def __getitem__(self, index):

        if self.is_train:
            a = self.anno[self.train[index]]
        else:
            a = self.anno[self.valid[index]]

        img_path = os.path.join(self.img_folder, a['img_paths'])
        pts = torch.Tensor(a['joint_self'])
        # pts[:, 0:2] -= 1  # Convert pts to zero based
        pts = pts[:, 0:2]

        # c = torch.Tensor(a['objpos']) - 1
        c = torch.Tensor(a['objpos'])
        # print c
        s = torch.Tensor([a['scale_provided']])
        # print s
        # exit()
        if a['dataset'] == 'MPII':
            c[1] = c[1] + 15 * s[0]
            s = s * 1.25
            normalizer = a['normalizer'] * 0.6
        elif a['dataset'] == 'LEEDS':
            print 'using lsp data'
            s = s * 1.4375
            normalizer = torch.dist(pts[2, :], pts[13, :])
        else:
            print 'no such dataset {}'.format(a['dataset'])

        # For single-person pose estimation with a centered/scaled figure
        img = imutils.load_image(img_path)
        # print img.size()
        # exit()
        # img = scipy.misc.imread(img_path, mode='RGB') # CxHxW
        # img = torch.from_numpy(img)

        r = 0
        if self.is_train:
            s = s * (2**(sample_from_bounded_gaussian(self.scale_factor)))
            r = sample_from_bounded_gaussian(self.rot_factor)
            if np.random.uniform(0, 1, 1) <= 0.6:
                r = 0

            # Flip
            if np.random.random() <= 0.5:
                img = torch.from_numpy(HumanAug.fliplr(img.numpy())).float()
                pts = HumanAug.shufflelr(pts,
                                         width=img.size(2),
                                         dataset='mpii')
                c[0] = img.size(2) - c[0]

            # Color
            img[0, :, :].mul_(np.random.uniform(0.6, 1.4)).clamp_(0, 1)
            img[1, :, :].mul_(np.random.uniform(0.6, 1.4)).clamp_(0, 1)
            img[2, :, :].mul_(np.random.uniform(0.6, 1.4)).clamp_(0, 1)

        # Prepare image and groundtruth map
        inp = HumanAug.crop(imutils.im_to_numpy(img), c.numpy(), s.numpy(), r,
                            self.inp_res, self.std_size)
        inp = imutils.im_to_torch(inp).float()
        # inp = self.color_normalize(inp, self.mean, self.std)
        pts_aug = HumanAug.TransformPts(pts.numpy(), c.numpy(), s.numpy(), r,
                                        self.out_res, self.std_size)

        #idx_indicator = (pts[:, 0] <= 0) | (pts[:, 1] <= 0)
        #idx = torch.arange(0, pts.size(0)).long()
        #idx = idx[idx_indicator]
        #pts_aug[idx, :] = 0
        # Generate ground truth
        heatmap, pts_aug = HumanPts.pts2heatmap(pts_aug,
                                                [self.out_res, self.out_res],
                                                sigma=1)
        heatmap = torch.from_numpy(heatmap).float()
        # pts_aug = torch.from_numpy(pts_aug).float()

        r = torch.FloatTensor([r])
        #normalizer = torch.FloatTensor([normalizer])
        if self.is_train:
            #print 'inp size: ', inp.size()
            #print 'heatmap size: ', heatmap.size()
            #print 'c size: ', c.size()
            #print 's size: ', s.size()
            #print 'r size: ', r.size()
            #print 'pts size: ', pts.size()
            #print 'normalizer size: ', normalizer.size()
            #print 'r: ', r
            #    if len(r.size()) != 1:
            #	print 'r: ', r
            #    if len(c.size()) != 1:
            #	print 'c: ', c
            return inp, heatmap, c, s, r, pts, normalizer
        else:
            # Meta info
            #meta = {'index': index, 'center': c, 'scale': s,
            #        'pts': pts, 'tpts': pts_aug}

            return inp, heatmap, c, s, r, pts, normalizer, index
    def __getitem__(self, index):

        if self.is_train:
            a = self.anno[self.train[index]]
        else:
            a = self.anno[self.valid[index]]

        img_path = os.path.join(self.img_folder, a['img_paths'])
        pts = torch.Tensor(a['joint_self'])
        # pts[:, 0:2] -= 1  # Convert pts to zero based
        pts = pts[:, 0:2]

