PLOT self.fig = figure(1, figsize=(16, 12), facecolor='w') rcParams['xtick.labelsize'] = self.axis_font_size rcParams['ytick.labelsize'] = self.axis_font_size self.text_file = figtext(0.10, 0.95, ("File: %s" % filename), weight="heavy", size=self.text_size) self.text_file_pos = figtext(0.10, 0.92, "File Position: ", weight="heavy", size=self.text_size) self.text_block = figtext(0.35, 0.92, ("Block Size: %d" % self.block_length), weight="heavy", size=self.text_size) self.text_sr = figtext(0.60, 0.915, ("Sample Rate: %.2f" % self.sample_rate), weight="heavy", size=self.text_size) self.make_plots() self.button_left_axes = self.fig.add_axes([0.45, 0.01, 0.05, 0.05], frameon=True) self.button_left = Button(self.button_left_axes, "<") self.button_left_callback = self.button_left.on_clicked(self.button_left_click) self.button_right_axes = self.fig.add_axes([0.50, 0.01, 0.05, 0.05], frameon=True) self.button_right = Button(self.button_right_axes, ">") self.button_right_callback = self.button_right.on_clicked(self.button_right_click) self.xlim = numpy.array(self.sp_iq.get_xlim()) self.manager = get_current_fig_manager() connect('draw_event', self.zoom) connect('key_press_event', self.click) show() def get_data(self): self.position = self.hfile.tell() / self.sizeof_data self.text_file_pos.set_text("File Position: %d" % self.position) try: self.iq = numpy.fromfile(self.hfile, dtype=self.datatype, count=self.block_length) except MemoryError: print("End of File") return False else: # retesting length here as newer version of numpy does not throw a MemoryError, just # returns a zero-length array if(len(self.iq) > 0): tstep = 1.0 / self.sample_rate #self.time = numpy.array([tstep*(self.position + i) for i in range(len(self.iq))]) self.time = numpy.array([tstep*(i) for i in range(len(self.iq))]) self.iq_psd, self.freq = self.dopsd(self.iq) return True else: print("End of File") return False def dopsd(self, iq): ''' Need to do this here and plot later so we can do the fftshift ''' overlap = self.psdfftsize / 4 winfunc = numpy.blackman psd,freq = mlab.psd(iq, self.psdfftsize, self.sample_rate, window = lambda d: d*winfunc(self.psdfftsize), noverlap = overlap) psd = 10.0*numpy.log10(abs(psd)) return (psd, freq) def make_plots(self): # if specified on the command-line, set file pointer self.hfile.seek(self.sizeof_data*self.start, 1) iqdims = [[0.075, 0.2, 0.4, 0.6], [0.075, 0.55, 0.4, 0.3]] psddims = [[0.575, 0.2, 0.4, 0.6], [0.575, 0.55, 0.4, 0.3]] specdims = [0.2, 0.125, 0.6, 0.3] # Subplot for real and imaginary parts of signal self.sp_iq = self.fig.add_subplot(2,2,1, position=iqdims[self.dospec]) self.sp_iq.set_title(("I&Q"), fontsize=self.title_font_size, fontweight="bold") self.sp_iq.set_xlabel("Time (s)", fontsize=self.label_font_size, fontweight="bold") self.sp_iq.set_ylabel("Amplitude (V)", fontsize=self.label_font_size, fontweight="bold") # Subplot for PSD plot self.sp_psd = self.fig.add_subplot(2,2,2, position=psddims[self.dospec]) self.sp_psd.set_title(("PSD"), fontsize=self.title_font_size, fontweight="bold") self.sp_psd.set_xlabel("Frequency (Hz)", fontsize=self.label_font_size, fontweight="bold") self.sp_psd.set_ylabel("Power Spectrum (dBm)", fontsize=self.label_font_size, fontweight="bold") r = self.get_data() self.plot_iq = self.sp_iq.plot([], 'bo-') # make plot for reals self.plot_iq += self.sp_iq.plot([], 'ro-') # make plot for imags self.draw_time(self.time, self.iq) # draw the plot self.plot_psd = self.sp_psd.plot([], 'b') # make plot for PSD self.draw_psd(self.freq, self.iq_psd) # draw the plot if self.dospec: # Subplot for spectrogram plot self.sp_spec = self.fig.add_subplot(2,2,3, position=specdims) self.sp_spec.set_title(("Spectrogram"), fontsize=self.title_font_size, fontweight="bold") self.sp_spec.set_xlabel("Time (s)", fontsize=self.label_font_size, fontweight="bold") self.sp_spec.set_ylabel("Frequency (Hz)", fontsize=self.label_font_size, fontweight="bold") self.draw_spec(self.time, self.iq) draw() def draw_time(self, t, iq): reals = iq.real imags = iq.imag self.plot_iq[0].set_data([t, reals]) self.plot_iq[1].set_data([t, imags]) self.sp_iq.set_xlim(t.min(), t.max()) self.sp_iq.set_ylim([1.5*min([reals.min(), imags.min()]), 