def __getitem__(self, index): if self.is_train: a = self.anno[self.train[index]] else: a = self.anno[self.valid[index]] img_path = os.path.join(self.img_folder, a['img_paths']) pts = torch.Tensor(a['joint_self']) # pts[:, 0:2] -= 1 # Convert pts to zero based pts = pts[:, 0:2] # c = torch.Tensor(a['objpos']) - 1 c = torch.Tensor(a['objpos']) # print c s = torch.Tensor([a['scale_provided']]) # print s # exit() if a['dataset'] == 'MPII': c[1] = c[1] + 15 * s[0] s = s * 1.25 normalizer = a['normalizer'] * 0.6 elif a['dataset'] == 'LEEDS': print 'using lsp data' s = s * 1.4375 normalizer = torch.dist(pts[2, :], pts[13, :]) else: print 'no such dataset {}'.format(a['dataset']) # For single-person pose estimation with a centered/scaled figure img = imutils.load_image(img_path) # print img.size() # exit() # img = scipy.misc.imread(img_path, mode='RGB') # CxHxW # img = torch.from_numpy(img) r = 0 if self.is_train: s = s * (2**(sample_from_bounded_gaussian(self.scale_factor))) r = sample_from_bounded_gaussian(self.rot_factor) if np.random.uniform(0, 1, 1) <= 0.6: r = 0 # Flip if np.random.random() <= 0.5: img = torch.from_numpy(HumanAug.fliplr(img.numpy())).float() pts = HumanAug.shufflelr(pts, width=img.size(2), dataset='mpii') c[0] = img.size(2) - c[0] # Color img[0, :, :].mul_(np.random.uniform(0.6, 1.4)).clamp_(0, 1) img[1, :, :].mul_(np.random.uniform(0.6, 1.4)).clamp_(0, 1) img[2, :, :].mul_(np.random.uniform(0.6, 1.4)).clamp_(0, 1) # Prepare image and groundtruth map inp = HumanAug.crop(imutils.im_to_numpy(img), c.numpy(), s.numpy(), r, self.inp_res, self.std_size) inp = imutils.im_to_torch(inp).float() # inp = self.color_normalize(inp, self.mean, self.std) pts_aug = HumanAug.TransformPts(pts.numpy(), c.numpy(), s.numpy(), r, self.out_res, self.std_size) #idx_indicator = (pts[:, 0] <= 0) | (pts[:, 1] <= 0) #idx = torch.arange(0, pts.size(0)).long() #idx = idx[idx_indicator] #pts_aug[idx, :] = 0 # Generate ground truth heatmap, pts_aug = HumanPts.pts2heatmap(pts_aug, [self.out_res, self.out_res], sigma=1) heatmap = torch.from_numpy(heatmap).float() # pts_aug = torch.from_numpy(pts_aug).float() r = torch.FloatTensor([r]) #normalizer = torch.FloatTensor([normalizer]) if self.is_train: #print 'inp size: ', inp.size() #print 'heatmap size: ', heatmap.size() #print 'c size: ', c.size() #print 's size: ', s.size() #print 'r size: ', r.size() #print 'pts size: ', pts.size() #print 'normalizer size: ', normalizer.size() #print 'r: ', r # if len(r.size()) != 1: # print 'r: ', r # if len(c.size()) != 1: # print 'c: ', c return inp, heatmap, c, s, r, pts, normalizer else: # Meta info #meta = {'index': index, 'center': c, 'scale': s, # 'pts': pts, 'tpts': pts_aug} return inp, heatmap, c, s, r, pts, normalizer, index
def __getitem__(self, index): if self.is_train: a = self.anno[self.train[index]] else: a = self.anno[self.valid[index]] img_path = os.path.join(self.img_folder, a['img_paths']) pts = torch.Tensor(a['joint_self']) # pts[:, 0:2] -= 1 # Convert pts to zero based pts = pts[:, 0:2] # c = torch.Tensor(a['objpos']) - 1 c = torch.Tensor(a['objpos']) # print c s = torch.Tensor([a['scale_provided']]) # print s # exit() if a['dataset'] == 'MPII': c[1] = c[1] + 15 * s[0] s = s * 1.25 normalizer = a['normalizer'] * 0.6 elif a['dataset'] == 'LEEDS': print 'using lsp data' s = s * 1.4375 normalizer = torch.dist(pts[2, :], pts[13, :]) else: print 'no such dataset {}'.format(a['dataset']) # For single-person pose estimation with a centered/scaled figure img = imutils.load_image(img_path) # print img.size() # exit() # img = scipy.misc.imread(img_path, mode='RGB') # CxHxW # img = torch.from_numpy(img) inp_std, heatmap_std = self.gen_img_heatmap(c.clone(), s.clone(), 0, img.clone(), pts.clone()) # r = 0 if self.is_train: s = s * (2 ** (sample_from_bounded_gaussian(self.scale_factor))) r = sample_from_bounded_gaussian(self.rot_factor) if np.random.uniform(0, 1, 1) <= 0.6: r = np.array([0]) # Flip if np.random.random() <= 0.5: img = torch.from_numpy(HumanAug.fliplr(img.numpy())).float() pts = HumanAug.shufflelr(pts, width=img.size(2), dataset='mpii') c[0] = img.size(2) - c[0] # Color img[0, :, :].mul_(np.random.uniform(0.6, 1.4)).clamp_(0, 1) img[1, :, :].mul_(np.random.uniform(0.6, 1.4)).clamp_(0, 1) img[2, :, :].mul_(np.random.uniform(0.6, 1.4)).clamp_(0, 1) # aug image and groundtruth map inp, heatmap = self.gen_img_heatmap(c.clone(), s.clone(), r, img.clone(), pts.clone()) r = torch.FloatTensor([r]) return inp_std, inp, heatmap, c, s, r, pts, normalizer, index else: # Meta info #meta = {'index': index, 'center': c, 'scale': s, # 'pts': pts, 'tpts': pts_aug} r = torch.FloatTensor([0]) return inp_std, heatmap_std, c, s, r, pts, normalizer, index
def __getitem__(self, index): if self.is_train: a = self.anno[self.train[index]] else: a = self.anno[self.valid[index]] img_path = os.path.join(self.img_folder, a['img_paths']) if a['pts_paths'] == "unknown.xyz": pts = a['pts'] else: pts_path = os.path.join(self.img_folder, a['pts_paths']) if pts_path[-4:] == '.txt': pts = np.loadtxt(pts_path) # L x 2 else: pts = a['pts'] pts = np.array(pts) # Assume all points are visible for a dataset. This is a multiclass # visibility visible_multiclass = np.ones(pts.shape[0]) if a['dataset'] == 'aflw_ours' or a['dataset'] == 'cofw_68': # The pts which are labelled -1 in both x and y are not visible points self_occluded_landmark = (pts[:, 0] == -1) & (pts[:, 1] == -1) external_occluded_landmark = (pts[:, 0] < -1) & (pts[:, 1] < -1) visible_multiclass[self_occluded_landmark] = 0 visible_multiclass[external_occluded_landmark] = 2 # valid landmarks are those which are external occluded and not occluded valid_landmark = (pts[:, 0] != -1) & (pts[:, 1] != -1) # The points which are partially occluded have both coordinates as negative but not -1 # Make them positive pts = np.abs(pts) # valid_landmark is 0 for to be masked and 1 for not to be masked # mask is 1 for to be masked and 0 for not to be masked pts_masked = np.ma.array(pts, mask=np.column_stack( (1 - valid_landmark, 1 - valid_landmark))) pts_mean = np.mean(pts_masked, axis=0) # Replace -1 by mean of valid landmarks. Otherwise taking min for # calculating geomteric mean of the box can create issues later. pts[self_occluded_landmark] = pts_mean.data scale_mul_factor = 1.1 elif a['dataset'] == "aflw" or a['dataset'] == "wflw": self_occluded_landmark = (pts[:, 0] <= 0) | (pts[:, 1] <= 0) valid_landmark = 1 - self_occluded_landmark visible_multiclass[self_occluded_landmark] = 0 # valid_landmark is 0 for to be masked and 1 for not to be masked # mask is 1 for to be masked and 0 for not to be masked pts_masked = np.ma.array(pts, mask=np.column_stack( (1 - valid_landmark, 1 - valid_landmark))) pts_mean = np.mean(pts_masked, axis=0) # Replace -1 by mean of valid landmarks. Otherwise taking min for # calculating geomteric mean of the box can create issues later. pts[self_occluded_landmark] = pts_mean.data scale_mul_factor = 1.25 else: scale_mul_factor = 1.1 pts = torch.Tensor(pts) # size is 68*2 s = torch.Tensor([a['scale_provided_det']]) * scale_mul_factor c = torch.Tensor(a['objpos_det']) # For single-person pose estimation with