Beispiel #1
0
    def _populate_driver_result_electronic_dipole_moment(
        self, driver_result: ElectronicStructureDriverResult
    ) -> None:
        basis_transform = driver_result.get_property(ElectronicBasisTransform)

        self._mol.set_common_orig((0, 0, 0))
        ao_dip = self._mol.intor_symmetric("int1e_r", comp=3)

        d_m = self._calc.make_rdm1(self._calc.mo_coeff, self._calc.mo_occ)

        if not (isinstance(d_m, np.ndarray) and d_m.ndim == 2):
            d_m = d_m[0] + d_m[1]

        elec_dip = np.negative(np.einsum("xij,ji->x", ao_dip, d_m).real)
        elec_dip = np.round(elec_dip, decimals=8)
        nucl_dip = np.einsum("i,ix->x", self._mol.atom_charges(), self._mol.atom_coords())
        nucl_dip = np.round(nucl_dip, decimals=8)

        logger.info("HF Electronic dipole moment: %s", elec_dip)
        logger.info("Nuclear dipole moment: %s", nucl_dip)
        logger.info("Total dipole moment: %s", nucl_dip + elec_dip)

        x_dip_ints = OneBodyElectronicIntegrals(ElectronicBasis.AO, (ao_dip[0], None))
        y_dip_ints = OneBodyElectronicIntegrals(ElectronicBasis.AO, (ao_dip[1], None))
        z_dip_ints = OneBodyElectronicIntegrals(ElectronicBasis.AO, (ao_dip[2], None))

        x_dipole = DipoleMoment("x", [x_dip_ints, x_dip_ints.transform_basis(basis_transform)])
        y_dipole = DipoleMoment("y", [y_dip_ints, y_dip_ints.transform_basis(basis_transform)])
        z_dipole = DipoleMoment("z", [z_dip_ints, z_dip_ints.transform_basis(basis_transform)])

        driver_result.add_property(
            ElectronicDipoleMoment(
                [x_dipole, y_dipole, z_dipole],
                nuclear_dipole_moment=nucl_dip,
                reverse_dipole_sign=True,
            )
        )
    def _populate_driver_result_electronic_energy(
            self, driver_result: ElectronicStructureDriverResult) -> None:
        # pylint: disable=import-error
        from pyquante2 import onee_integrals
        from pyquante2.ints.integrals import twoe_integrals

        basis_transform = driver_result.get_property(ElectronicBasisTransform)

        integrals = onee_integrals(self._bfs, self._mol)

        hij = integrals.T + integrals.V
        hijkl = twoe_integrals(self._bfs)

        one_body_ao = OneBodyElectronicIntegrals(ElectronicBasis.AO,
                                                 (hij, None))

        two_body_ao = TwoBodyElectronicIntegrals(
            ElectronicBasis.AO,
            (hijkl.transform(np.identity(self._nmo)), None, None, None),
        )

        one_body_mo = one_body_ao.transform_basis(basis_transform)
        two_body_mo = two_body_ao.transform_basis(basis_transform)

        electronic_energy = ElectronicEnergy(
            [one_body_ao, two_body_ao, one_body_mo, two_body_mo],
            nuclear_repulsion_energy=self._mol.nuclear_repulsion(),
            reference_energy=self._calc.energy,
        )

        if hasattr(self._calc, "orbe"):
            orbs_energy = self._calc.orbe
            orbs_energy_b = None
        else:
            orbs_energy = self._calc.orbea
            orbs_energy_b = self._calc.orbeb

        orbital_energies = ((orbs_energy, orbs_energy_b)
                            if orbs_energy_b is not None else orbs_energy)
        electronic_energy.orbital_energies = np.asarray(orbital_energies)

        electronic_energy.kinetic = OneBodyElectronicIntegrals(
            ElectronicBasis.AO, (integrals.T, None))
        electronic_energy.overlap = OneBodyElectronicIntegrals(
            ElectronicBasis.AO, (integrals.S, None))

        driver_result.add_property(electronic_energy)
    def test_transform_basis(self):
        """Test transform_basis"""
        mat_a = np.arange(1, 5).reshape((2, 2))
        mat_b = np.arange(-4, 0).reshape((2, 2))

        transform = ElectronicBasisTransform(ElectronicBasis.AO, ElectronicBasis.MO, 2 * np.eye(2))

        with self.subTest("Pure Alpha"):
            ints_ao = OneBodyElectronicIntegrals(ElectronicBasis.AO, (mat_a, None))
            ints_mo = ints_ao.transform_basis(transform)
            self.assertTrue(np.allclose(ints_mo._matrices[0], 4 * mat_a))
            self.assertIsNone(ints_mo._matrices[1])

        with self.subTest("Alpha and Beta"):
            ints_ao = OneBodyElectronicIntegrals(ElectronicBasis.AO, (mat_a, mat_b))
            ints_mo = ints_ao.transform_basis(transform)
            self.assertTrue(np.allclose(ints_mo._matrices[0], 4 * mat_a))
            self.assertTrue(np.allclose(ints_mo._matrices[1], 4 * mat_b))