        # c = torch.Tensor(a['objpos']) - 1
        c = torch.Tensor(a['objpos'])
        # print c
        s = torch.Tensor([a['scale_provided']])
        # print s
        # exit()
        if a['dataset'] == 'MPII':
            c[1] = c[1] + 15 * s[0]
            s = s * 1.25
            normalizer = a['normalizer'] * 0.6
        elif a['dataset'] == 'LEEDS':
            print 'using lsp data'
            s = s * 1.4375
            normalizer = torch.dist(pts[2, :], pts[13, :])
        else:
            print 'no such dataset {}'.format(a['dataset'])

        # For single-person pose estimation with a centered/scaled figure
        img = imutils.load_image(img_path)
        # print img.size()
        # exit()
        # img = scipy.misc.imread(img_path, mode='RGB') # CxHxW
        # img = torch.from_numpy(img)
        inp_std, heatmap_std = self.gen_img_heatmap(c.clone(), s.clone(), 0,
                                                    img.clone(), pts.clone())
        # r = 0
        if self.is_train:
            s = s * (2 ** (sample_from_bounded_gaussian(self.scale_factor)))
            r = sample_from_bounded_gaussian(self.rot_factor)
            if np.random.uniform(0, 1, 1) <= 0.6:
                r = np.array([0])

            # Flip
            if np.random.random() <= 0.5:
                img = torch.from_numpy(HumanAug.fliplr(img.numpy())).float()
                pts = HumanAug.shufflelr(pts, width=img.size(2), dataset='mpii')
                c[0] = img.size(2) - c[0]

            # Color
            img[0, :, :].mul_(np.random.uniform(0.6, 1.4)).clamp_(0, 1)
            img[1, :, :].mul_(np.random.uniform(0.6, 1.4)).clamp_(0, 1)
            img[2, :, :].mul_(np.random.uniform(0.6, 1.4)).clamp_(0, 1)

            # aug image and groundtruth map
            inp, heatmap = self.gen_img_heatmap(c.clone(), s.clone(), r,
                                                img.clone(), pts.clone())

            r = torch.FloatTensor([r])
            return inp_std, inp, heatmap, c, s, r, pts, normalizer, index
        else:
            # Meta info
            #meta = {'index': index, 'center': c, 'scale': s,
            #        'pts': pts, 'tpts': pts_aug}
            r = torch.FloatTensor([0])
            return inp_std, heatmap_std, c, s, r, pts, normalizer, index
Beispiel #3
0
    def __getitem__(self, index):

        if self.is_train:
            a = self.anno[self.train[index]]
        else:
            a = self.anno[self.valid[index]]

        img_path = os.path.join(self.img_folder, a['img_paths'])

        if a['pts_paths'] == "unknown.xyz":
            pts = a['pts']
        else:
            pts_path = os.path.join(self.img_folder, a['pts_paths'])

            if pts_path[-4:] == '.txt':
                pts = np.loadtxt(pts_path)  # L x 2
            else:
                pts = a['pts']

        pts = np.array(pts)
        # Assume all points are visible for a dataset. This is a multiclass
        # visibility
        visible_multiclass = np.ones(pts.shape[0])

        if a['dataset'] == 'aflw_ours' or a['dataset'] == 'cofw_68':
            # The pts which are labelled -1 in both x and y are not visible points
            self_occluded_landmark = (pts[:, 0] == -1) & (pts[:, 1] == -1)
            external_occluded_landmark = (pts[:, 0] < -1) & (pts[:, 1] < -1)

            visible_multiclass[self_occluded_landmark] = 0
            visible_multiclass[external_occluded_landmark] = 2

