Esempio n. 1
0
def convert_renderer(pv_renderer):
    """Convert a pyvista renderer to a pythreejs renderer."""
    # verify plotter hasn't been closed

    width, height = pv_renderer.width, pv_renderer.height
    pv_camera = pv_renderer.camera
    children = meshes_from_actors(pv_renderer.actors.values(),
                                  pv_camera.focal_point)

    lights = extract_lights_from_renderer(pv_renderer)
    aspect = width / height
    camera = pvcamera_to_threejs_camera(pv_camera, lights, aspect)

    children.append(camera)

    if pv_renderer.axes_enabled:
        children.append(tjs.AxesHelper(0.1))

    scene = tjs.Scene(children=children,
                      background=color_to_hex(pv_renderer.background_color))

    # replace inf with a real value here due to changes in
    # ipywidges==6.4.0 see
    # https://github.com/ipython/ipykernel/issues/771
    inf = 1E20
    orbit_controls = tjs.OrbitControls(
        controlling=camera,
        maxAzimuthAngle=inf,
        maxDistance=inf,
        maxZoom=inf,
        minAzimuthAngle=-inf,
    )

    renderer = tjs.Renderer(
        camera=camera,
        scene=scene,
        alpha=True,
        clearOpacity=0,
        controls=[orbit_controls],
        width=width,
        height=height,
        antialias=pv_renderer.GetUseFXAA(),
    )

    if pv_renderer.has_border:
        bdr_color = color_to_hex(pv_renderer.border_color)
        renderer.layout.border = f'solid {pv_renderer.border_width}px {bdr_color}'

    # for now, we can't dynamically size the render windows.  If
    # unset, the renderer widget will attempt to resize and the
    # threejs renderer will not resize.
    # renderer.layout.width = f'{width}px'
    # renderer.layout.height = f'{height}px'
    return renderer
Esempio n. 2
0
 def _domain_axes_default(self):
     offset_vector = (self.ds.domain_left_edge -
                      self.ds.domain_center) * 0.1
     position = tuple((self.ds.domain_left_edge +
                       offset_vector).in_units("code_length").d)
     # We probably don't want to use the AxesHelper as it doesn't expose the
     # material, which can result in it not being easy to see.  But for now...
     ah = pythreejs.AxesHelper(
         position=position,
         scale=tuple(self.ds.domain_width.in_units("code_length").d),
     )
     return ah
Esempio n. 3
0
File: scene.py Progetto: zizai/pydy
    def display_jupyter(self, window_size=(800, 600), axes_arrow_length=None):
        """Returns a PyThreeJS Renderer and AnimationAction for displaying and
        animating the scene inside a Jupyter notebook.

        Parameters
        ==========
        window_size : 2-tuple of integers
            2-tuple containing the width and height of the renderer window in
            pixels.
        axes_arrow_length : float
            If a positive value is supplied a red (x), green (y), and blue (z)
            arrows of the supplied length will be displayed as arrows for the
            global axes.

        Returns
        =======
        vbox : widgets.VBox
            A vertical box containing the action (pythreejs.AnimationAction)
            and renderer (pythreejs.Renderer).

        """
        if p3js is None:
            raise ImportError('pythreejs needs to be installed.')

        self._generate_meshes_tracks()

        view_width = window_size[0]
        view_height = window_size[1]

        camera = p3js.PerspectiveCamera(position=[1, 1, 1],
                                        aspect=view_width / view_height)
        key_light = p3js.DirectionalLight()
        ambient_light = p3js.AmbientLight()

        children = self._meshes + [camera, key_light, ambient_light]

        if axes_arrow_length is not None:
            children += [p3js.AxesHelper(size=abs(axes_arrow_length))]

        scene = p3js.Scene(children=children)

        controller = p3js.OrbitControls(controlling=camera)
        renderer = p3js.Renderer(camera=camera,
                                 scene=scene,
                                 controls=[controller],
                                 width=view_width,
                                 height=view_height)

        clip = p3js.AnimationClip(tracks=self._tracks, duration=self.times[-1])
        action = p3js.AnimationAction(p3js.AnimationMixer(scene), clip, scene)

