def test_to_hdf5(self):
        """Test to_hdf5."""
        random = np.random.rand(2, 2)

        ints = OneBodyElectronicIntegrals(ElectronicBasis.MO, (random, random))

        with tempfile.TemporaryFile() as tmp_file:
            with h5py.File(tmp_file, "w") as file:
                ints.to_hdf5(file)
    def test_add(self):
        """Test addition."""
        mat_a = np.arange(1, 5).reshape((2, 2))
        mat_b = np.arange(-4, 0).reshape((2, 2))

        ints_a = OneBodyElectronicIntegrals(ElectronicBasis.MO, (mat_a, None))
        ints_b = OneBodyElectronicIntegrals(ElectronicBasis.MO, (mat_b, None))

        ints_sum = ints_a + ints_b

        self.assertTrue(isinstance(ints_sum, OneBodyElectronicIntegrals))
        self.assertTrue(np.allclose(ints_sum._matrices[0], mat_a + mat_b))
    def test_from_hdf5(self):
        """Test from_hdf5."""
        random = np.random.rand(2, 2)

        ints = OneBodyElectronicIntegrals(ElectronicBasis.MO, (random, random))

        with tempfile.TemporaryFile() as tmp_file:
            with h5py.File(tmp_file, "w") as file:
                ints.to_hdf5(file)

            with h5py.File(tmp_file, "r") as file:
                new_ints = OneBodyElectronicIntegrals.from_hdf5(file["OneBodyElectronicIntegrals"])

                self.assertEqual(ints, new_ints)
Beispiel #4
0
 def setUp(self):
     """Setup."""
     super().setUp()
     self.ints_1_ao = OneBodyElectronicIntegrals(ElectronicBasis.AO,
                                                 (np.eye(2), None))
     self.ints_1_mo = OneBodyElectronicIntegrals(ElectronicBasis.MO,
                                                 (np.eye(2), None))
     self.ints_2_ao = TwoBodyElectronicIntegrals(
         ElectronicBasis.AO, (np.ones((2, 2, 2, 2)), None, None, None))
     self.ints_2_mo = TwoBodyElectronicIntegrals(
         ElectronicBasis.MO, (np.ones((2, 2, 2, 2)), None, None, None))
     self.prop = IntegralProperty(
         "test",
         [self.ints_1_ao, self.ints_1_mo, self.ints_2_ao, self.ints_2_mo])
    def test_compose(self):
        """Test composition."""
        mat_a = np.arange(1, 5).reshape((2, 2))
        mat_b = np.arange(-4, 0).reshape((2, 2))

        ints_a = OneBodyElectronicIntegrals(ElectronicBasis.MO, (mat_a, None))
        ints_b = OneBodyElectronicIntegrals(ElectronicBasis.MO, (mat_b, None))

        composition = ints_a.compose(ints_b)

        # The factor 2.0 arises from the fact that mat_a and mat_b also get populated into the None
        # fields.
        expected = 2.0 * np.einsum("ij,ji", mat_a, mat_b)

        self.assertTrue(isinstance(composition, complex))
        self.assertAlmostEqual(composition, expected)
    def run(self) -> ElectronicStructureDriverResult:
        """Returns an ElectronicStructureDriverResult instance out of a FCIDump file."""
        fcidump_data = parse(self._fcidump_input)

        hij = fcidump_data.get("hij", None)
        hij_b = fcidump_data.get("hij_b", None)
        hijkl = fcidump_data.get("hijkl", None)
        hijkl_ba = fcidump_data.get("hijkl_ba", None)
        hijkl_bb = fcidump_data.get("hijkl_bb", None)

        multiplicity = fcidump_data.get("MS2", 0) + 1
        num_beta = (fcidump_data.get("NELEC") - (multiplicity - 1)) // 2
        num_alpha = fcidump_data.get("NELEC") - num_beta

        particle_number = ParticleNumber(
            num_spin_orbitals=fcidump_data.get("NORB") * 2,
            num_particles=(num_alpha, num_beta),
        )

        electronic_energy = ElectronicEnergy(
            [
                OneBodyElectronicIntegrals(ElectronicBasis.MO, (hij, hij_b)),
                TwoBodyElectronicIntegrals(ElectronicBasis.MO, (hijkl, hijkl_ba, hijkl_bb, None)),
            ],
            nuclear_repulsion_energy=fcidump_data.get("ecore", None),
        )

        driver_result = ElectronicStructureDriverResult()
        driver_result.add_property(electronic_energy)
        driver_result.add_property(particle_number)

        return driver_result
    def _populate_driver_result_electronic_energy(
            self, driver_result: ElectronicStructureDriverResult) -> None:
        # pylint: disable=import-error
        from pyquante2 import onee_integrals
        from pyquante2.ints.integrals import twoe_integrals

        basis_transform = driver_result.get_property(ElectronicBasisTransform)

        integrals = onee_integrals(self._bfs, self._mol)

        hij = integrals.T + integrals.V
        hijkl = twoe_integrals(self._bfs)

