def convert_renderer(pv_renderer): """Convert a pyvista renderer to a pythreejs renderer.""" # verify plotter hasn't been closed width, height = pv_renderer.width, pv_renderer.height pv_camera = pv_renderer.camera children = meshes_from_actors(pv_renderer.actors.values(), pv_camera.focal_point) lights = extract_lights_from_renderer(pv_renderer) aspect = width / height camera = pvcamera_to_threejs_camera(pv_camera, lights, aspect) children.append(camera) if pv_renderer.axes_enabled: children.append(tjs.AxesHelper(0.1)) scene = tjs.Scene(children=children, background=color_to_hex(pv_renderer.background_color)) # replace inf with a real value here due to changes in # ipywidges==6.4.0 see # https://github.com/ipython/ipykernel/issues/771 inf = 1E20 orbit_controls = tjs.OrbitControls( controlling=camera, maxAzimuthAngle=inf, maxDistance=inf, maxZoom=inf, minAzimuthAngle=-inf, ) renderer = tjs.Renderer( camera=camera, scene=scene, alpha=True, clearOpacity=0, controls=[orbit_controls], width=width, height=height, antialias=pv_renderer.GetUseFXAA(), ) if pv_renderer.has_border: bdr_color = color_to_hex(pv_renderer.border_color) renderer.layout.border = f'solid {pv_renderer.border_width}px {bdr_color}' # for now, we can't dynamically size the render windows. If # unset, the renderer widget will attempt to resize and the # threejs renderer will not resize. # renderer.layout.width = f'{width}px' # renderer.layout.height = f'{height}px' return renderer
def _domain_axes_default(self): offset_vector = (self.ds.domain_left_edge - self.ds.domain_center) * 0.1 position = tuple((self.ds.domain_left_edge + offset_vector).in_units("code_length").d) # We probably don't want to use the AxesHelper as it doesn't expose the # material, which can result in it not being easy to see. But for now... ah = pythreejs.AxesHelper( position=position, scale=tuple(self.ds.domain_width.in_units("code_length").d), ) return ah
def display_jupyter(self, window_size=(800, 600), axes_arrow_length=None): """Returns a PyThreeJS Renderer and AnimationAction for displaying and animating the scene inside a Jupyter notebook. Parameters ========== window_size : 2-tuple of integers 2-tuple containing the width and height of the renderer window in pixels. axes_arrow_length : float If a positive value is supplied a red (x), green (y), and blue (z) arrows of the supplied length will be displayed as arrows for the global axes. Returns ======= vbox : widgets.VBox A vertical box containing the action (pythreejs.AnimationAction) and renderer (pythreejs.Renderer). """ if p3js is None: raise ImportError('pythreejs needs to be installed.') self._generate_meshes_tracks() view_width = window_size[0] view_height = window_size[1] camera = p3js.PerspectiveCamera(position=[1, 1, 1], aspect=view_width / view_height) key_light = p3js.DirectionalLight() ambient_light = p3js.AmbientLight() children = self._meshes + [camera, key_light, ambient_light] if axes_arrow_length is not None: children += [p3js.AxesHelper(size=abs(axes_arrow_length))] scene = p3js.Scene(children=children) controller = p3js.OrbitControls(controlling=camera) renderer = p3js.Renderer(camera=camera, scene=scene, controls=[controller], width=view_width, height=view_height) clip = p3js.AnimationClip(tracks=self._tracks, duration=self.times[-1]) action = p3js.AnimationAction(p3js.AnimationMixer(scene), clip, scene) return widgets.VBox([action, renderer])
