def test_train_2d(self): N = 20 x = 2 * np.pi * np.random.random_sample((N, 2)) y = func_2d(x) for kernel in kernels_dict.values(): k = kernel(30) for tail in tails_dict.values(): t = tail() if t.degree >= k.dmin: model = RBF(k, t) model.train(x, y, method="Bounded", bounds=[1e-5, 20]) assert model._kernel.param >= 1e-5 assert model._kernel.param <= 20 assert model._is_fitted()
def test_train_1d(self): N = 8 x = np.linspace(0, 2 * np.pi, num=N) y = func_1d(x) for kernel in kernels_dict.values(): k = kernel(30) for tail in tails_dict.values(): t = tail() if t.degree >= k.dmin: model = RBF(k, t) model.train(x, y, method="Bounded", bounds=[1e-5, 20]) assert model._kernel.param >= 1e-5 assert model._kernel.param <= 20 assert model._is_fitted()