1.5*max([reals.max(), imags.max()])]) def draw_psd(self, f, p): self.plot_psd[0].set_data([f, p]) self.sp_psd.set_ylim([p.min()-10, p.max()+10]) self.sp_psd.set_xlim([f.min(), f.max()]) def draw_spec(self, t, s): overlap = self.specfftsize / 4 winfunc = numpy.blackman self.sp_spec.clear() self.sp_spec.specgram(s, self.specfftsize, self.sample_rate, window = lambda d: d*winfunc(self.specfftsize), noverlap = overlap, xextent=[t.min(), t.max()]) def update_plots(self): self.draw_time(self.time, self.iq) self.draw_psd(self.freq, self.iq_psd) if self.dospec: self.draw_spec(self.time, self.iq) self.xlim = numpy.array(self.sp_iq.get_xlim()) # so zoom doesn't get called draw() def zoom(self, event): newxlim = numpy.array(self.sp_iq.get_xlim()) curxlim = numpy.array(self.xlim) if(newxlim[0] != curxlim[0] or newxlim[1] != curxlim[1]): #xmin = max(0, int(ceil(self.sample_rate*(newxlim[0] - self.position)))) #xmax = min(int(ceil(self.sample_rate*(newxlim[1] - self.position))), len(self.iq)) xmin = max(0, int(ceil(self.sample_rate*(newxlim[0])))) xmax = min(int(ceil(self.sample_rate*(newxlim[1]))), len(self.iq)) iq = numpy.array(self.iq[xmin : xmax]) time = numpy.array(self.time[xmin : xmax]) iq_psd, freq = self.dopsd(iq) self.draw_psd(freq, iq_psd) self.xlim = numpy.array(self.sp_iq.get_xlim()) draw() def click(self, event): forward_valid_keys = [" ", "down", "right"] backward_valid_keys = ["up", "left"] if(find(event.key, forward_valid_keys)): self.step_forward() elif(find(event.key, backward_valid_keys)): self.step_backward() def button_left_click(self, event): self.step_backward() def button_right_click(self, event): self.step_forward() def step_forward(self): r = self.get_data() if(r): self.update_plots() def step_backward(self): # Step back in file position if(self.hfile.tell() >= 2*self.sizeof_data*self.block_length ): self.hfile.seek(-2*self.sizeof_data*self.block_length, 1) else: self.hfile.seek(-self.hfile.tell(),1) r = self.get_data() if(r): self.update_plots() @staticmethod def setup_options(): description = "Takes a GNU Radio binary file (with specified data type using --data-type) and displays the I&Q data versus time as well as the power spectral density (PSD) plot. The y-axis values are plotted assuming volts as the amplitude of the I&Q streams and converted into dBm in the frequency domain (the 1/N power adjustment out of the FFT is performed internally). The script plots a certain block of data at a time, specified on the command line as -B or --block. The start position in the file can be set by specifying -s or --start and defaults to 0 (the start of the file). By default, the system assumes a sample rate of 1, so in time, each sample is plotted versus the sample number. To set a true time and frequency axis, set the sample rate (-R or --sample-rate) to the sample rate used when capturing the samples. Finally, the size of the FFT to use for the PSD and spectrogram plots can be set independently with --psd-size and --spec-size, respectively. The spectrogram plot does not display by default and is turned on with -S or --enable-spec." parser = ArgumentParser(conflict_handler="resolve", description=description) parser.add_argument("-d", "--data-type", default="complex64", choices=("complex64", "float32", "int32", "uint32", "int16", "uint16", "int8", "uint8" ), help="Specify the data type [default=%(default)r]") parser.add_argument("-B", "--block", type=int, default=8192, help="Specify the block size [default=%(default)r]") parser.add_argument("-s", "--start", type=int, default=0, help="Specify where to start in the file [default=%(default)r]") parser.add_argument("-R", "--sample-rate", type=eng_float, default=1.0, help="Set the sampler rate of the data [default=%(default)r]") parser.add_argument("--psd-size", type=int, default=1024, help="Set the size of the PSD FFT [default=%(default)r]") parser.add_argument("--spec-size", type=int, default=256, help="Set the size of the spectrogram FFT [default=%(default)r]") parser.add_argument("-S", "--enable-spec", action="store_true", help="Turn on plotting the spectrogram [default=%(default)r]") parser.add_argument("file", metavar="FILE", help="Input file with samples") return parser