        return widgets.VBox([action, renderer])
Esempio n. 4
0
 def __init__(self):
     # TODO: arguments for width/height
     self._width = 600
     self._height = 400
     self._ball = _three.Mesh(
         geometry=_three.SphereGeometry(
             radius=1,
             widthSegments=30,
             heightSegments=20,
         ),
         material=_three.MeshLambertMaterial(color='lightgray'),
     )
     self._axes = _three.AxesHelper(size=1.2)
     self._ambient_light = _three.AmbientLight(
         intensity=0.5,
     )
     self._directional_light1 = _three.DirectionalLight(
         position=[0, 0, 1],
         intensity=0.6,
     )
     self._directional_light2 = _three.DirectionalLight(
         position=[0, 0, -1],
         intensity=0.6,
     )
     self._scene = _three.Scene(
         children=[
             self._ball,
             self._axes,
             self._ambient_light,
             self._directional_light1,
             self._directional_light2,
         ],
     )
     self._camera = _three.PerspectiveCamera(
         position=[0, 0, 2.4],
         up=[0, 0, 1],
         aspect=self._width/self._height,
     )
     self._controls = _three.OrbitControls(controlling=self._camera)
     self._renderer = _three.Renderer(
         camera=self._camera,
         scene=self._scene,
         controls=[self._controls],
         width=self._width,
         height=self._height,
         #alpha=True,
         #clearOpacity=0.5,
     )
Esempio n. 5
0
def viewer_cloth(cloth):
    view_width = 800
    view_height = 600
    camera = THREE.PerspectiveCamera(position=[20, 5, 30],
                                     aspect=view_width / view_height)
    key_light = THREE.DirectionalLight(position=[10, 10, 10])
    ambient_light = THREE.AmbientLight()
    axes_helper = THREE.AxesHelper(0.5)

    scene = THREE.Scene()
    controller = THREE.OrbitControls(controlling=camera)
    renderer = THREE.Renderer(camera=camera,
                              scene=scene,
                              controls=[controller],
                              width=view_width,
                              height=view_height)
    scene.children = [cloth, axes_helper, camera, key_light, ambient_light]
    return renderer
Esempio n. 6
0
def mesh_animation(times, xt, faces):
    """ Animate a mesh from a sequence of mesh vertex positions

        Args:
        times   - a list of time values t_i at which the configuration x is specified
        xt      -   i.e., x(t). A list of arrays representing mesh vertex positions at times t_i.
                    Dimensions of each array should be the same as that of mesh.geometry.array
        TODO nt - n(t) vertex normals
        faces    - array of faces, with vertex loop for each face

        Side effects:
            displays rendering of mesh, with animation action

        Returns: None
        TODO renderer - THREE.Render to show the default scene
        TODO position_action - THREE.AnimationAction IPython widget
    """

    position_morph_attrs = []
    for pos in xt[
            1:]:  # xt[0] uses as the Mesh's default/initial vertex position
        position_morph_attrs.append(
            THREE.BufferAttribute(pos, normalized=False))

    # Testing mesh.geometry.morphAttributes = {'position': position_morph_attrs}
    geom = THREE.BufferGeometry(
        attributes={
            'position': THREE.BufferAttribute(xt[0], normalized=False),
            'index': THREE.BufferAttribute(faces.ravel())
        },
        morphAttributes={'position': position_morph_attrs})
    matl = THREE.MeshStandardMaterial(side='DoubleSide',
                                      color='red',
                                      wireframe=True,
                                      morphTargets=True)

    mesh = THREE.Mesh(geom, matl)

    # create key frames
    position_track = THREE.NumberKeyframeTrack(
        name='.morphTargetInfluences[0]',
        times=times,
        values=list(range(0, len(times))))
    # create animation clip from the morph targets
    position_clip = THREE.AnimationClip(tracks=[position_track])
    # create animation action
    position_action = THREE.AnimationAction(THREE.AnimationMixer(mesh),
                                            position_clip, mesh)