            # valid landmarks are those which are external occluded and not occluded
            valid_landmark = (pts[:, 0] != -1) & (pts[:, 1] != -1)

            # The points which are partially occluded have both coordinates as negative but not -1
            # Make them positive
            pts = np.abs(pts)

            # valid_landmark is 0 for to be masked and 1 for not to be masked
            # mask is 1 for to be masked and 0 for not to be masked
            pts_masked = np.ma.array(pts,
                                     mask=np.column_stack(
                                         (1 - valid_landmark,
                                          1 - valid_landmark)))
            pts_mean = np.mean(pts_masked, axis=0)

            # Replace -1 by mean of valid landmarks. Otherwise taking min for
            # calculating geomteric mean of the box can create issues later.
            pts[self_occluded_landmark] = pts_mean.data

            scale_mul_factor = 1.1

        elif a['dataset'] == "aflw" or a['dataset'] == "wflw":
            self_occluded_landmark = (pts[:, 0] <= 0) | (pts[:, 1] <= 0)
            valid_landmark = 1 - self_occluded_landmark
            visible_multiclass[self_occluded_landmark] = 0

            # valid_landmark is 0 for to be masked and 1 for not to be masked
            # mask is 1 for to be masked and 0 for not to be masked
            pts_masked = np.ma.array(pts,
                                     mask=np.column_stack(
                                         (1 - valid_landmark,
                                          1 - valid_landmark)))
            pts_mean = np.mean(pts_masked, axis=0)

            # Replace -1 by mean of valid landmarks. Otherwise taking min for
            # calculating geomteric mean of the box can create issues later.
            pts[self_occluded_landmark] = pts_mean.data

            scale_mul_factor = 1.25

        else:
            scale_mul_factor = 1.1

        pts = torch.Tensor(pts)  # size is 68*2
        s = torch.Tensor([a['scale_provided_det']]) * scale_mul_factor
        c = torch.Tensor(a['objpos_det'])

        # For single-person pose estimation with a centered/scaled figure
        # the image in the original size
        img = imutils.load_image(img_path)

        r = 0
        s_rand = 1
        if self.is_train:  #data augmentation for training data
            s_rand = (1 + sample_from_bounded_gaussian(self.scale_factor / 2.))
            s = s * s_rand

            r = sample_from_bounded_gaussian(self.rot_factor / 2.)

            #print('s shape is ', s.size(), 's is ', s)
            #if np.random.uniform(0, 1, 1) <= 0.6:
            #    r = np.array([0])

            if self.use_flipping:
                # Flip
                if np.random.random() <= 0.5:
                    img = torch.from_numpy(HumanAug.fliplr(
                        img.numpy())).float()
                    pts = HumanAug.shufflelr(pts,
                                             width=img.size(2),
                                             dataset='face')
                    c[0] = img.size(2) - c[0]

            # Color
            img[0, :, :].mul_(np.random.uniform(0.6, 1.4)).clamp_(0, 1)
            img[1, :, :].mul_(np.random.uniform(0.6, 1.4)).clamp_(0, 1)
            img[2, :, :].mul_(np.random.uniform(0.6, 1.4)).clamp_(0, 1)

            if self.use_occlusion:
                # Apply a random black occlusion
                # C x H x W
                patch_center_row = randint(1, img.size(1))
                patch_center_col = randint(1, img.size(2))

                patch_height = randint(1, img.size(1) / 2)
                patch_width = randint(1, img.size(2) / 2)

                row_min = max(0, patch_center_row - patch_height)
                row_max = min(img.size(1), patch_center_row + patch_height)
                col_min = max(0, patch_center_col - patch_width)
                col_max = min(img.size(2), patch_center_col + patch_width)

                img[:, row_min:row_max, col_min:col_max] = 0

        # Prepare points first
        pts_input_res = HumanAug.TransformPts(pts.numpy(), c.numpy(),
                                              s.numpy(), r, self.inp_res,
                                              self.std_size)

