Beispiel #1
0
class TestSUOD(unittest.TestCase):
    def setUp(self):
        # Define data file and read X and y
        # Generate some data if the source data is missing
        this_directory = path.abspath(path.dirname(__file__))
        mat_file = 'cardio.mat'
        try:
            mat = loadmat(path.join(*[this_directory, 'data', mat_file]))

        except TypeError:
            print('{data_file} does not exist. Use generated data'.format(
                data_file=mat_file))
            X, y = generate_data(train_only=True)  # load data
        except IOError:
            print('{data_file} does not exist. Use generated data'.format(
                data_file=mat_file))
            X, y = generate_data(train_only=True)  # load data
        else:
            X = mat['X']
            y = mat['y'].ravel()
            X, y = check_X_y(X, y)

        self.X_train, self.X_test, self.y_train, self.y_test = \
            train_test_split(X, y, test_size=0.4, random_state=42)

        self.base_estimators = [LOF(), LOF(), IForest(), COPOD()]
        self.clf = SUOD(base_estimators=self.base_estimators)
        self.clf.fit(self.X_train)
        self.roc_floor = 0.7

    def test_parameters(self):
        assert (hasattr(self.clf, 'decision_scores_')
                and self.clf.decision_scores_ is not None)
        assert (hasattr(self.clf, 'labels_') and self.clf.labels_ is not None)
        assert (hasattr(self.clf, 'threshold_')
                and self.clf.threshold_ is not None)
        assert (hasattr(self.clf, '_mu') and self.clf._mu is not None)
        assert (hasattr(self.clf, '_sigma') and self.clf._sigma is not None)
        assert (hasattr(self.clf, 'model_') and self.clf.model_ is not None)

    def test_train_scores(self):
        assert_equal(len(self.clf.decision_scores_), self.X_train.shape[0])

    def test_prediction_scores(self):
        pred_scores = self.clf.decision_function(self.X_test)

        # check score shapes
        assert_equal(pred_scores.shape[0], self.X_test.shape[0])

        # check performance
        assert (roc_auc_score(self.y_test, pred_scores) >= self.roc_floor)

    def test_prediction_labels(self):
        pred_labels = self.clf.predict(self.X_test)
        assert_equal(pred_labels.shape, self.y_test.shape)

    def test_prediction_proba(self):
        pred_proba = self.clf.predict_proba(self.X_test)
        assert (pred_proba.min() >= 0)
        assert (pred_proba.max() <= 1)

    def test_prediction_proba_linear(self):
        pred_proba = self.clf.predict_proba(self.X_test, method='linear')
        assert (pred_proba.min() >= 0)
        assert (pred_proba.max() <= 1)

    def test_prediction_proba_unify(self):
        pred_proba = self.clf.predict_proba(self.X_test, method='unify')
        assert (pred_proba.min() >= 0)
        assert (pred_proba.max() <= 1)

    def test_prediction_proba_parameter(self):
        with assert_raises(ValueError):
            self.clf.predict_proba(self.X_test, method='something')

    def test_fit_predict(self):
        pred_labels = self.clf.fit_predict(self.X_train)
        assert_equal(pred_labels.shape, self.y_train.shape)

    def test_fit_predict_score(self):
        self.clf.fit_predict_score(self.X_test, self.y_test)
        self.clf.fit_predict_score(self.X_test,
                                   self.y_test,
                                   scoring='roc_auc_score')
        self.clf.fit_predict_score(self.X_test,
                                   self.y_test,
                                   scoring='prc_n_score')
        with assert_raises(NotImplementedError):
            self.clf.fit_predict_score(self.X_test,
                                       self.y_test,
                                       scoring='something')

    # def test_predict_rank(self):
    #     pred_socres = self.clf.decision_function(self.X_test)
    #     pred_ranks = self.clf._predict_rank(self.X_test)
    #
    #     # assert the order is reserved
    #     # assert_allclose(rankdata(pred_ranks), rankdata(pred_socres), atol=3)
    #     assert_array_less(pred_ranks, self.X_train.shape[0] + 1)
    #     assert_array_less(-0.1, pred_ranks)
    #
    # def test_predict_rank_normalized(self):
    #     pred_socres = self.clf.decision_function(self.X_test)
    #     pred_ranks = self.clf._predict_rank(self.X_test, normalized=True)
    #
    #     # assert the order is reserved
    #     # assert_allclose(rankdata(pred_ranks), rankdata(pred_socres), atol=3)
    #     assert_array_less(pred_ranks, 1.01)
    #     assert_array_less(-0.1, pred_ranks)

    def test_model_clone(self):
        clone_clf = clone(self.clf)

    def test_default_njobs(self):
        # Define data file and read X and y
        # Generate some data if the source data is missing
        this_directory = path.abspath(path.dirname(__file__))
        mat_file = 'cardio.mat'
        try:
            mat = loadmat(path.join(*[this_directory, 'data', mat_file]))

        except TypeError:
            print('{data_file} does not exist. Use generated data'.format(
                data_file=mat_file))
            X, y = generate_data(train_only=True)  # load data
        except IOError:
            print('{data_file} does not exist. Use generated data'.format(
                data_file=mat_file))
            X, y = generate_data(train_only=True)  # load data
        else:
            X = mat['X']
            y = mat['y'].ravel()
            X, y = check_X_y(X, y)

        self.X_train, self.X_test, self.y_train, self.y_test = \
            train_test_split(X, y, test_size=0.4, random_state=42)

        self.base_estimators = [LOF(), LOF(), IForest(), COPOD()]
        self.clf = SUOD(n_jobs=2)
        self.clf.fit(self.X_train)
        self.roc_floor = 0.7

    def tearDown(self):
        pass
Beispiel #2
0
        LOF(n_neighbors=35),
        COPOD(),
        IForest(n_estimators=100),
        IForest(n_estimators=200)
    ]

    # decide the number of parallel process, and the combination method
    clf = SUOD(base_estimators=detector_list,
               n_jobs=2,
               combination='average',
               verbose=False)

    # or to use the default detectors
    # clf = SUOD(n_jobs=2, combination='average',
    #            verbose=False)
    clf.fit(X_train)

    # get the prediction labels and outlier scores of the training data
    y_train_pred = clf.labels_  # binary labels (0: inliers, 1: outliers)
    y_train_scores = clf.decision_scores_  # raw outlier scores

    # get the prediction on the test data
    y_test_pred = clf.predict(X_test)  # outlier labels (0 or 1)
    y_test_scores = clf.decision_function(X_test)  # outlier scores

    # evaluate and print the results
    print("\nOn Training Data:")
    evaluate_print(clf_name, y_train, y_train_scores)
    print("\nOn Test Data:")
    evaluate_print(clf_name, y_test, y_test_scores)