def __init__(self): # TODO: arguments for width/height self._width = 600 self._height = 400 self._ball = _three.Mesh( geometry=_three.SphereGeometry( radius=1, widthSegments=30, heightSegments=20, ), material=_three.MeshLambertMaterial(color='lightgray'), ) self._axes = _three.AxesHelper(size=1.2) self._ambient_light = _three.AmbientLight( intensity=0.5, ) self._directional_light1 = _three.DirectionalLight( position=[0, 0, 1], intensity=0.6, ) self._directional_light2 = _three.DirectionalLight( position=[0, 0, -1], intensity=0.6, ) self._scene = _three.Scene( children=[ self._ball, self._axes, self._ambient_light, self._directional_light1, self._directional_light2, ], ) self._camera = _three.PerspectiveCamera( position=[0, 0, 2.4], up=[0, 0, 1], aspect=self._width/self._height, ) self._controls = _three.OrbitControls(controlling=self._camera) self._renderer = _three.Renderer( camera=self._camera, scene=self._scene, controls=[self._controls], width=self._width, height=self._height, #alpha=True, #clearOpacity=0.5, )
def viewer_cloth(cloth): view_width = 800 view_height = 600 camera = THREE.PerspectiveCamera(position=[20, 5, 30], aspect=view_width / view_height) key_light = THREE.DirectionalLight(position=[10, 10, 10]) ambient_light = THREE.AmbientLight() axes_helper = THREE.AxesHelper(0.5) scene = THREE.Scene() controller = THREE.OrbitControls(controlling=camera) renderer = THREE.Renderer(camera=camera, scene=scene, controls=[controller], width=view_width, height=view_height) scene.children = [cloth, axes_helper, camera, key_light, ambient_light] return renderer
def mesh_animation(times, xt, faces): """ Animate a mesh from a sequence of mesh vertex positions Args: times - a list of time values t_i at which the configuration x is specified xt - i.e., x(t). A list of arrays representing mesh vertex positions at times t_i. Dimensions of each array should be the same as that of mesh.geometry.array TODO nt - n(t) vertex normals faces - array of faces, with vertex loop for each face Side effects: displays rendering of mesh, with animation action Returns: None TODO renderer - THREE.Render to show the default scene TODO position_action - THREE.AnimationAction IPython widget """ position_morph_attrs = [] for pos in xt[ 1:]: # xt[0] uses as the Mesh's default/initial vertex position position_morph_attrs.append( THREE.BufferAttribute(pos, normalized=False)) # Testing mesh.geometry.morphAttributes = {'position': position_morph_attrs} geom = THREE.BufferGeometry( attributes={ 'position': THREE.BufferAttribute(xt[0], normalized=False), 'index': THREE.BufferAttribute(faces.ravel()) }, morphAttributes={'position': position_morph_attrs}) matl = THREE.MeshStandardMaterial(side='DoubleSide', color='red', wireframe=True, morphTargets=True) mesh = THREE.Mesh(geom, matl) # create key frames position_track = THREE.NumberKeyframeTrack( name='.morphTargetInfluences[0]', times=times, values=list(range(0, len(times)))) # create animation clip from the morph targets position_clip = THREE.AnimationClip(tracks=[position_track]) # create animation action position_action = THREE.AnimationAction(THREE.AnimationMixer(mesh), position_clip, mesh) # TESTING camera = THREE.PerspectiveCamera(position=[2, 1, 2], aspect=600 / 400) scene = THREE.Scene(children=[ mesh, camera, THREE.AxesHelper(0.2), THREE.DirectionalLight(position=[3, 5, 1], intensity=0.6), THREE.AmbientLight(intensity=0.5) ]) renderer = THREE.Renderer( camera=camera, scene=scene, controls=[THREE.OrbitControls(controlling=camera)], width=600, height=400) display(renderer, position_action)
def __init__(self, cmap=None, norm=None, figsize=None, unit=None, log=None, nan_color=None, masks=None, pixel_size=None, tick_size=None, background=None, show_outline=True, extend=None, xlabel=None, ylabel=None, zlabel=None): if figsize is None: figsize = (config.plot.width, config.plot.height) # Figure toolbar self.toolbar = PlotToolbar(ndim=3) # Prepare colormaps self.cmap = cmap self.cmap.set_bad(color=nan_color) self.scalar_map = cm.ScalarMappable(norm=norm, cmap=self.cmap) self.masks_scalar_map = None if len(masks) > 0: self.masks_cmap = masks["cmap"] self.masks_cmap.set_bad(color=nan_color) self.masks_scalar_map = cm.ScalarMappable(norm=norm, cmap=self.masks_cmap) self.axlabels = {"x": xlabel, "y": ylabel, "z": zlabel} self.positions = None self.pixel_size = pixel_size self.tick_size = tick_size self.show_outline = show_outline self.unit = unit # Create the colorbar image self.cbar_image = ipw.Image() self.cbar_fig, self.cbar = self._create_colorbar(figsize, extend) # Create the point cloud material with pythreejs self.points_material = self._create_points_material() self.points_geometry = None self.point_cloud = None self.outline = None self.axticks = None self.camera_reset = {} # Define camera self.camera = p3.PerspectiveCamera(position=[0, 0, 0], aspect=config.plot.width / config.plot.height) # Add red/green/blue axes helper self.axes_3d = p3.AxesHelper() # Create the pythreejs scene self.scene = p3.Scene(children=[self.camera, self.axes_3d], background=background) # Add camera controller self.controls = p3.OrbitControls(controlling=self.camera) # Render the scene into a widget self.renderer = p3.Renderer(camera=self.camera, scene=self.scene, controls=[self.controls], width=figsize[0], height=figsize[1])
def visualise(mesh, geometric_field, number_of_dimensions, xi_interpolation, dependent_field=None, variable=None, mechanics_animation=False, colour_map_dependent_component_number=None, cmap='gist_rainbow', resolution=1, node_labels=False): if number_of_dimensions != 3: print( 'Warning: Only visualisation of 3D meshes is currently supported.') return if xi_interpolation != [1, 1, 1]: print( 'Warning: Only visualisation of 3D elements with linear Lagrange \ interpolation along all coordinate directions is currently \ supported.') return view_width = 600 view_height = 600 debug = False if debug: vertices = [[0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1]] faces = [[0, 1, 3], [0, 3, 2], [0, 2, 4], [2, 6, 4], [0, 4, 1], [1, 4, 5], [2, 3, 6], [3, 7, 6], [1, 5, 3], [3, 5, 7], [4, 6, 5], [5, 6, 7]] vertexcolors = [ '#000000', '#0000ff', '#00ff00', '#ff0000', '#00ffff', '#ff00ff', '#ffff00', '#ffffff' ] else: # Get mesh topology information. num_nodes = mesh_tools.num_nodes_get(mesh, mesh_component=1) node_nums = list(range(1, num_nodes + 1)) num_elements, element_nums = mesh_tools.num_element_get( mesh, mesh_component=1) # Convert geometric field to a morphic mesh and export to json mesh = mesh_tools.OpenCMISS_to_morphic(mesh, geometric_field, element_nums, node_nums, dimension=3, interpolation='linear') vertices, faces, _, xi_element_nums, xis = get_faces( mesh, res=resolution, exterior_only=True, include_xi=True) vertices = vertices.tolist() faces = faces.tolist() centroid = np.mean(vertices, axis=0) max_positions = np.max(vertices, axis=0) min_positions = np.min(vertices, axis=0) range_positions = max_positions - min_positions if (dependent_field is not None) and (colour_map_dependent_component_number is not None): solution = np.zeros(xis.shape[0]) for idx, (xi, xi_element_num) in enumerate(zip(xis, xi_element_nums)): solution[idx] = mesh_tools.interpolate_opencmiss_field_xi( dependent_field, xi, element_ids=[xi_element_num], dimension=3, deriv=1)[colour_map_dependent_component_number - 1] minima = min(solution) maxima = max(solution) import matplotlib norm = matplotlib.colors.Normalize(vmin=minima, vmax=maxima, clip=True) mapper = cm.ScalarMappable(norm=norm, cmap=cm.get_cmap(name=cmap)) vertex_colors = np.zeros((len(vertices), 3), dtype='float32') for idx, v in enumerate(solution): vertex_colors[idx, :] = mapper.to_rgba(v, alpha=None)[:3] # else: # raise ValueError('Visualisation not supported.') else: vertex_colors = np.tile(np.array([0.5, 0.5, 0.5], dtype='float32'), (len(vertices), 1)) geometry = pjs.BufferGeometry(attributes=dict( position=pjs.BufferAttribute(vertices, normalized=False), index=pjs.BufferAttribute( np.array(faces).astype(dtype='uint16').ravel(), normalized=False), color=pjs.BufferAttribute(vertex_colors), )) if mechanics_animation: deformed_vertices = np.zeros((xis.shape[0], 3), dtype='float32') for idx, (xi, xi_element_num) in enumerate(zip(xis, xi_element_nums)): deformed_vertices[idx, :] = \ mesh_tools.interpolate_opencmiss_field_xi( dependent_field, xi, element_ids=[xi_element_num], dimension=3, deriv=1)[0][:3] geometry.morphAttributes = { 'position': [ pjs.BufferAttribute(deformed_vertices), ] } geometry.exec_three_obj_method('computeFaceNormals') geometry.exec_three_obj_method('computeVertexNormals') surf1 = pjs.Mesh(geometry, pjs.MeshPhongMaterial(color='#ff3333', shininess=150, morphTargets=True, side='FrontSide'), name='A') surf2 = pjs.Mesh(geometry, pjs.MeshPhongMaterial(color='#ff3333', shininess=150, morphTargets=True, side='BackSide'), name='B') surf = pjs.Group(children=[surf1, surf2]) # camera = pjs.PerspectiveCamera( # fov=20, position=[range_positions[0] * 10, # range_positions[1] * 10, # range_positions[2] * 10], # width=view_width, # height=view_height, near=1, # far=max(range_positions) * 10) camera = pjs.PerspectiveCamera(position=[ range_positions[0] * 3, range_positions[1] * 3, range_positions[2] * 3 ], aspect=view_width / view_height) camera.up = [0, 0, 1] camera.lookAt(centroid.tolist()) scene3 = pjs.Scene(children=[ surf1, surf2, camera, pjs.DirectionalLight(position=[3, 5, 1], intensity=0.6), pjs.AmbientLight(intensity=0.5) ]) axes = pjs.AxesHelper(size=range_positions[0] * 2) scene3.add(axes) A_track = pjs.NumberKeyframeTrack( name='scene/A.morphTargetInfluences[0]', times=[0, 3], values=[0, 1]) B_track = pjs.NumberKeyframeTrack( name='scene/B.morphTargetInfluences[0]', times=[0, 3], values=[0, 1]) pill_clip = pjs.AnimationClip(tracks=[A_track, B_track]) pill_action = pjs.AnimationAction(pjs.AnimationMixer(scene3), pill_clip, scene3) renderer3 = pjs.Renderer( camera=camera, scene=scene3, controls=[pjs.OrbitControls(controlling=camera)], width=view_width, height=view_height) display(renderer3, pill_action) else: geometry.exec_three_obj_method('computeFaceNormals') geometry.exec_three_obj_method('computeVertexNormals') surf1 = pjs.Mesh(geometry=geometry, material=pjs.MeshLambertMaterial( vertexColors='VertexColors', side='FrontSide')) # Center the cube. surf2 = pjs.Mesh(geometry=geometry, material=pjs.MeshLambertMaterial( vertexColors='VertexColors', side='BackSide')) # Center the cube. surf = pjs.Group(children=[surf1, surf2]) camera = pjs.PerspectiveCamera(position=[ range_positions[0] * 3, range_positions[1] * 3, range_positions[2] * 3 ], aspect=view_width / view_height) camera.up = [0, 0, 1] camera.lookAt(centroid.tolist()) # if perspective: # camera.mode = 'perspective' # else: # camera.mode = 'orthographic' lights = [ pjs.DirectionalLight(position=[ range_positions[0] * 16, range_positions[1] * 12, range_positions[2] * 17 ], intensity=0.5), pjs.AmbientLight(intensity=0.8), ] orbit = pjs.OrbitControls(controlling=camera, screenSpacePanning=True, target=centroid.tolist()) scene = pjs.Scene() axes = pjs.AxesHelper(size=max(range_positions) * 2) scene.add(axes) scene.add(surf1) scene.add(surf2) scene.add(lights) if node_labels: # Add text labels for each mesh node. v, ids = mesh.get_node_ids(group='_default') for idx, v in enumerate(v): text = make_text(str(ids[idx]), position=(v[0], v[1], v[2])) scene.add(text) # Add text for axes labels. x_axis_label = make_text('x', position=(max(range_positions) * 2, 0, 0)) y_axis_label = make_text('y', position=(0, max(range_positions) * 2, 0)) z_axis_label = make_text('z', position=(0, 0, max(range_positions) * 2)) scene.add(x_axis_label) scene.add(y_axis_label) scene.add(z_axis_label) renderer = pjs.Renderer(scene=scene, camera=camera, controls=[orbit], width=view_width, height=view_height) camera.zoom = 1 display(renderer) return vertices, faces