        # Some landmark points can go outside after transformation. Determine the
        # extra scaling required.
        # This can only be done for the training points. For validation, we do
        # not know the points location.
        if self.is_train and self.keep_pts_inside:
            # visible copy takes care of whether point is visible or not.
            visible_copy = visible_multiclass.copy()
            visible_copy[visible_multiclass > 1] = 1
            scale_down = get_ideal_scale(pts_input_res,
                                         self.inp_res,
                                         img_path,
                                         visible=visible_copy)
            s = s / scale_down
            s_rand = s_rand / scale_down
            pts_input_res = HumanAug.TransformPts(pts.numpy(), c.numpy(),
                                                  s.numpy(), r, self.inp_res,
                                                  self.std_size)

        if a['dataset'] == "aflw":
            meta_box_size = a['box_size']
            # We convert the meta_box size also to the input res. The meta_box
            # is not formed by the landmark point but is supplied externally.
            # We assume the meta_box as two points [meta_box_size, 0] and [0, 0]
            # apply the transformation on top of it
            temp = HumanAug.TransformPts(
                np.array([[meta_box_size, 0], [0, 0]]), c.numpy(), s.numpy(),
                r, self.inp_res, self.std_size)
            # Passed as array of 2 x 2
            # we only want the transformed distance between the points
            meta_box_size_input_res = np.linalg.norm(temp[1] - temp[0])
        else:
            meta_box_size_input_res = -10  # some invalid number

        # pts_input_res is in the size of 256 x 256
        # Bring down to 64 x 64 since finally heatmap will be 64 x 64
        pts_aug = pts_input_res * (1. * self.out_res / self.inp_res)

        # Prepare image
        inp = HumanAug.crop(imutils.im_to_numpy(img), c.numpy(), s.numpy(), r,
                            self.inp_res, self.std_size)
        inp_vis = inp
        inp = imutils.im_to_torch(inp).float()  # 3*256*256

        # Generate proxy ground truth heatmap
        heatmap, pts_aug = HumanPts.pts2heatmap(pts_aug,
                                                [self.out_res, self.out_res],
                                                sigma=self.sigma)
        heatmap = torch.from_numpy(heatmap).float()
        heatmap_mask = HumanPts.pts2mask(pts_aug, [self.out_res, self.out_res],
                                         bb=10)

        if self.is_train:
            return inp, heatmap, pts_input_res, heatmap_mask, s_rand, visible_multiclass, meta_box_size_input_res
        else:
            return inp, heatmap, pts_input_res, c, s, index, inp_vis, s_rand, visible_multiclass, meta_box_size_input_res
Beispiel #4
0
    def __getitem__(self, index):
        # print('loading image', index)
        if self.img_index_list is None:
            a = self.anno[self.train[index]]
        else:
            idx = self.img_index_list[index]
            a = self.anno[self.train[idx]]

        img_path = os.path.join(self.img_folder, a['img_paths'])
        pts = torch.Tensor(a['joint_self'])
        # pts[:, 0:2] -= 1  # Convert pts to zero based
        pts = pts[:, 0:2]
        # c = torch.Tensor(a['objpos']) - 1
        c = torch.Tensor(a['objpos'])
        # print(c)
        s = torch.Tensor([a['scale_provided']])
        # r = torch.FloatTensor([0])
        # exit()
        if a['dataset'] == 'MPII':
            c[1] = c[1] + 15 * s[0]
            s = s * 1.25
            normalizer = a['normalizer'] * 0.6
        elif a['dataset'] == 'LEEDS':
            print('using lsp data')
            s = s * 1.4375
            normalizer = torch.dist(pts[2, :], pts[13, :])
        else:
            print('no such dataset {}'.format(a['dataset']))