        one_body_ao = OneBodyElectronicIntegrals(ElectronicBasis.AO,
                                                 (hij, None))

        two_body_ao = TwoBodyElectronicIntegrals(
            ElectronicBasis.AO,
            (hijkl.transform(np.identity(self._nmo)), None, None, None),
        )

        one_body_mo = one_body_ao.transform_basis(basis_transform)
        two_body_mo = two_body_ao.transform_basis(basis_transform)

        electronic_energy = ElectronicEnergy(
            [one_body_ao, two_body_ao, one_body_mo, two_body_mo],
            nuclear_repulsion_energy=self._mol.nuclear_repulsion(),
            reference_energy=self._calc.energy,
        )

        if hasattr(self._calc, "orbe"):
            orbs_energy = self._calc.orbe
            orbs_energy_b = None
        else:
            orbs_energy = self._calc.orbea
            orbs_energy_b = self._calc.orbeb

        orbital_energies = ((orbs_energy, orbs_energy_b)
                            if orbs_energy_b is not None else orbs_energy)
        electronic_energy.orbital_energies = np.asarray(orbital_energies)

        electronic_energy.kinetic = OneBodyElectronicIntegrals(
            ElectronicBasis.AO, (integrals.T, None))
        electronic_energy.overlap = OneBodyElectronicIntegrals(
            ElectronicBasis.AO, (integrals.S, None))

        driver_result.add_property(electronic_energy)
Beispiel #8
0
 def test_integral_operator(self):
     """Test integral_operator."""
     random = np.random.random((4, 4))
     prop = DipoleMoment(
         "x",
         [OneBodyElectronicIntegrals(ElectronicBasis.AO, (random, None))])
     matrix_op = prop.integral_operator(None)
     # the matrix-operator of the dipole moment is unaffected by the density!
     self.assertTrue(np.allclose(random, matrix_op._matrices[0]))
Beispiel #9
0
    def test_to_hdf5(self):
        """Test to_hdf5."""
        random = np.random.random((4, 4))
        prop = DipoleMoment(
            "x",
            [OneBodyElectronicIntegrals(ElectronicBasis.AO, (random, None))])

        with tempfile.TemporaryFile() as tmp_file:
            with h5py.File(tmp_file, "w") as file:
                prop.to_hdf5(file)
    def test_mul(self):
        """Test multiplication."""
        mat_a = np.arange(1, 5).reshape((2, 2))

        ints_a = OneBodyElectronicIntegrals(ElectronicBasis.MO, (mat_a, None))

        ints_mul = 2.0 * ints_a

        self.assertTrue(isinstance(ints_mul, OneBodyElectronicIntegrals))
        self.assertTrue(np.allclose(ints_mul._matrices[0], 2.0 * mat_a))
Beispiel #11
0
    def _populate_driver_result_electronic_energy(
        self, driver_result: ElectronicStructureDriverResult
    ) -> None:
        # pylint: disable=import-error
        from pyscf import gto

        basis_transform = driver_result.get_property(ElectronicBasisTransform)

        one_body_ao = OneBodyElectronicIntegrals(
            ElectronicBasis.AO,
            (self._calc.get_hcore(), None),
        )

        two_body_ao = TwoBodyElectronicIntegrals(
            ElectronicBasis.AO,
            (self._mol.intor("int2e", aosym=1), None, None, None),
        )

        one_body_mo = one_body_ao.transform_basis(basis_transform)
        two_body_mo = two_body_ao.transform_basis(basis_transform)

        electronic_energy = ElectronicEnergy(
            [one_body_ao, two_body_ao, one_body_mo, two_body_mo],
            nuclear_repulsion_energy=gto.mole.energy_nuc(self._mol),
            reference_energy=self._calc.e_tot,
        )

        electronic_energy.kinetic = OneBodyElectronicIntegrals(
            ElectronicBasis.AO,
            (self._mol.intor_symmetric("int1e_kin"), None),
        )
        electronic_energy.overlap = OneBodyElectronicIntegrals(
            ElectronicBasis.AO,
            (self._calc.get_ovlp(), None),
        )

        orbs_energy, orbs_energy_b = self._extract_mo_data("mo_energy")
        orbital_energies = (
            (orbs_energy, orbs_energy_b) if orbs_energy_b is not None else orbs_energy
        )
        electronic_energy.orbital_energies = np.asarray(orbital_energies)

        driver_result.add_property(electronic_energy)
Beispiel #12
0
    def test_integral_operator(self):
        """Test integral_operator."""
        # duplicate MO integrals into AO basis for this test
        trafo = ElectronicBasisTransform(ElectronicBasis.MO,
                                         ElectronicBasis.AO, np.eye(2))
        self.prop.transform_basis(trafo)

        density = OneBodyElectronicIntegrals(ElectronicBasis.AO,
                                             (0.5 * np.eye(2), None))
        matrix_op = self.prop.integral_operator(density)