    # TESTING
    camera = THREE.PerspectiveCamera(position=[2, 1, 2], aspect=600 / 400)
    scene = THREE.Scene(children=[
        mesh, camera,
        THREE.AxesHelper(0.2),
        THREE.DirectionalLight(position=[3, 5, 1], intensity=0.6),
        THREE.AmbientLight(intensity=0.5)
    ])
    renderer = THREE.Renderer(
        camera=camera,
        scene=scene,
        controls=[THREE.OrbitControls(controlling=camera)],
        width=600,
        height=400)

    display(renderer, position_action)
Esempio n. 7
0
    def __init__(self,
                 cmap=None,
                 norm=None,
                 figsize=None,
                 unit=None,
                 log=None,
                 nan_color=None,
                 masks=None,
                 pixel_size=None,
                 tick_size=None,
                 background=None,
                 show_outline=True,
                 extend=None,
                 xlabel=None,
                 ylabel=None,
                 zlabel=None):

        if figsize is None:
            figsize = (config.plot.width, config.plot.height)

        # Figure toolbar
        self.toolbar = PlotToolbar(ndim=3)

        # Prepare colormaps
        self.cmap = cmap
        self.cmap.set_bad(color=nan_color)
        self.scalar_map = cm.ScalarMappable(norm=norm, cmap=self.cmap)
        self.masks_scalar_map = None
        if len(masks) > 0:
            self.masks_cmap = masks["cmap"]
            self.masks_cmap.set_bad(color=nan_color)
            self.masks_scalar_map = cm.ScalarMappable(norm=norm,
                                                      cmap=self.masks_cmap)

        self.axlabels = {"x": xlabel, "y": ylabel, "z": zlabel}
        self.positions = None
        self.pixel_size = pixel_size
        self.tick_size = tick_size
        self.show_outline = show_outline
        self.unit = unit

        # Create the colorbar image
        self.cbar_image = ipw.Image()
        self.cbar_fig, self.cbar = self._create_colorbar(figsize, extend)

        # Create the point cloud material with pythreejs
        self.points_material = self._create_points_material()
        self.points_geometry = None
        self.point_cloud = None
        self.outline = None
        self.axticks = None
        self.camera_reset = {}

        # Define camera
        self.camera = p3.PerspectiveCamera(position=[0, 0, 0],
                                           aspect=config.plot.width /
                                           config.plot.height)

        # Add red/green/blue axes helper
        self.axes_3d = p3.AxesHelper()

        # Create the pythreejs scene
        self.scene = p3.Scene(children=[self.camera, self.axes_3d],
                              background=background)

        # Add camera controller
        self.controls = p3.OrbitControls(controlling=self.camera)

        # Render the scene into a widget
        self.renderer = p3.Renderer(camera=self.camera,
                                    scene=self.scene,
                                    controls=[self.controls],
                                    width=figsize[0],
                                    height=figsize[1])
Esempio n. 8
0
def visualise(mesh,
              geometric_field,
              number_of_dimensions,
              xi_interpolation,
              dependent_field=None,
              variable=None,
              mechanics_animation=False,
              colour_map_dependent_component_number=None,
              cmap='gist_rainbow',
              resolution=1,
              node_labels=False):

    if number_of_dimensions != 3:
        print(
            'Warning: Only visualisation of 3D meshes is currently supported.')
        return

    if xi_interpolation != [1, 1, 1]:
        print(
            'Warning: Only visualisation of 3D elements with linear Lagrange \
            interpolation along all coordinate directions is currently \
            supported.')
        return

    view_width = 600
    view_height = 600

    debug = False
    if debug:
        vertices = [[0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0],
                    [1, 0, 1], [1, 1, 0], [1, 1, 1]]

        faces = [[0, 1, 3], [0, 3, 2], [0, 2, 4], [2, 6, 4], [0, 4, 1],
                 [1, 4, 5], [2, 3, 6], [3, 7, 6], [1, 5, 3], [3, 5, 7],
                 [4, 6, 5], [5, 6, 7]]

        vertexcolors = [
            '#000000', '#0000ff', '#00ff00', '#ff0000', '#00ffff', '#ff00ff',
            '#ffff00', '#ffffff'
        ]
    else:
        # Get mesh topology information.
        num_nodes = mesh_tools.num_nodes_get(mesh, mesh_component=1)
        node_nums = list(range(1, num_nodes + 1))
        num_elements, element_nums = mesh_tools.num_element_get(
            mesh, mesh_component=1)