a centered/scaled figure # the image in the original size img = imutils.load_image(img_path) r = 0 s_rand = 1 if self.is_train: #data augmentation for training data s_rand = (1 + sample_from_bounded_gaussian(self.scale_factor / 2.)) s = s * s_rand r = sample_from_bounded_gaussian(self.rot_factor / 2.) #print('s shape is ', s.size(), 's is ', s) #if np.random.uniform(0, 1, 1) <= 0.6: # r = np.array([0]) if self.use_flipping: # Flip if np.random.random() <= 0.5: img = torch.from_numpy(HumanAug.fliplr( img.numpy())).float() pts = HumanAug.shufflelr(pts, width=img.size(2), dataset='face') c[0] = img.size(2) - c[0] # Color img[0, :, :].mul_(np.random.uniform(0.6, 1.4)).clamp_(0, 1) img[1, :, :].mul_(np.random.uniform(0.6, 1.4)).clamp_(0, 1) img[2, :, :].mul_(np.random.uniform(0.6, 1.4)).clamp_(0, 1) if self.use_occlusion: # Apply a random black occlusion # C x H x W patch_center_row = randint(1, img.size(1)) patch_center_col = randint(1, img.size(2)) patch_height = randint(1, img.size(1) / 2) patch_width = randint(1, img.size(2) / 2) row_min = max(0, patch_center_row - patch_height) row_max = min(img.size(1), patch_center_row + patch_height) col_min = max(0, patch_center_col - patch_width) col_max = min(img.size(2), patch_center_col + patch_width) img[:, row_min:row_max, col_min:col_max] = 0 # Prepare points first pts_input_res = HumanAug.TransformPts(pts.numpy(), c.numpy(), s.numpy(), r, self.inp_res, self.std_size) # Some landmark points can go outside after transformation. Determine the # extra scaling required. # This can only be done for the training points. For validation, we do # not know the points location. if self.is_train and self.keep_pts_inside: # visible copy takes care of whether point is visible or not. visible_copy = visible_multiclass.copy() visible_copy[visible_multiclass > 1] = 1 scale_down = get_ideal_scale(pts_input_res, self.inp_res, img_path, visible=visible_copy) s = s / scale_down s_rand = s_rand / scale_down pts_input_res = HumanAug.TransformPts(pts.numpy(), c.numpy(), s.numpy(), r, self.inp_res, self.std_size) if a['dataset'] == "aflw": meta_box_size = a['box_size'] # We convert the meta_box size also to the input res. The meta_box # is not formed by the landmark point but is supplied externally. # We assume the meta_box as two points [meta_box_size, 0] and [0, 0] # apply the transformation on top of it temp = HumanAug.TransformPts( np.array([[meta_box_size, 0], [0, 0]]), c.numpy(), s.numpy(), r, self.inp_res, self.std_size) # Passed as array of 2 x 2 # we only want the transformed distance between the points meta_box_size_input_res = np.linalg.norm(temp[1] - temp[0]) else: meta_box_size_input_res = -10 # some invalid number # pts_input_res is in the size of 256 x 256 # Bring down to 64 x 64 since finally heatmap will be 64 x 64 pts_aug = pts_input_res * (1. * self.out_res / self.inp_res) # Prepare image inp = HumanAug.crop(imutils.im_to_numpy(img), c.numpy(), s.numpy(), r, self.inp_res, self.std_size) inp_vis = inp inp = imutils.im_to_torch(inp).float() # 3*256*256 # Generate proxy ground truth heatmap heatmap, pts_aug = HumanPts.pts2heatmap(pts_aug, [self.out_res, self.out_res], sigma=self.sigma) heatmap = torch.from_numpy(heatmap).float() heatmap_mask = HumanPts.pts2mask(pts_aug, [self.out_res, self.out_res], bb=10) if self.is_train: return inp, heatmap, pts_input_res, heatmap_mask, s_rand, visible_multiclass, meta_box_size_input_res else: return inp, heatmap, pts_input_res, c, s, index, inp_vis, s_rand, visible_multiclass, meta_box_size_input_res