        expected = np.asarray([[-0.34436786423711596, 0.0],
                               [0.0, 0.4515069814257469]])
        self.assertTrue(np.allclose(matrix_op._matrices[0], expected))
Beispiel #13
0
    def test_from_hdf5(self):
        """Test from_hdf5."""
        random = np.random.random((4, 4))
        prop = DipoleMoment(
            "x",
            [OneBodyElectronicIntegrals(ElectronicBasis.AO, (random, None))])

        with tempfile.TemporaryFile() as tmp_file:
            with h5py.File(tmp_file, "w") as file:
                prop.to_hdf5(file)

            with h5py.File(tmp_file, "r") as file:
                read_prop = DipoleMoment.from_hdf5(file["DipoleMomentX"])

                self.assertEqual(prop, read_prop)
Beispiel #14
0
    def _populate_driver_result_electronic_dipole_moment(
        self, driver_result: ElectronicStructureDriverResult
    ) -> None:
        basis_transform = driver_result.get_property(ElectronicBasisTransform)

        self._mol.set_common_orig((0, 0, 0))
        ao_dip = self._mol.intor_symmetric("int1e_r", comp=3)

        d_m = self._calc.make_rdm1(self._calc.mo_coeff, self._calc.mo_occ)

        if not (isinstance(d_m, np.ndarray) and d_m.ndim == 2):
            d_m = d_m[0] + d_m[1]

        elec_dip = np.negative(np.einsum("xij,ji->x", ao_dip, d_m).real)
        elec_dip = np.round(elec_dip, decimals=8)
        nucl_dip = np.einsum("i,ix->x", self._mol.atom_charges(), self._mol.atom_coords())
        nucl_dip = np.round(nucl_dip, decimals=8)

        logger.info("HF Electronic dipole moment: %s", elec_dip)
        logger.info("Nuclear dipole moment: %s", nucl_dip)
        logger.info("Total dipole moment: %s", nucl_dip + elec_dip)

        x_dip_ints = OneBodyElectronicIntegrals(ElectronicBasis.AO, (ao_dip[0], None))
        y_dip_ints = OneBodyElectronicIntegrals(ElectronicBasis.AO, (ao_dip[1], None))
        z_dip_ints = OneBodyElectronicIntegrals(ElectronicBasis.AO, (ao_dip[2], None))

        x_dipole = DipoleMoment("x", [x_dip_ints, x_dip_ints.transform_basis(basis_transform)])
        y_dipole = DipoleMoment("y", [y_dip_ints, y_dip_ints.transform_basis(basis_transform)])
        z_dipole = DipoleMoment("z", [z_dip_ints, z_dip_ints.transform_basis(basis_transform)])

        driver_result.add_property(
            ElectronicDipoleMoment(
                [x_dipole, y_dipole, z_dipole],
                nuclear_dipole_moment=nucl_dip,
                reverse_dipole_sign=True,
            )
        )
    def test_aux_ops_reusability(self):
        """Test that the auxiliary operators can be reused"""
        # Regression test against #1475
        solver = NumPyMinimumEigensolverFactory()
        calc = GroundStateEigensolver(self.qubit_converter, solver)

        modes = 4
        h_1 = np.eye(modes, dtype=complex)
        h_2 = np.zeros((modes, modes, modes, modes))
        aux_ops = list(
            ElectronicEnergy([
                OneBodyElectronicIntegrals(ElectronicBasis.MO, (h_1, None)),
                TwoBodyElectronicIntegrals(ElectronicBasis.MO,
                                           (h_2, None, None, None)),
            ], ).second_q_ops().values())
        aux_ops_copy = copy.deepcopy(aux_ops)

        _ = calc.solve(self.electronic_structure_problem)

        assert all(
            frozenset(a.to_list()) == frozenset(b.to_list())
            for a, b in zip(aux_ops, aux_ops_copy))
    def test_to_second_q_op(self):
        """Test to_second_q_op"""
        mat_a = np.arange(1, 5).reshape((2, 2))
        mat_b = np.arange(-4, 0).reshape((2, 2))

        with self.subTest("Only alpha"):
            ints = OneBodyElectronicIntegrals(ElectronicBasis.MO, (mat_a, None))
            op = ints.to_second_q_op()
            for (real_label, real_coeff), (exp_label, exp_coeff) in zip(
                op.to_list(),
                [
                    ("+_0 -_0", 1),
                    ("+_0 -_1", 2),
                    ("+_1 -_0", 3),
                    ("+_1 -_1", 4),
                    ("+_2 -_2", 1),
                    ("+_2 -_3", 2),
                    ("+_3 -_2", 3),
                    ("+_3 -_3", 4),
                ],
            ):
                self.assertEqual(real_label, exp_label)
                self.assertTrue(np.isclose(real_coeff, exp_coeff))