        # Convert geometric field to a morphic mesh and export to json
        mesh = mesh_tools.OpenCMISS_to_morphic(mesh,
                                               geometric_field,
                                               element_nums,
                                               node_nums,
                                               dimension=3,
                                               interpolation='linear')
        vertices, faces, _, xi_element_nums, xis = get_faces(
            mesh, res=resolution, exterior_only=True, include_xi=True)

        vertices = vertices.tolist()
        faces = faces.tolist()

    centroid = np.mean(vertices, axis=0)
    max_positions = np.max(vertices, axis=0)
    min_positions = np.min(vertices, axis=0)
    range_positions = max_positions - min_positions

    if (dependent_field is not None) and (colour_map_dependent_component_number
                                          is not None):

        solution = np.zeros(xis.shape[0])
        for idx, (xi, xi_element_num) in enumerate(zip(xis, xi_element_nums)):
            solution[idx] = mesh_tools.interpolate_opencmiss_field_xi(
                dependent_field,
                xi,
                element_ids=[xi_element_num],
                dimension=3,
                deriv=1)[colour_map_dependent_component_number - 1]

        minima = min(solution)
        maxima = max(solution)

        import matplotlib
        norm = matplotlib.colors.Normalize(vmin=minima, vmax=maxima, clip=True)
        mapper = cm.ScalarMappable(norm=norm, cmap=cm.get_cmap(name=cmap))

        vertex_colors = np.zeros((len(vertices), 3), dtype='float32')
        for idx, v in enumerate(solution):
            vertex_colors[idx, :] = mapper.to_rgba(v, alpha=None)[:3]
        # else:
        #     raise ValueError('Visualisation not supported.')
    else:
        vertex_colors = np.tile(np.array([0.5, 0.5, 0.5], dtype='float32'),
                                (len(vertices), 1))

    geometry = pjs.BufferGeometry(attributes=dict(
        position=pjs.BufferAttribute(vertices, normalized=False),
        index=pjs.BufferAttribute(
            np.array(faces).astype(dtype='uint16').ravel(), normalized=False),
        color=pjs.BufferAttribute(vertex_colors),
    ))

    if mechanics_animation:
        deformed_vertices = np.zeros((xis.shape[0], 3), dtype='float32')
        for idx, (xi, xi_element_num) in enumerate(zip(xis, xi_element_nums)):
            deformed_vertices[idx, :] = \
            mesh_tools.interpolate_opencmiss_field_xi(
                dependent_field, xi, element_ids=[xi_element_num],
                dimension=3,
                deriv=1)[0][:3]
        geometry.morphAttributes = {
            'position': [
                pjs.BufferAttribute(deformed_vertices),
            ]
        }

        geometry.exec_three_obj_method('computeFaceNormals')
        geometry.exec_three_obj_method('computeVertexNormals')

        surf1 = pjs.Mesh(geometry,
                         pjs.MeshPhongMaterial(color='#ff3333',
                                               shininess=150,
                                               morphTargets=True,
                                               side='FrontSide'),
                         name='A')
        surf2 = pjs.Mesh(geometry,
                         pjs.MeshPhongMaterial(color='#ff3333',
                                               shininess=150,
                                               morphTargets=True,
                                               side='BackSide'),
                         name='B')
        surf = pjs.Group(children=[surf1, surf2])

        # camera = pjs.PerspectiveCamera(
        #     fov=20, position=[range_positions[0] * 10,
        #                       range_positions[1] * 10,
        #                       range_positions[2] * 10],
        #     width=view_width,
        #     height=view_height, near=1,
        #     far=max(range_positions) * 10)

        camera = pjs.PerspectiveCamera(position=[
            range_positions[0] * 3, range_positions[1] * 3,
            range_positions[2] * 3
        ],
                                       aspect=view_width / view_height)
        camera.up = [0, 0, 1]
        camera.lookAt(centroid.tolist())

        scene3 = pjs.Scene(children=[
            surf1, surf2, camera,
            pjs.DirectionalLight(position=[3, 5, 1], intensity=0.6),
            pjs.AmbientLight(intensity=0.5)
        ])
        axes = pjs.AxesHelper(size=range_positions[0] * 2)
        scene3.add(axes)