def __getitem__(self, index): # print('loading image', index) if self.img_index_list is None: a = self.anno[self.train[index]] else: idx = self.img_index_list[index] a = self.anno[self.train[idx]] img_path = os.path.join(self.img_folder, a['img_paths']) pts = torch.Tensor(a['joint_self']) # pts[:, 0:2] -= 1 # Convert pts to zero based pts = pts[:, 0:2] # c = torch.Tensor(a['objpos']) - 1 c = torch.Tensor(a['objpos']) # print(c) s = torch.Tensor([a['scale_provided']]) # r = torch.FloatTensor([0]) # exit() if a['dataset'] == 'MPII': c[1] = c[1] + 15 * s[0] s = s * 1.25 normalizer = a['normalizer'] * 0.6 elif a['dataset'] == 'LEEDS': print('using lsp data') s = s * 1.4375 normalizer = torch.dist(pts[2, :], pts[13, :]) else: print('no such dataset {}'.format(a['dataset'])) # For single-person pose estimation with a centered/scaled figure img = imutils.load_image(img_path) if self.img_index_list is None: s_aug = s * (2**(sample_from_large_gaussian(self.scale_factor))) r_aug = sample_from_large_gaussian(self.rot_factor) if np.random.uniform(0, 1, 1) <= 0.6: r_aug = np.array([0]) else: gaussian_mean_scale = self.scale_means[ self.scale_index_list[index]] scale_factor = sample_from_small_gaussian(gaussian_mean_scale, self.scale_var) gaussian_mean_rotation = self.rotation_means[ self.rotation_index_list[index]] r_aug = sample_from_small_gaussian(gaussian_mean_rotation, self.rotaiton_var) s_aug = s * (2**scale_factor) if self.separate_s_r: img_list = [None] * 2 heatmap_list = [None] * 2 c_list = [c.clone()] * 2 s_list = [s_aug.clone(), s.clone()] r_list = [torch.FloatTensor([0]), torch.FloatTensor([r_aug])] grnd_pts_list = [pts.clone(), pts.clone()] # print('type of normalizaer: ', type(normalizer)) normalizer_list = [normalizer, normalizer] img_list[0], heatmap_list[0] = self.gen_img_heatmap( c.clone(), s_aug.clone(), 0, img.clone(), pts.clone()) img_list[1], heatmap_list[1] = self.gen_img_heatmap( c.clone(), s.clone(), r_aug, img.clone(), pts.clone()) if self.img_index_list is not None: return img_list, heatmap_list, c_list, s_list,\ r_list, grnd_pts_list, normalizer_list, idx else: inp_std, _ = self.gen_img_heatmap(c.clone(), s.clone(), 0, img.clone(), pts.clone()) return inp_std, img_list, heatmap_list, c_list, s_list, r_list,\ grnd_pts_list, normalizer_list, index else: if np.random.random() <= 0.5: img = torch.from_numpy(HumanAug.fliplr(img.numpy())).float() pts = HumanAug.shufflelr(pts, width=img.size(2), dataset='mpii') c[0] = img.size(2) - c[0] # Color img[0, :, :].mul_(np.random.uniform(0.6, 1.4)).clamp_(0, 1) img[1, :, :].mul_(np.random.uniform(0.6, 1.4)).clamp_(0, 1) img[2, :, :].mul_(np.random.uniform(0.6, 1.4)).clamp_(0, 1) inp, heatmap = self.gen_img_heatmap(c.clone(), s_aug.clone(), r_aug, img.clone(), pts.clone()) # if self.separate_s_r is false, then self.img_index_list is not None # so return idx instead of index r_aug = torch.FloatTensor([r_aug]) return inp, heatmap, c, s_aug, r_aug, pts, normalizer, idx
pin_memory=True) # Visualize some images for i, (img, _, points, _, s) in enumerate(val_loader): print(i) image = img[index].numpy() pts = points[index].numpy() plt.figure(figsize=(16, 8)) plt.subplot(121) plt.imshow(swap_channels(image)) plt_pts(plt, pts) image = torch.from_numpy(HumanAug.fliplr(img[index].numpy())).float() pts = HumanAug.shufflelr(points[index], width=image.size(2), dataset='face') plt.subplot(122) plt.imshow(swap_channels(image)) plt_pts(plt, pts) plt.show() plt.close() if i > 10: break val_loader = torch.utils.data.DataLoader(FACE( "dataset/all_300Wtest_train.json", ".", is_train=True), batch_size=10, shuffle=True, num_workers=1,