        with self.subTest("Alpha and beta"):
            ints = OneBodyElectronicIntegrals(ElectronicBasis.MO, (mat_a, mat_b))
            op = ints.to_second_q_op()
            for (real_label, real_coeff), (exp_label, exp_coeff) in zip(
                op.to_list(),
                [
                    ("+_0 -_0", 1),
                    ("+_0 -_1", 2),
                    ("+_1 -_0", 3),
                    ("+_1 -_1", 4),
                    ("+_2 -_2", -4),
                    ("+_2 -_3", -3),
                    ("+_3 -_2", -2),
                    ("+_3 -_3", -1),
                ],
            ):
                self.assertEqual(real_label, exp_label)
                self.assertTrue(np.isclose(real_coeff, exp_coeff))
    def test_to_spin(self):
        """Test to_spin"""
        mat_a = np.arange(1, 5).reshape((2, 2))
        mat_b = np.arange(-4, 0).reshape((2, 2))

        with self.subTest("Only alpha"):
            ints = OneBodyElectronicIntegrals(ElectronicBasis.MO, (mat_a, None))
            mat_so = ints.to_spin()
            self.assertTrue(
                np.allclose(
                    mat_so, np.asarray([[1, 2, 0, 0], [3, 4, 0, 0], [0, 0, 1, 2], [0, 0, 3, 4]])
                )
            )

        with self.subTest("Alpha and beta"):
            ints = OneBodyElectronicIntegrals(ElectronicBasis.MO, (mat_a, mat_b))
            mat_so = ints.to_spin()
            self.assertTrue(
                np.allclose(
                    mat_so, np.asarray([[1, 2, 0, 0], [3, 4, 0, 0], [0, 0, -4, -3], [0, 0, -2, -1]])
                )
            )
    def test_init(self):
        """Test construction."""
        random = np.random.rand(2, 2)

        with self.subTest("Normal"):
            OneBodyElectronicIntegrals(ElectronicBasis.MO, (random, None))

        with self.subTest("Alpha and beta"):
            OneBodyElectronicIntegrals(ElectronicBasis.MO, (random, random))

        with self.subTest("Spin"):
            OneBodyElectronicIntegrals(ElectronicBasis.SO, random)

        with self.subTest("Mismatching basis and number of matrices"):
            with self.assertRaises(TypeError):
                OneBodyElectronicIntegrals(ElectronicBasis.MO, random)

        with self.subTest("Mismatching basis and number of matrices 2"):
            with self.assertRaises(TypeError):
                OneBodyElectronicIntegrals(ElectronicBasis.SO, (random, random))

        with self.subTest("Missing alpha"):
            with self.assertRaises(TypeError):
                OneBodyElectronicIntegrals(ElectronicBasis.MO, (None, random))
Beispiel #19
0
    def test_minimal_active_space(self):
        """Test a minimal active space manually."""
        driver = HDF5Driver(hdf5_input=self.get_resource_path(
            "H2_631g.hdf5", "second_q/transformers"))
        driver_result = driver.run()

        trafo = ActiveSpaceTransformer(num_electrons=2,
                                       num_molecular_orbitals=2)
        driver_result_reduced = trafo.transform(driver_result)

        expected = ElectronicStructureDriverResult()
        expected.add_property(
            ElectronicEnergy(
                [
                    OneBodyElectronicIntegrals(
                        ElectronicBasis.MO,
                        (np.asarray([[-1.24943841, 0.0], [0.0, -0.547816138]
                                     ]), None),
                    ),
                    TwoBodyElectronicIntegrals(
                        ElectronicBasis.MO,
                        (
                            np.asarray([
                                [
                                    [[0.652098466, 0.0], [0.0, 0.433536565]],
                                    [[0.0, 0.0794483182], [0.0794483182, 0.0]],
                                ],
                                [
                                    [[0.0, 0.0794483182], [0.0794483182, 0.0]],
                                    [[0.433536565, 0.0], [0.0, 0.385524695]],
                                ],
                            ]),
                            None,
                            None,
                            None,
                        ),
                    ),
                ],
                energy_shift={"ActiveSpaceTransformer": 0.0},
            ))
        expected.add_property(
            ElectronicDipoleMoment([
                DipoleMoment(
                    "x",
                    [
                        OneBodyElectronicIntegrals(ElectronicBasis.MO,
                                                   (np.zeros((2, 2)), None))
                    ],
                    shift={"ActiveSpaceTransformer": 0.0},
                ),
                DipoleMoment(
                    "y",
                    [
                        OneBodyElectronicIntegrals(ElectronicBasis.MO,
                                                   (np.zeros((2, 2)), None))
                    ],
                    shift={"ActiveSpaceTransformer": 0.0},
                ),
                DipoleMoment(
                    "z",
                    [
                        OneBodyElectronicIntegrals(
                            ElectronicBasis.MO,
                            (
                                np.asarray([[0.69447435, -1.01418298],
                                            [-1.01418298, 0.69447435]]),
                                None,
                            ),
                        )
                    ],
                    shift={"ActiveSpaceTransformer": 0.0},
                ),
            ]))

        self.assertDriverResult(driver_result_reduced, expected)
Beispiel #20
0
    def transform(
        self, grouped_property: GroupedSecondQuantizedProperty
    ) -> GroupedElectronicProperty:
        """Reduces the given `GroupedElectronicProperty` to a given active space.