        A_track = pjs.NumberKeyframeTrack(
            name='scene/A.morphTargetInfluences[0]',
            times=[0, 3],
            values=[0, 1])
        B_track = pjs.NumberKeyframeTrack(
            name='scene/B.morphTargetInfluences[0]',
            times=[0, 3],
            values=[0, 1])
        pill_clip = pjs.AnimationClip(tracks=[A_track, B_track])
        pill_action = pjs.AnimationAction(pjs.AnimationMixer(scene3),
                                          pill_clip, scene3)

        renderer3 = pjs.Renderer(
            camera=camera,
            scene=scene3,
            controls=[pjs.OrbitControls(controlling=camera)],
            width=view_width,
            height=view_height)

        display(renderer3, pill_action)

    else:
        geometry.exec_three_obj_method('computeFaceNormals')
        geometry.exec_three_obj_method('computeVertexNormals')

        surf1 = pjs.Mesh(geometry=geometry,
                         material=pjs.MeshLambertMaterial(
                             vertexColors='VertexColors',
                             side='FrontSide'))  # Center the cube.
        surf2 = pjs.Mesh(geometry=geometry,
                         material=pjs.MeshLambertMaterial(
                             vertexColors='VertexColors',
                             side='BackSide'))  # Center the cube.
        surf = pjs.Group(children=[surf1, surf2])

        camera = pjs.PerspectiveCamera(position=[
            range_positions[0] * 3, range_positions[1] * 3,
            range_positions[2] * 3
        ],
                                       aspect=view_width / view_height)

        camera.up = [0, 0, 1]
        camera.lookAt(centroid.tolist())

        # if perspective:
        #     camera.mode = 'perspective'
        # else:
        #     camera.mode = 'orthographic'

        lights = [
            pjs.DirectionalLight(position=[
                range_positions[0] * 16, range_positions[1] * 12,
                range_positions[2] * 17
            ],
                                 intensity=0.5),
            pjs.AmbientLight(intensity=0.8),
        ]
        orbit = pjs.OrbitControls(controlling=camera,
                                  screenSpacePanning=True,
                                  target=centroid.tolist())

        scene = pjs.Scene()
        axes = pjs.AxesHelper(size=max(range_positions) * 2)
        scene.add(axes)
        scene.add(surf1)
        scene.add(surf2)
        scene.add(lights)

        if node_labels:
            # Add text labels for each mesh node.
            v, ids = mesh.get_node_ids(group='_default')
            for idx, v in enumerate(v):
                text = make_text(str(ids[idx]), position=(v[0], v[1], v[2]))
                scene.add(text)

        # Add text for axes labels.
        x_axis_label = make_text('x',
                                 position=(max(range_positions) * 2, 0, 0))
        y_axis_label = make_text('y',
                                 position=(0, max(range_positions) * 2, 0))
        z_axis_label = make_text('z',
                                 position=(0, 0, max(range_positions) * 2))
        scene.add(x_axis_label)
        scene.add(y_axis_label)
        scene.add(z_axis_label)

        renderer = pjs.Renderer(scene=scene,
                                camera=camera,
                                controls=[orbit],
                                width=view_width,
                                height=view_height)
        camera.zoom = 1
        display(renderer)

    return vertices, faces
Esempio n. 9
0
    def __init__(self,
                 scipp_obj_dict=None,
                 positions=None,
                 axes=None,
                 masks=None,
                 cmap=None,
                 log=None,
                 vmin=None,
                 vmax=None,
                 color=None,
                 aspect=None,
                 background=None,
                 nan_color=None,
                 pixel_size=None,
                 tick_size=None,
                 show_outline=True):

        super().__init__(scipp_obj_dict=scipp_obj_dict,
                         positions=positions,
                         axes=axes,
                         masks=masks,
                         cmap=cmap,
                         log=log,
                         vmin=vmin,
                         vmax=vmax,
                         color=color,
                         aspect=aspect,
                         button_options=['X', 'Y', 'Z'])

        self.vslice = None
        self.current_cut_surface_value = None
        self.cut_slider_steps = 10.
        self.cbar_image = widgets.Image()
        self.cut_options = {
            "Xplane": 0,
            "Yplane": 1,
            "Zplane": 2,
            "Xcylinder": 3,
            "Ycylinder": 4,
            "Zcylinder": 5,
            "Sphere": 6,
            "Value": 7
        }