        # For single-person pose estimation with a centered/scaled figure
        img = imutils.load_image(img_path)
        if self.img_index_list is None:
            s_aug = s * (2**(sample_from_large_gaussian(self.scale_factor)))
            r_aug = sample_from_large_gaussian(self.rot_factor)
            if np.random.uniform(0, 1, 1) <= 0.6:
                r_aug = np.array([0])
        else:
            gaussian_mean_scale = self.scale_means[
                self.scale_index_list[index]]
            scale_factor = sample_from_small_gaussian(gaussian_mean_scale,
                                                      self.scale_var)
            gaussian_mean_rotation = self.rotation_means[
                self.rotation_index_list[index]]
            r_aug = sample_from_small_gaussian(gaussian_mean_rotation,
                                               self.rotaiton_var)
            s_aug = s * (2**scale_factor)
        if self.separate_s_r:
            img_list = [None] * 2
            heatmap_list = [None] * 2
            c_list = [c.clone()] * 2
            s_list = [s_aug.clone(), s.clone()]
            r_list = [torch.FloatTensor([0]), torch.FloatTensor([r_aug])]
            grnd_pts_list = [pts.clone(), pts.clone()]
            # print('type of normalizaer: ', type(normalizer))
            normalizer_list = [normalizer, normalizer]
            img_list[0], heatmap_list[0] = self.gen_img_heatmap(
                c.clone(), s_aug.clone(), 0, img.clone(), pts.clone())
            img_list[1], heatmap_list[1] = self.gen_img_heatmap(
                c.clone(), s.clone(), r_aug, img.clone(), pts.clone())
            if self.img_index_list is not None:
                return img_list, heatmap_list, c_list, s_list,\
                       r_list, grnd_pts_list, normalizer_list, idx
            else:
                inp_std, _ = self.gen_img_heatmap(c.clone(), s.clone(), 0,
                                                  img.clone(), pts.clone())
                return inp_std, img_list, heatmap_list, c_list, s_list, r_list,\
                       grnd_pts_list, normalizer_list, index
        else:
            if np.random.random() <= 0.5:
                img = torch.from_numpy(HumanAug.fliplr(img.numpy())).float()
                pts = HumanAug.shufflelr(pts,
                                         width=img.size(2),
                                         dataset='mpii')
                c[0] = img.size(2) - c[0]

            # Color
            img[0, :, :].mul_(np.random.uniform(0.6, 1.4)).clamp_(0, 1)
            img[1, :, :].mul_(np.random.uniform(0.6, 1.4)).clamp_(0, 1)
            img[2, :, :].mul_(np.random.uniform(0.6, 1.4)).clamp_(0, 1)

            inp, heatmap = self.gen_img_heatmap(c.clone(),
                                                s_aug.clone(), r_aug,
                                                img.clone(), pts.clone())
            # if self.separate_s_r is false, then self.img_index_list is not None
            # so return idx instead of index
            r_aug = torch.FloatTensor([r_aug])
            return inp, heatmap, c, s_aug, r_aug, pts, normalizer, idx
                                         pin_memory=True)

# Visualize some images
for i, (img, _, points, _, s) in enumerate(val_loader):
    print(i)
    image = img[index].numpy()
    pts = points[index].numpy()

    plt.figure(figsize=(16, 8))
    plt.subplot(121)
    plt.imshow(swap_channels(image))
    plt_pts(plt, pts)

    image = torch.from_numpy(HumanAug.fliplr(img[index].numpy())).float()
    pts = HumanAug.shufflelr(points[index],
                             width=image.size(2),
                             dataset='face')
    plt.subplot(122)
    plt.imshow(swap_channels(image))
    plt_pts(plt, pts)

    plt.show()
    plt.close()
    if i > 10:
        break

val_loader = torch.utils.data.DataLoader(FACE(
    "dataset/all_300Wtest_train.json", ".", is_train=True),
                                         batch_size=10,
                                         shuffle=True,
                                         num_workers=1,