        Args:
            grouped_property: the `GroupedElectronicProperty` to be transformed.

        Returns:
            A new `GroupedElectronicProperty` instance.

        Raises:
            QiskitNatureError: If the provided `GroupedElectronicProperty` does not contain a
                               `ParticleNumber` or `ElectronicBasisTransform` instance, if more
                               electrons or orbitals are requested than are available, or if the
                               number of selected active orbital indices does not match
                               `num_molecular_orbitals`.
        """
        if not isinstance(grouped_property, GroupedElectronicProperty):
            raise QiskitNatureError(
                "Only `GroupedElectronicProperty` objects can be transformed by this Transformer, "
                f"not objects of type, {type(grouped_property)}.")

        particle_number = grouped_property.get_property(ParticleNumber)
        if particle_number is None:
            raise QiskitNatureError(
                "The provided `GroupedElectronicProperty` does not contain a `ParticleNumber` "
                "property, which is required by this transformer!")
        particle_number = cast(ParticleNumber, particle_number)

        electronic_basis_transform = grouped_property.get_property(
            ElectronicBasisTransform)
        if electronic_basis_transform is None:
            raise QiskitNatureError(
                "The provided `GroupedElectronicProperty` does not contain an "
                "`ElectronicBasisTransform` property, which is required by this transformer!"
            )
        electronic_basis_transform = cast(ElectronicBasisTransform,
                                          electronic_basis_transform)

        # get molecular orbital occupation numbers
        occupation_alpha = particle_number.occupation_alpha
        occupation_beta = particle_number.occupation_beta
        self._mo_occ_total = occupation_alpha + occupation_beta

        # determine the active space
        self._active_orbs_indices, inactive_orbs_idxs = self._determine_active_space(
            grouped_property)

        # get molecular orbital coefficients
        coeff_alpha = electronic_basis_transform.coeff_alpha
        coeff_beta = electronic_basis_transform.coeff_beta

        # initialize size-reducing basis transformation
        self._transform_active = ElectronicBasisTransform(
            ElectronicBasis.AO,
            ElectronicBasis.MO,
            coeff_alpha[:, self._active_orbs_indices],
            coeff_beta[:, self._active_orbs_indices],
        )

        # compute inactive density matrix
        def _inactive_density(mo_occ, mo_coeff):
            return np.dot(
                mo_coeff[:, inactive_orbs_idxs] * mo_occ[inactive_orbs_idxs],
                np.transpose(mo_coeff[:, inactive_orbs_idxs]),
            )

        self._density_inactive = OneBodyElectronicIntegrals(
            ElectronicBasis.AO,
            (
                _inactive_density(occupation_alpha, coeff_alpha),
                _inactive_density(occupation_beta, coeff_beta),
            ),
        )

        # construct new GroupedElectronicProperty
        grouped_property_transformed = ElectronicStructureDriverResult()
        grouped_property_transformed = self._transform_property(
            grouped_property)  # type: ignore
        grouped_property_transformed.molecule = (
            grouped_property.molecule  # type: ignore[attr-defined]
        )

        return grouped_property_transformed
Beispiel #21
0
    def test_tuple_num_electrons_with_manual_orbitals(self):
        """Regression test against https://github.com/Qiskit/qiskit-nature/issues/434."""
        driver = HDF5Driver(hdf5_input=self.get_resource_path(
            "H2_631g.hdf5", "second_q/transformers"))
        driver_result = driver.run()

        trafo = ActiveSpaceTransformer(
            num_electrons=(1, 1),
            num_molecular_orbitals=2,
            active_orbitals=[0, 1],
        )
        driver_result_reduced = trafo.transform(driver_result)

        expected = ElectronicStructureDriverResult()
        expected.add_property(
            ElectronicEnergy(
                [
                    OneBodyElectronicIntegrals(
                        ElectronicBasis.MO,
                        (np.asarray([[-1.24943841, 0.0], [0.0, -0.547816138]
                                     ]), None),
                    ),
                    TwoBodyElectronicIntegrals(
                        ElectronicBasis.MO,
                        (
                            np.asarray([
                                [
                                    [[0.652098466, 0.0], [0.0, 0.433536565]],
                                    [[0.0, 0.0794483182], [0.0794483182, 0.0]],
                                ],
                                [
                                    [[0.0, 0.0794483182], [0.0794483182, 0.0]],
                                    [[0.433536565, 0.0], [0.0, 0.385524695]],
                                ],
                            ]),
                            None,
                            None,
                            None,
                        ),
                    ),
                ],
                energy_shift={"ActiveSpaceTransformer": 0.0},
            ))
        expected.add_property(
            ElectronicDipoleMoment([
                DipoleMoment(
                    "x",
                    [
                        OneBodyElectronicIntegrals(ElectronicBasis.MO,
                                                   (np.zeros((2, 2)), None))
                    ],
                    shift={"ActiveSpaceTransformer": 0.0},
                ),
                DipoleMoment(
                    "y",
                    [
                        OneBodyElectronicIntegrals(ElectronicBasis.MO,
                                                   (np.zeros((2, 2)), None))
                    ],
                    shift={"ActiveSpaceTransformer": 0.0},
                ),
                DipoleMoment(
                    "z",
                    [
                        OneBodyElectronicIntegrals(
                            ElectronicBasis.MO,
                            (
                                np.asarray([[0.69447435, -1.01418298],
                                            [-1.01418298, 0.69447435]]),
                                None,
                            ),
                        )
                    ],
                    shift={"ActiveSpaceTransformer": 0.0},
                ),
            ]))