        # Prepare colormaps
        self.cmap = copy(cm.get_cmap(self.params["values"][self.name]["cmap"]))
        self.cmap.set_bad(color=nan_color)
        self.scalar_map = cm.ScalarMappable(
            norm=self.params["values"][self.name]["norm"], cmap=self.cmap)
        self.masks_scalar_map = None
        if self.params["masks"][self.name]["show"]:
            self.masks_cmap = copy(
                cm.get_cmap(self.params["masks"][self.name]["cmap"]))
            self.masks_cmap.set_bad(color=nan_color)
            self.masks_scalar_map = cm.ScalarMappable(
                norm=self.params["values"][self.name]["norm"],
                cmap=self.masks_cmap)

        # Generate the colorbar image
        self.create_colorbar()

        # Useful variables
        self.permutations = {"x": ["y", "z"], "y": ["x", "z"], "z": ["x", "y"]}
        self.remaining_inds = [0, 1]

        # Search the coordinates to see if one contains vectors. If so, it will
        # be used as position vectors.
        self.axlabels = {"x": "", "y": "", "z": ""}
        self.positions = None
        self.pixel_size = pixel_size
        self.tick_size = tick_size
        if positions is not None:
            coord = self.data_array.coords[positions]
            self.positions = np.array(coord.values, dtype=np.float32)
            self.axlabels.update({
                "x": name_with_unit(coord, name="X"),
                "y": name_with_unit(coord, name="Y"),
                "z": name_with_unit(coord, name="Z")
            })
        else:
            # If no positions are supplied, create a meshgrid from coordinate
            # axes.
            coords = []
            labels = []
            for dim, val in self.slider.items():
                if val.disabled:
                    arr = self.slider_coord[self.name][dim]
                    if self.histograms[self.name][dim][dim]:
                        arr = to_bin_centers(arr, dim)
                    coords.append(arr.values)
                    labels.append(
                        name_with_unit(self.slider_coord[self.name][dim]))
            z, y, x = np.meshgrid(*coords, indexing='ij')
            self.positions = np.array(
                [x.ravel(), y.ravel(), z.ravel()], dtype=np.float32).T
            if self.pixel_size is None:
                self.pixel_size = coords[0][1] - coords[0][0]
            self.axlabels.update({
                "z": labels[0],
                "y": labels[1],
                "x": labels[2]
            })

        # Find spatial and value limits
        self.xminmax, self.center_of_mass = self.get_spatial_extents()
        self.vminmax = [
            sc.min(self.data_array.data).value,
            sc.max(self.data_array.data).value
        ]

        # Create the point cloud with pythreejs
        self.points_geometry, self.points_material, self.points = \
            self.create_points_geometry()

        # Create outline around point positions
        self.outline, self.axticks = self.create_outline()

        # Save the size of the outline box for later
        self.box_size = np.diff(list(self.xminmax.values()), axis=1).ravel()

        # Define camera: look at the centre of mass of the points
        camera_lookat = self.center_of_mass
        camera_pos = np.array(self.center_of_mass) + 1.2 * self.box_size
        self.camera = p3.PerspectiveCamera(position=list(camera_pos),
                                           aspect=config.plot.width /
                                           config.plot.height)

        # Add red/green/blue axes helper
        self.axes_3d = p3.AxesHelper(10.0 * np.linalg.norm(camera_pos))

        # Create the pythreejs scene
        self.scene = p3.Scene(children=[
            self.camera, self.axes_3d, self.points, self.outline, self.axticks
        ],
                              background=background)

        # Add camera controller
        self.controller = p3.OrbitControls(controlling=self.camera,
                                           target=camera_lookat)
        self.camera.lookAt(camera_lookat)

        # Render the scene into a widget
        self.renderer = p3.Renderer(camera=self.camera,
                                    scene=self.scene,
                                    controls=[self.controller],
                                    width=config.plot.width,
                                    height=config.plot.height)

        # Update visibility of outline according to keyword arg
        self.outline.visible = show_outline
        self.axticks.visible = show_outline

