def test_to_dict_fit_2d(self): x = 2 * np.pi * np.random.random_sample((20, 2)) y = func_2d(x) eta = 1e-3 for kernel in kernels_dict.values(): k = kernel(2) for tail in tails_dict.values(): t = tail() if t.degree >= k.dmin: model = RBF(k, t, eta) model.fit(x, y) output_dict = model.to_dict() assert "X" in output_dict assert "y" in output_dict assert "eta" in output_dict assert "kernel" in output_dict assert "tail" in output_dict assert "lambda" in output_dict assert "LU" in output_dict assert "piv" in output_dict assert "loo" in output_dict assert np.allclose(np.array(output_dict["X"]), model._X) assert np.allclose(np.array(output_dict["y"]), model._y) assert output_dict["eta"] == model._eta assert output_dict["kernel"] == model._kernel.to_dict() assert output_dict["tail"] == model._tail.to_dict() assert np.allclose(np.array(output_dict["lambda"]), model._lambda) assert np.allclose(np.array(output_dict["LU"]), model._LU) assert np.allclose(np.array(output_dict["piv"]), model._piv) assert np.allclose(np.array(output_dict["loo"]), model.loo_residuals)
def test_to_dict_nofit(self): eta = 1 for kernel in kernels_dict.values(): k = kernel(2) for tail in tails_dict.values(): t = tail() if t.degree >= k.dmin: model = RBF(k, t, eta) output_dict = model.to_dict() assert "eta" in output_dict assert "kernel" in output_dict assert "tail" in output_dict assert output_dict["eta"] == model._eta assert output_dict["kernel"] == model._kernel.to_dict() assert output_dict["tail"] == model._tail.to_dict()