        self.assertDriverResult(driver_result_reduced, expected)
    def test_transform_basis(self):
        """Test transform_basis"""
        mat_a = np.arange(1, 5).reshape((2, 2))
        mat_b = np.arange(-4, 0).reshape((2, 2))

        transform = ElectronicBasisTransform(ElectronicBasis.AO, ElectronicBasis.MO, 2 * np.eye(2))

        with self.subTest("Pure Alpha"):
            ints_ao = OneBodyElectronicIntegrals(ElectronicBasis.AO, (mat_a, None))
            ints_mo = ints_ao.transform_basis(transform)
            self.assertTrue(np.allclose(ints_mo._matrices[0], 4 * mat_a))
            self.assertIsNone(ints_mo._matrices[1])

        with self.subTest("Alpha and Beta"):
            ints_ao = OneBodyElectronicIntegrals(ElectronicBasis.AO, (mat_a, mat_b))
            ints_mo = ints_ao.transform_basis(transform)
            self.assertTrue(np.allclose(ints_mo._matrices[0], 4 * mat_a))
            self.assertTrue(np.allclose(ints_mo._matrices[1], 4 * mat_b))

        with self.subTest("Beta custom coeff with only alpha"):
            transform_beta = ElectronicBasisTransform(
                ElectronicBasis.AO, ElectronicBasis.MO, 2 * np.eye(2), 3 * np.eye(2)
            )
            ints_ao = OneBodyElectronicIntegrals(ElectronicBasis.AO, (mat_a, None))
            ints_mo = ints_ao.transform_basis(transform_beta)
            self.assertTrue(np.allclose(ints_mo._matrices[0], 4 * mat_a))
            self.assertTrue(np.allclose(ints_mo._matrices[1], 9 * mat_a))

        with self.subTest("Beta custom coeff"):
            transform_beta = ElectronicBasisTransform(
                ElectronicBasis.AO, ElectronicBasis.MO, 2 * np.eye(2), 3 * np.eye(2)
            )
            ints_ao = OneBodyElectronicIntegrals(ElectronicBasis.AO, (mat_a, mat_b))
            ints_mo = ints_ao.transform_basis(transform_beta)
            self.assertTrue(np.allclose(ints_mo._matrices[0], 4 * mat_a))
            self.assertTrue(np.allclose(ints_mo._matrices[1], 9 * mat_b))

        with self.subTest("Final basis match"):
            ints_ao = OneBodyElectronicIntegrals(ElectronicBasis.MO, (mat_a, None))
            ints_mo = ints_ao.transform_basis(transform)
            self.assertEqual(ints_ao, ints_mo)

        with self.subTest("Inital basis mismatch"):
            with self.assertRaises(QiskitNatureError):
                ints_ao = OneBodyElectronicIntegrals(ElectronicBasis.SO, mat_a)
                ints_ao.transform_basis(transform)
    def _parse_matrix_file(fname: str, useao2e: bool = False) -> ElectronicStructureDriverResult:
        """
        get_driver_class is used here because the discovery routine will load all the gaussian
        binary dependencies, if not loaded already. It won't work without it.
        """
        try:
            # add gauopen to sys.path so that binaries can be loaded
            gauopen_directory = os.path.join(os.path.dirname(os.path.realpath(__file__)), "gauopen")
            if gauopen_directory not in sys.path:
                sys.path.insert(0, gauopen_directory)
            # pylint: disable=import-outside-toplevel
            from .gauopen.QCMatEl import MatEl
        except ImportError as mnfe:
            msg = (
                (
                    "qcmatrixio extension not found. "
                    "See Gaussian driver readme to build qcmatrixio.F using f2py"
                )
                if mnfe.name == "qcmatrixio"
                else str(mnfe)
            )

            logger.info(msg)
            raise QiskitNatureError(msg) from mnfe

        mel = MatEl(file=fname)
        logger.debug("MatrixElement file:\n%s", mel)

        driver_result = ElectronicStructureDriverResult()