        # Opacity slider: top value controls opacity if no cut surface is
        # active. If a cut curface is present, the upper slider is the opacity
        # of the slice, while the lower slider value is the opacity of the
        # data not in the cut surface.
        self.opacity_slider = widgets.FloatRangeSlider(
            min=0.0,
            max=1.0,
            value=[0.1, 1],
            step=0.01,
            description="Opacity slider: When no cut surface is active, the "
            "max value of the range slider controls the overall opacity, "
            "and the lower value has no effect. When a cut surface is "
            "present, the max value is the opacity of the slice, while the "
            "min value is the opacity of the background.",
            continuous_update=True,
            style={'description_width': '60px'})
        self.opacity_slider.observe(self.update_opacity, names="value")
        self.opacity_checkbox = widgets.Checkbox(
            value=self.opacity_slider.continuous_update,
            description="Continuous update",
            indent=False,
            layout={"width": "20px"})
        self.opacity_checkbox_link = widgets.jslink(
            (self.opacity_checkbox, 'value'),
            (self.opacity_slider, 'continuous_update'))

        self.toggle_outline_button = widgets.ToggleButton(value=show_outline,
                                                          description='',
                                                          button_style='')
        self.toggle_outline_button.observe(self.toggle_outline, names="value")
        # Run a trigger to update button text
        self.toggle_outline({"new": show_outline})

        # Add buttons to provide a choice of different cut surfaces:
        # - Cartesian X, Y, Z
        # - Cylindrical X, Y, Z (cylinder major axis)
        # - Sperical R
        # - Value-based iso-surface
        # Note additional spaces required in cylindrical names because
        # options must be unique.
        self.cut_surface_buttons = widgets.ToggleButtons(
            options=[('X ', self.cut_options["Xplane"]),
                     ('Y ', self.cut_options["Yplane"]),
                     ('Z ', self.cut_options["Zplane"]),
                     ('R ', self.cut_options["Sphere"]),
                     (' X ', self.cut_options["Xcylinder"]),
                     (' Y ', self.cut_options["Ycylinder"]),
                     (' Z ', self.cut_options["Zcylinder"]),
                     ('', self.cut_options["Value"])],
            value=None,
            description='Cut surface:',
            button_style='',
            tooltips=[
                'X-plane', 'Y-plane', 'Z-plane', 'Sphere', 'Cylinder-X',
                'Cylinder-Y', 'Cylinder-Z', 'Value'
            ],
            icons=(['cube'] * 3) + ['circle-o'] + (['toggle-on'] * 3) +
            ['magic'],
            style={"button_width": "55px"},
            layout={'width': '350px'})
        self.cut_surface_buttons.observe(self.update_cut_surface_buttons,
                                         names="value")
        # Add a capture for a click event: if the active button is clicked,
        # this resets the togglebuttons value to None and deletes the cut
        # surface.
        self.cut_surface_buttons.on_msg(self.check_if_reset_needed)

        # Add slider to control position of cut surface
        self.cut_slider = widgets.FloatSlider(min=0,
                                              max=1,
                                              description="Position:",
                                              disabled=True,
                                              value=0.5,
                                              layout={"width": "350px"})
        self.cut_checkbox = widgets.Checkbox(value=True,
                                             description="Continuous update",
                                             indent=False,
                                             layout={"width": "20px"},
                                             disabled=True)
        self.cut_checkbox_link = widgets.jslink(
            (self.cut_checkbox, 'value'),
            (self.cut_slider, 'continuous_update'))
        self.cut_slider.observe(self.update_cut_surface, names="value")

        # Allow to change the thickness of the cut surface
        self.cut_surface_thickness = widgets.BoundedFloatText(
            value=0.05 * self.box_size.max(),
            min=0,
            layout={"width": "150px"},
            disabled=True,
            description="Thickness:",
            style={'description_width': 'initial'})
        self.cut_surface_thickness.observe(self.update_cut_surface,
                                           names="value")
        self.cut_thickness_link = widgets.jslink(
            (self.cut_slider, 'step'), (self.cut_surface_thickness, 'value'))
        self.cut_slider.observe(self.update_cut_surface, names="value")

        # Put widgets into boxes
        self.cut_surface_controls = widgets.HBox([
            self.cut_surface_buttons,
            widgets.VBox([
                widgets.HBox([self.cut_slider, self.cut_checkbox]),
                self.cut_surface_thickness
            ])
        ])

        self.box = widgets.VBox([
            widgets.HBox([self.renderer, self.cbar_image]),
            widgets.VBox(self.vbox),
            widgets.HBox([
                self.opacity_slider, self.opacity_checkbox,
                self.toggle_outline_button
            ]), self.cut_surface_controls
        ])

        # Update list of members to be returned in the SciPlot object
        self.members.update({
            "camera": self.camera,
            "scene": self.scene,
            "renderer": self.renderer
        })

        return
Esempio n. 10
0
def display_scene(lm_scene):
    """Display Lightmetrica scene."""

