class TestSUOD(unittest.TestCase): def setUp(self): # Define data file and read X and y # Generate some data if the source data is missing this_directory = path.abspath(path.dirname(__file__)) mat_file = 'cardio.mat' try: mat = loadmat(path.join(*[this_directory, 'data', mat_file])) except TypeError: print('{data_file} does not exist. Use generated data'.format( data_file=mat_file)) X, y = generate_data(train_only=True) # load data except IOError: print('{data_file} does not exist. Use generated data'.format( data_file=mat_file)) X, y = generate_data(train_only=True) # load data else: X = mat['X'] y = mat['y'].ravel() X, y = check_X_y(X, y) self.X_train, self.X_test, self.y_train, self.y_test = \ train_test_split(X, y, test_size=0.4, random_state=42) self.base_estimators = [LOF(), LOF(), IForest(), COPOD()] self.clf = SUOD(base_estimators=self.base_estimators) self.clf.fit(self.X_train) self.roc_floor = 0.7 def test_parameters(self): assert (hasattr(self.clf, 'decision_scores_') and self.clf.decision_scores_ is not None) assert (hasattr(self.clf, 'labels_') and self.clf.labels_ is not None) assert (hasattr(self.clf, 'threshold_') and self.clf.threshold_ is not None) assert (hasattr(self.clf, '_mu') and self.clf._mu is not None) assert (hasattr(self.clf, '_sigma') and self.clf._sigma is not None) assert (hasattr(self.clf, 'model_') and self.clf.model_ is not None) def test_train_scores(self): assert_equal(len(self.clf.decision_scores_), self.X_train.shape[0]) def test_prediction_scores(self): pred_scores = self.clf.decision_function(self.X_test) # check score shapes assert_equal(pred_scores.shape[0], self.X_test.shape[0]) # check performance assert (roc_auc_score(self.y_test, pred_scores) >= self.roc_floor) def test_prediction_labels(self): pred_labels = self.clf.predict(self.X_test) assert_equal(pred_labels.shape, self.y_test.shape) def test_prediction_proba(self): pred_proba = self.clf.predict_proba(self.X_test) assert (pred_proba.min() >= 0) assert (pred_proba.max() <= 1) def test_prediction_proba_linear(self): pred_proba = self.clf.predict_proba(self.X_test, method='linear') assert (pred_proba.min() >= 0) assert (pred_proba.max() <= 1) def test_prediction_proba_unify(self): pred_proba = self.clf.predict_proba(self.X_test, method='unify') assert (pred_proba.min() >= 0) assert (pred_proba.max() <= 1) def test_prediction_proba_parameter(self): with assert_raises(ValueError): self.clf.predict_proba(self.X_test, method='something') def test_fit_predict(self): pred_labels = self.clf.fit_predict(self.X_train) assert_equal(pred_labels.shape, self.y_train.shape) def test_fit_predict_score(self): self.clf.fit_predict_score(self.X_test, self.y_test) self.clf.fit_predict_score(self.X_test, self.y_test, scoring='roc_auc_score') self.clf.fit_predict_score(self.X_test, self.y_test, scoring='prc_n_score') with assert_raises(NotImplementedError): self.clf.fit_predict_score(self.X_test, self.y_test, scoring='something') # def test_predict_rank(self): # pred_socres = self.clf.decision_function(self.X_test) # pred_ranks = self.clf._predict_rank(self.X_test) # # # assert the order is reserved # # assert_allclose(rankdata(pred_ranks), rankdata(pred_socres), atol=3) # assert_array_less(pred_ranks, self.X_train.shape[0] + 1) # assert_array_less(-0.1, pred_ranks) # # def test_predict_rank_normalized(self): # pred_socres = self.clf.decision_function(self.X_test) # pred_ranks = self.clf._predict_rank(self.X_test, normalized=True) # # # assert the order is reserved # # assert_allclose(rankdata(pred_ranks), rankdata(pred_socres), atol=3) # assert_array_less(pred_ranks, 1.01) # assert_array_less(-0.1, pred_ranks) def test_model_clone(self): clone_clf = clone(self.clf) def test_default_njobs(self): # Define data file and read X and y # Generate some data if the source data is missing this_directory = path.abspath(path.dirname(__file__)) mat_file = 'cardio.mat' try: mat = loadmat(path.join(*[this_directory, 'data', mat_file])) except TypeError: print('{data_file} does not exist. Use generated data'.format( data_file=mat_file)) X, y = generate_data(train_only=True) # load data except IOError: print('{data_file} does not exist. Use generated data'.format( data_file=mat_file)) X, y = generate_data(train_only=True) # load data else: X = mat['X'] y = mat['y'].ravel() X, y = check_X_y(X, y) self.X_train, self.X_test, self.y_train, self.y_test = \ train_test_split(X, y, test_size=0.4, random_state=42) self.base_estimators = [LOF(), LOF(), IForest(), COPOD()] self.clf = SUOD(n_jobs=2) self.clf.fit(self.X_train) self.roc_floor = 0.7 def tearDown(self): pass
LOF(n_neighbors=35), COPOD(), IForest(n_estimators=100), IForest(n_estimators=200) ] # decide the number of parallel process, and the combination method clf = SUOD(base_estimators=detector_list, n_jobs=2, combination='average', verbose=False) # or to use the default detectors # clf = SUOD(n_jobs=2, combination='average', # verbose=False) clf.fit(X_train) # get the prediction labels and outlier scores of the training data y_train_pred = clf.labels_ # binary labels (0: inliers, 1: outliers) y_train_scores = clf.decision_scores_ # raw outlier scores # get the prediction on the test data y_test_pred = clf.predict(X_test) # outlier labels (0 or 1) y_test_scores = clf.decision_function(X_test) # outlier scores # evaluate and print the results print("\nOn Training Data:") evaluate_print(clf_name, y_train, y_train_scores) print("\nOn Test Data:") evaluate_print(clf_name, y_test, y_test_scores)