def __init__(self, scipp_obj_dict=None, positions=None, axes=None, masks=None, cmap=None, log=None, vmin=None, vmax=None, color=None, aspect=None, background=None, nan_color=None, pixel_size=None, tick_size=None, show_outline=True): super().__init__(scipp_obj_dict=scipp_obj_dict, positions=positions, axes=axes, masks=masks, cmap=cmap, log=log, vmin=vmin, vmax=vmax, color=color, aspect=aspect, button_options=['X', 'Y', 'Z']) self.vslice = None self.current_cut_surface_value = None self.cut_slider_steps = 10. self.cbar_image = widgets.Image() self.cut_options = { "Xplane": 0, "Yplane": 1, "Zplane": 2, "Xcylinder": 3, "Ycylinder": 4, "Zcylinder": 5, "Sphere": 6, "Value": 7 } # Prepare colormaps self.cmap = copy(cm.get_cmap(self.params["values"][self.name]["cmap"])) self.cmap.set_bad(color=nan_color) self.scalar_map = cm.ScalarMappable( norm=self.params["values"][self.name]["norm"], cmap=self.cmap) self.masks_scalar_map = None if self.params["masks"][self.name]["show"]: self.masks_cmap = copy( cm.get_cmap(self.params["masks"][self.name]["cmap"])) self.masks_cmap.set_bad(color=nan_color) self.masks_scalar_map = cm.ScalarMappable( norm=self.params["values"][self.name]["norm"], cmap=self.masks_cmap) # Generate the colorbar image self.create_colorbar() # Useful variables self.permutations = {"x": ["y", "z"], "y": ["x", "z"], "z": ["x", "y"]} self.remaining_inds = [0, 1] # Search the coordinates to see if one contains vectors. If so, it will # be used as position vectors. self.axlabels = {"x": "", "y": "", "z": ""} self.positions = None self.pixel_size = pixel_size self.tick_size = tick_size if positions is not None: coord = self.data_array.coords[positions] self.positions = np.array(coord.values, dtype=np.float32) self.axlabels.update({ "x": name_with_unit(coord, name="X"), "y": name_with_unit(coord, name="Y"), "z": name_with_unit(coord, name="Z") }) else: # If no positions are supplied, create a meshgrid from coordinate # axes. coords = [] labels = [] for dim, val in self.slider.items(): if val.disabled: arr = self.slider_coord[self.name][dim] if self.histograms[self.name][dim][dim]: arr = to_bin_centers(arr, dim) coords.append(arr.values) labels.append( name_with_unit(self.slider_coord[self.name][dim])) z, y, x = np.meshgrid(*coords, indexing='ij') self.positions = np.array( [x.ravel(), y.ravel(), z.ravel()], dtype=np.float32).T if self.pixel_size is None: self.pixel_size = coords[0][1] - coords[0][0] self.axlabels.update({ "z": labels[0], "y": labels[1], "x": labels[2] }) # Find spatial and value limits self.xminmax, self.center_of_mass = self.get_spatial_extents() self.vminmax = [ sc.min(self.data_array.data).value, sc.max(self.data_array.data).value ] # Create the point cloud with pythreejs self.points_geometry, self.points_material, self.points = \ self.create_points_geometry() # Create outline around point positions self.outline, self.axticks = self.create_outline() # Save the size of the outline box for later self.box_size = np.diff(list(self.xminmax.values()), axis=1).ravel() # Define camera: look at the centre of mass of the points camera_lookat = self.center_of_mass camera_pos = np.array(self.center_of_mass) + 1.2 * self.box_size self.camera = p3.PerspectiveCamera(position=list(camera_pos), aspect=config.plot.width / config.plot.height) # Add red/green/blue axes helper self.axes_3d = p3.AxesHelper(10.0 * np.linalg.norm(camera_pos)) # Create the pythreejs scene self.scene = p3.Scene(children=[ self.camera, self.axes_3d, self.points, self.outline, self.axticks ], background=background) # Add camera controller self.controller = p3.OrbitControls(controlling=self.camera, target=camera_lookat) self.camera.lookAt(camera_lookat) # Render the scene into a widget self.renderer = p3.Renderer(camera=self.camera, scene=self.scene, controls=[self.controller], width=config.plot.width, height=config.plot.height) # Update visibility of outline according to keyword arg self.outline.visible = show_outline self.axticks.visible = show_outline # Opacity slider: top value controls opacity if no cut surface is # active. If a cut curface is present, the upper slider is the opacity # of the slice, while the lower slider value is the opacity of the # data not in the cut surface. self.opacity_slider = widgets.FloatRangeSlider( min=0.0, max=1.0, value=[0.1, 1], step=0.01, description="Opacity slider: When no cut surface is active, the " "max value of the range slider controls the overall opacity, " "and the lower value has no effect. When a cut surface is " "present, the max value is the opacity of the slice, while the " "min value is the opacity of the background.", continuous_update=True, style={'description_width': '60px'}) self.opacity_slider.observe(self.update_opacity, names="value") self.opacity_checkbox = widgets.Checkbox( value=self.opacity_slider.continuous_update, description="Continuous update", indent=False, layout={"width": "20px"}) self.opacity_checkbox_link = widgets.jslink( (self.opacity_checkbox, 'value'), (self.opacity_slider, 'continuous_update')) self.toggle_outline_button = widgets.ToggleButton(value=show_outline, description='', button_style='') self.toggle_outline_button.observe(self.toggle_outline, names="value") # Run a trigger to update button text self.toggle_outline({"new": show_outline}) # Add buttons to provide a choice of different cut surfaces: # - Cartesian X, Y, Z # - Cylindrical X, Y, Z (cylinder major axis) # - Sperical R # - Value-based iso-surface # Note additional spaces required in cylindrical names because # options must be unique. self.cut_surface_buttons = widgets.ToggleButtons( options=[('X ', self.cut_options["Xplane"]), ('Y ', self.cut_options["Yplane"]), ('Z ', self.cut_options["Zplane"]), ('R ', self.cut_options["Sphere"]), (' X ', self.cut_options["Xcylinder"]), (' Y ', self.cut_options["Ycylinder"]), (' Z ', self.cut_options["Zcylinder"]), ('', self.cut_options["Value"])], value=None, description='Cut surface:', button_style='', tooltips=[ 'X-plane', 'Y-plane', 'Z-plane', 'Sphere', 'Cylinder-X', 'Cylinder-Y', 'Cylinder-Z', 'Value' ], icons=(['cube'] * 3) + ['circle-o'] + (['toggle-on'] * 3) + ['magic'], style={"button_width": "55px"}, layout={'width': '350px'}) self.cut_surface_buttons.observe(self.update_cut_surface_buttons, names="value") # Add a capture for a click event: if the active button is clicked, # this resets the togglebuttons value to None and deletes the cut # surface. self.cut_surface_buttons.on_msg(self.check_if_reset_needed) # Add slider to control position of cut surface self.cut_slider = widgets.FloatSlider(min=0, max=1, description="Position:", disabled=True, value=0.5, layout={"width": "350px"}) self.cut_checkbox = widgets.Checkbox(value=True, description="Continuous update", indent=False, layout={"width": "20px"}, disabled=True) self.cut_checkbox_link = widgets.jslink( (self.cut_checkbox, 'value'), (self.cut_slider, 'continuous_update')) self.cut_slider.observe(self.update_cut_surface, names="value") # Allow to change the thickness of the cut surface self.cut_surface_thickness = widgets.BoundedFloatText( value=0.05 * self.box_size.max(), min=0, layout={"width": "150px"}, disabled=True, description="Thickness:", style={'description_width': 'initial'}) self.cut_surface_thickness.observe(self.update_cut_surface, names="value") self.cut_thickness_link = widgets.jslink( (self.cut_slider, 'step'), (self.cut_surface_thickness, 