        # molecule
        coords = np.reshape(mel.c, (len(mel.ian), 3))
        geometry: list[tuple[str, list[float]]] = []
        for atom, xyz in zip(mel.ian, coords):
            geometry.append((PERIODIC_TABLE[atom], BOHR * xyz))

        driver_result.molecule = Molecule(
            geometry,
            multiplicity=mel.multip,
            charge=mel.icharg,
        )

        # driver metadata
        driver_result.add_property(DriverMetadata("GAUSSIAN", mel.gversion, ""))

        # basis transform
        moc = GaussianDriver._get_matrix(mel, "ALPHA MO COEFFICIENTS")
        moc_b = GaussianDriver._get_matrix(mel, "BETA MO COEFFICIENTS")
        if np.array_equal(moc, moc_b):
            logger.debug("ALPHA and BETA MO COEFFS identical, keeping only ALPHA")
            moc_b = None

        nmo = moc.shape[0]

        basis_transform = ElectronicBasisTransform(
            ElectronicBasis.AO, ElectronicBasis.MO, moc, moc_b
        )
        driver_result.add_property(basis_transform)

        # particle number
        num_alpha = (mel.ne + mel.multip - 1) // 2
        num_beta = (mel.ne - mel.multip + 1) // 2

        driver_result.add_property(
            ParticleNumber(num_spin_orbitals=nmo * 2, num_particles=(num_alpha, num_beta))
        )

        # electronic energy
        hcore = GaussianDriver._get_matrix(mel, "CORE HAMILTONIAN ALPHA")
        logger.debug("CORE HAMILTONIAN ALPHA %s", hcore.shape)
        hcore_b = GaussianDriver._get_matrix(mel, "CORE HAMILTONIAN BETA")
        if np.array_equal(hcore, hcore_b):
            # From Gaussian interfacing documentation: "The two core Hamiltonians are identical
            # unless a Fermi contact perturbation has been applied."
            logger.debug("CORE HAMILTONIAN ALPHA and BETA identical, keeping only ALPHA")
            hcore_b = None
        logger.debug(
            "CORE HAMILTONIAN BETA %s",
            "- Not present" if hcore_b is None else hcore_b.shape,
        )
        one_body_ao = OneBodyElectronicIntegrals(ElectronicBasis.AO, (hcore, hcore_b))
        one_body_mo = one_body_ao.transform_basis(basis_transform)

        eri = GaussianDriver._get_matrix(mel, "REGULAR 2E INTEGRALS")
        logger.debug("REGULAR 2E INTEGRALS %s", eri.shape)
        if moc_b is None and mel.matlist.get("BB MO 2E INTEGRALS") is not None:
            # It seems that when using ROHF, where alpha and beta coeffs are
            # the same, that integrals
            # for BB and BA are included in the output, as well as just AA
            # that would have been expected
            # Using these fails to give the right answer (is ok for UHF).
            # So in this case we revert to
            # using 2 electron ints in atomic basis from the output and
            # converting them ourselves.
            useao2e = True
            logger.info(
                "Identical A and B coeffs but BB ints are present - using regular 2E ints instead"
            )
        two_body_ao = TwoBodyElectronicIntegrals(ElectronicBasis.AO, (eri, None, None, None))
        two_body_mo: TwoBodyElectronicIntegrals
        if useao2e:
            # eri are 2-body in AO. We can convert to MO via the ElectronicBasisTransform but using
            # ints in MO already, as in the else here, is better
            two_body_mo = two_body_ao.transform_basis(basis_transform)
        else:
            # These are in MO basis but by default will be reduced in size by frozen core default so
            # to use them we need to add Window=Full above when we augment the config
            mohijkl = GaussianDriver._get_matrix(mel, "AA MO 2E INTEGRALS")
            logger.debug("AA MO 2E INTEGRALS %s", mohijkl.shape)
            mohijkl_bb = GaussianDriver._get_matrix(mel, "BB MO 2E INTEGRALS")
            logger.debug(
                "BB MO 2E INTEGRALS %s",
                "- Not present" if mohijkl_bb is None else mohijkl_bb.shape,
            )
            mohijkl_ba = GaussianDriver._get_matrix(mel, "BA MO 2E INTEGRALS")
            logger.debug(
                "BA MO 2E INTEGRALS %s",
                "- Not present" if mohijkl_ba is None else mohijkl_ba.shape,
            )
            two_body_mo = TwoBodyElectronicIntegrals(
                ElectronicBasis.MO, (mohijkl, mohijkl_ba, mohijkl_bb, None)
            )

        electronic_energy = ElectronicEnergy(
            [one_body_ao, two_body_ao, one_body_mo, two_body_mo],
            nuclear_repulsion_energy=mel.scalar("ENUCREP"),
            reference_energy=mel.scalar("ETOTAL"),
        )

        kinetic = GaussianDriver._get_matrix(mel, "KINETIC ENERGY")
        logger.debug("KINETIC ENERGY %s", kinetic.shape)
        electronic_energy.kinetic = OneBodyElectronicIntegrals(ElectronicBasis.AO, (kinetic, None))