    # Scene
    scene = three.Scene()

    # Camera
    # Get lm camera information
    lm_main_camera = lm_scene.camera()
    lm_camera_params = lm_main_camera.underlying_value()
    camera = three.PerspectiveCamera(fov=lm_camera_params['vfov'],
                                     aspect=lm_camera_params['aspect'],
                                     near=0.1,
                                     far=10000)
    camera.position = lm_camera_params['eye']
    camera.up = lm_camera_params['up']

    scene.add(camera)

    # Mesh
    def add_lm_scene_mesh():
        # Default material
        mat_default = three.MeshBasicMaterial(color='#000000',
                                              wireframe=True,
                                              transparent=True,
                                              opacity=0.2,
                                              depthTest=False)

        # Convert lm mesh
        def traverse_func(node, trans):
            # Underlying mesh
            mesh = node.primitive.mesh
            if mesh is None:
                return

            # Iterate through all triangles
            vs = []

            def process_triangle(face_index, tri):
                vs.append(list(tri.p1.p))
                vs.append(list(tri.p2.p))
                vs.append(list(tri.p3.p))

            mesh.foreach_triangle(process_triangle)

            # Create geometry
            ps_attr = three.BufferAttribute(array=vs, normalized=False)
            geom = three.BufferGeometry(attributes={'position': ps_attr})

            # Create mesh
            mesh = three.Mesh(geometry=geom, material=mat_default)
            mesh.matrixAutoUpdate = False
            mesh.matrix = trans.T.flatten().tolist()
            scene.add(mesh)

        lm_scene.traverse_primitive_nodes(traverse_func)

    add_lm_scene_mesh()

    # View frustum
    def add_view_frustum():
        position = np.array(lm_camera_params['eye'])
        center = np.array(lm_camera_params['center'])
        up = np.array(lm_camera_params['up'])
        aspect = lm_camera_params['aspect']
        fov = math.radians(lm_camera_params['vfov'])

        M = lookat_matrix(position, center, up)
        z = 5
        half_fov = fov * .5
        y = math.tan(half_fov) * z
        x = aspect * y

        p = list(position)
        p1 = list(position + np.dot(M, [-x, -y, -z]))
        p2 = list(position + np.dot(M, [x, -y, -z]))
        p3 = list(position + np.dot(M, [x, y, -z]))
        p4 = list(position + np.dot(M, [-x, y, -z]))

        # Add mesh
        geom = three.Geometry(
            vertices=[p, p1, p2, p, p2, p3, p, p3, p4, p, p4, p1])
        mat = three.MeshBasicMaterial(color='#00ff00',
                                      wireframe=True,
                                      side='DoubleSide')
        mesh = three.Line(geometry=geom, material=mat)
        scene.add(mesh)

    add_view_frustum()

    # Axis
    axes = three.AxesHelper(size=1)
    scene.add(axes)

    # Renderer
    controls = three.OrbitControls(controlling=camera)

    # Rendered image size
    w = 1000
    h = w / lm_camera_params['aspect']

    # We need to set both target and lookAt in this order.
    # Otherwise the initial target position becomes wrong.
    # cf. https://github.com/jupyter-widgets/pythreejs/issues/200
    controls.target = lm_camera_params['center']
    camera.lookAt(lm_camera_params['center'])
    renderer = three.Renderer(camera=camera,
                              scene=scene,
                              width=w,
                              height=h,
                              controls=[controls])

    # Button to reset camera configuration
    # Note that we need to press the button twice to reset the control
    # to the correct target possibly due to the bug of pythreejs.
    reset_camera_button = widgets.Button(description="Reset Camera")

    @reset_camera_button.on_click
    def reset_camera_button_on_click(b):
        controls.reset()
        controls.target = lm_camera_params['center']
        camera.lookAt(lm_camera_params['center'])

    # Display all
    display(reset_camera_button)
    display(renderer)

    return scene, camera, renderer