'value')) self.cut_slider.observe(self.update_cut_surface, names="value") # Put widgets into boxes self.cut_surface_controls = widgets.HBox([ self.cut_surface_buttons, widgets.VBox([ widgets.HBox([self.cut_slider, self.cut_checkbox]), self.cut_surface_thickness ]) ]) self.box = widgets.VBox([ widgets.HBox([self.renderer, self.cbar_image]), widgets.VBox(self.vbox), widgets.HBox([ self.opacity_slider, self.opacity_checkbox, self.toggle_outline_button ]), self.cut_surface_controls ]) # Update list of members to be returned in the SciPlot object self.members.update({ "camera": self.camera, "scene": self.scene, "renderer": self.renderer }) return
def display_scene(lm_scene): """Display Lightmetrica scene.""" # Scene scene = three.Scene() # Camera # Get lm camera information lm_main_camera = lm_scene.camera() lm_camera_params = lm_main_camera.underlying_value() camera = three.PerspectiveCamera(fov=lm_camera_params['vfov'], aspect=lm_camera_params['aspect'], near=0.1, far=10000) camera.position = lm_camera_params['eye'] camera.up = lm_camera_params['up'] scene.add(camera) # Mesh def add_lm_scene_mesh(): # Default material mat_default = three.MeshBasicMaterial(color='#000000', wireframe=True, transparent=True, opacity=0.2, depthTest=False) # Convert lm mesh def traverse_func(node, trans): # Underlying mesh mesh = node.primitive.mesh if mesh is None: return # Iterate through all triangles vs = [] def process_triangle(face_index, tri): vs.append(list(tri.p1.p)) vs.append(list(tri.p2.p)) vs.append(list(tri.p3.p)) mesh.foreach_triangle(process_triangle) # Create geometry ps_attr = three.BufferAttribute(array=vs, normalized=False) geom = three.BufferGeometry(attributes={'position': ps_attr}) # Create mesh mesh = three.Mesh(geometry=geom, material=mat_default) mesh.matrixAutoUpdate = False mesh.matrix = trans.T.flatten().tolist() scene.add(mesh) lm_scene.traverse_primitive_nodes(traverse_func) add_lm_scene_mesh() # View frustum def add_view_frustum(): position = np.array(lm_camera_params['eye']) center = np.array(lm_camera_params['center']) up = np.array(lm_camera_params['up']) aspect = lm_camera_params['aspect'] fov = math.radians(lm_camera_params['vfov']) M = lookat_matrix(position, center, up) z = 5 half_fov = fov * .5 y = math.tan(half_fov) * z x = aspect * y p = list(position) p1 = list(position + np.dot(M, [-x, -y, -z])) p2 = list(position + np.dot(M, [x, -y, -z])) p3 = list(position + np.dot(M, [x, y, -z])) p4 = list(position + np.dot(M, [-x, y, -z])) # Add mesh geom = three.Geometry( vertices=[p, p1, p2, p, p2, p3, p, p3, p4, p, p4, p1]) mat = three.MeshBasicMaterial(color='#00ff00', wireframe=True, side='DoubleSide') mesh = three.Line(geometry=geom, material=mat) scene.add(mesh) add_view_frustum() # Axis axes = three.AxesHelper(size=1) scene.add(axes) # Renderer controls = three.OrbitControls(controlling=camera) # Rendered image size w = 1000 h = w / lm_camera_params['aspect'] # We need to set both target and lookAt in this order. # Otherwise the initial target position becomes wrong. # cf. https://github.com/jupyter-widgets/pythreejs/issues/200 controls.target = lm_camera_params['center'] camera.lookAt(lm_camera_params['center']) renderer = three.Renderer(camera=camera, scene=scene, width=w, height=h, controls=[controls]) # Button to reset camera configuration # Note that we need to press the button twice to reset the control # to the correct target possibly due to the bug of pythreejs. reset_camera_button = widgets.Button(description="Reset Camera") @reset_camera_button.on_click def reset_camera_button_on_click(b): controls.reset() controls.target = lm_camera_params['center'] camera.lookAt(lm_camera_params['center']) # Display all display(reset_camera_button) display(renderer) return scene, camera, renderer