        overlap = GaussianDriver._get_matrix(mel, "OVERLAP")
        logger.debug("OVERLAP %s", overlap.shape)
        electronic_energy.overlap = OneBodyElectronicIntegrals(ElectronicBasis.AO, (overlap, None))

        orbs_energy = GaussianDriver._get_matrix(mel, "ALPHA ORBITAL ENERGIES")
        logger.debug("ORBITAL ENERGIES %s", overlap.shape)
        orbs_energy_b = GaussianDriver._get_matrix(mel, "BETA ORBITAL ENERGIES")
        logger.debug("BETA ORBITAL ENERGIES %s", overlap.shape)
        orbital_energies = (orbs_energy, orbs_energy_b) if moc_b is not None else orbs_energy
        electronic_energy.orbital_energies = np.asarray(orbital_energies)

        driver_result.add_property(electronic_energy)

        # dipole moment
        dipints = GaussianDriver._get_matrix(mel, "DIPOLE INTEGRALS")
        dipints = np.einsum("ijk->kji", dipints)

        x_dip_ints = OneBodyElectronicIntegrals(ElectronicBasis.AO, (dipints[0], None))
        y_dip_ints = OneBodyElectronicIntegrals(ElectronicBasis.AO, (dipints[1], None))
        z_dip_ints = OneBodyElectronicIntegrals(ElectronicBasis.AO, (dipints[2], None))

        x_dipole = DipoleMoment("x", [x_dip_ints, x_dip_ints.transform_basis(basis_transform)])
        y_dipole = DipoleMoment("y", [y_dip_ints, y_dip_ints.transform_basis(basis_transform)])
        z_dipole = DipoleMoment("z", [z_dip_ints, z_dip_ints.transform_basis(basis_transform)])

        nucl_dip = np.einsum("i,ix->x", mel.ian, coords)
        nucl_dip = np.round(nucl_dip, decimals=8)

        driver_result.add_property(
            ElectronicDipoleMoment(
                [x_dipole, y_dipole, z_dipole],
                nuclear_dipole_moment=nucl_dip,
                reverse_dipole_sign=True,
            )
        )

        # extra properties
        # TODO: once https://github.com/Qiskit/qiskit-nature/issues/312 is fixed we can stop adding
        # these properties by default.
        # if not settings.dict_aux_operators:
        driver_result.add_property(AngularMomentum(nmo * 2))
        driver_result.add_property(Magnetization(nmo * 2))

        return driver_result
Beispiel #24
0
    def test_arbitrary_active_orbitals(self):
        """Test manual selection of active orbital indices."""
        driver = HDF5Driver(hdf5_input=self.get_resource_path(
            "H2_631g.hdf5", "second_q/transformers"))
        driver_result = driver.run()

        trafo = ActiveSpaceTransformer(num_electrons=2,
                                       num_molecular_orbitals=2,
                                       active_orbitals=[0, 2])
        driver_result_reduced = trafo.transform(driver_result)

        expected = ElectronicStructureDriverResult()
        expected.add_property(
            ElectronicEnergy(
                [
                    OneBodyElectronicIntegrals(
                        ElectronicBasis.MO,
                        (
                            np.asarray([[-1.24943841, -0.16790838],
                                        [-0.16790838, -0.18307469]]),
                            None,
                        ),
                    ),
                    TwoBodyElectronicIntegrals(
                        ElectronicBasis.MO,
                        (
                            np.asarray([
                                [
                                    [[0.65209847, 0.16790822],
                                     [0.16790822, 0.53250905]],
                                    [[0.16790822, 0.10962908],
                                     [0.10962908, 0.11981429]],
                                ],
                                [
                                    [[0.16790822, 0.10962908],
                                     [0.10962908, 0.11981429]],
                                    [[0.53250905, 0.11981429],
                                     [0.11981429, 0.46345617]],
                                ],
                            ]),
                            None,
                            None,
                            None,
                        ),
                    ),
                ],
                energy_shift={"ActiveSpaceTransformer": 0.0},
            ))
        expected.add_property(
            ElectronicDipoleMoment([
                DipoleMoment(
                    "x",
                    [
                        OneBodyElectronicIntegrals(ElectronicBasis.MO,
                                                   (np.zeros((2, 2)), None))
                    ],
                    shift={"ActiveSpaceTransformer": 0.0},
                ),
                DipoleMoment(
                    "y",
                    [
                        OneBodyElectronicIntegrals(ElectronicBasis.MO,
                                                   (np.zeros((2, 2)), None))
                    ],
                    shift={"ActiveSpaceTransformer": 0.0},
                ),
                DipoleMoment(
                    "z",
                    [
                        OneBodyElectronicIntegrals(
                            ElectronicBasis.MO,
                            (np.asarray([[0.69447435, 0.0], [0.0, 0.69447435]
                                         ]), None),
                        )
                    ],
                    shift={"ActiveSpaceTransformer": 0.0},
                ),
            ]))
        self.assertDriverResult(driver_result_reduced, expected)