        with self.subTest("Beta custom coeff with only alpha"):
            transform_beta = ElectronicBasisTransform(
                ElectronicBasis.AO, ElectronicBasis.MO, 2 * np.eye(2), 3 * np.eye(2)
            )
            ints_ao = OneBodyElectronicIntegrals(ElectronicBasis.AO, (mat_a, None))
            ints_mo = ints_ao.transform_basis(transform_beta)
            self.assertTrue(np.allclose(ints_mo._matrices[0], 4 * mat_a))
            self.assertTrue(np.allclose(ints_mo._matrices[1], 9 * mat_a))

        with self.subTest("Beta custom coeff"):
            transform_beta = ElectronicBasisTransform(
                ElectronicBasis.AO, ElectronicBasis.MO, 2 * np.eye(2), 3 * np.eye(2)
            )
            ints_ao = OneBodyElectronicIntegrals(ElectronicBasis.AO, (mat_a, mat_b))
            ints_mo = ints_ao.transform_basis(transform_beta)
            self.assertTrue(np.allclose(ints_mo._matrices[0], 4 * mat_a))
            self.assertTrue(np.allclose(ints_mo._matrices[1], 9 * mat_b))

        with self.subTest("Final basis match"):
            ints_ao = OneBodyElectronicIntegrals(ElectronicBasis.MO, (mat_a, None))
            ints_mo = ints_ao.transform_basis(transform)
            self.assertEqual(ints_ao, ints_mo)

        with self.subTest("Inital basis mismatch"):
            with self.assertRaises(QiskitNatureError):
                ints_ao = OneBodyElectronicIntegrals(ElectronicBasis.SO, mat_a)
                ints_ao.transform_basis(transform)
Beispiel #4
0
    def _populate_driver_result_electronic_energy(
        self, driver_result: ElectronicStructureDriverResult
    ) -> None:
        # pylint: disable=import-error
        from pyscf import gto

        basis_transform = driver_result.get_property(ElectronicBasisTransform)

        one_body_ao = OneBodyElectronicIntegrals(
            ElectronicBasis.AO,
            (self._calc.get_hcore(), None),
        )

        two_body_ao = TwoBodyElectronicIntegrals(
            ElectronicBasis.AO,
            (self._mol.intor("int2e", aosym=1), None, None, None),
        )

        one_body_mo = one_body_ao.transform_basis(basis_transform)
        two_body_mo = two_body_ao.transform_basis(basis_transform)

        electronic_energy = ElectronicEnergy(
            [one_body_ao, two_body_ao, one_body_mo, two_body_mo],
            nuclear_repulsion_energy=gto.mole.energy_nuc(self._mol),
            reference_energy=self._calc.e_tot,
        )

        electronic_energy.kinetic = OneBodyElectronicIntegrals(
            ElectronicBasis.AO,
            (self._mol.intor_symmetric("int1e_kin"), None),
        )
        electronic_energy.overlap = OneBodyElectronicIntegrals(
            ElectronicBasis.AO,
            (self._calc.get_ovlp(), None),
        )

        orbs_energy, orbs_energy_b = self._extract_mo_data("mo_energy")
        orbital_energies = (
            (orbs_energy, orbs_energy_b) if orbs_energy_b is not None else orbs_energy
        )
        electronic_energy.orbital_energies = np.asarray(orbital_energies)

        driver_result.add_property(electronic_energy)
    def _parse_matrix_file(fname: str, useao2e: bool = False) -> ElectronicStructureDriverResult:
        """
        get_driver_class is used here because the discovery routine will load all the gaussian
        binary dependencies, if not loaded already. It won't work without it.
        """
        try:
            # add gauopen to sys.path so that binaries can be loaded
            gauopen_directory = os.path.join(os.path.dirname(os.path.realpath(__file__)), "gauopen")
            if gauopen_directory not in sys.path:
                sys.path.insert(0, gauopen_directory)
            # pylint: disable=import-outside-toplevel
            from .gauopen.QCMatEl import MatEl
        except ImportError as mnfe:
            msg = (
                (
                    "qcmatrixio extension not found. "
                    "See Gaussian driver readme to build qcmatrixio.F using f2py"
                )
                if mnfe.name == "qcmatrixio"
                else str(mnfe)
            )

            logger.info(msg)
            raise QiskitNatureError(msg) from mnfe

        mel = MatEl(file=fname)
        logger.debug("MatrixElement file:\n%s", mel)

        driver_result = ElectronicStructureDriverResult()

        # molecule
        coords = np.reshape(mel.c, (len(mel.ian), 3))
        geometry: list[tuple[str, list[float]]] = []
        for atom, xyz in zip(mel.ian, coords):
            geometry.append((PERIODIC_TABLE[atom], BOHR * xyz))

        driver_result.molecule = Molecule(
            geometry,
            multiplicity=mel.multip,
            charge=mel.icharg,
        )

        # driver metadata
        driver_result.add_property(DriverMetadata("GAUSSIAN", mel.gversion, ""))

        # basis transform
        moc = GaussianDriver._get_matrix(mel, "ALPHA MO COEFFICIENTS")
        moc_b = GaussianDriver._get_matrix(mel, "BETA MO COEFFICIENTS")
        if np.array_equal(moc, moc_b):
            logger.debug("ALPHA and BETA MO COEFFS identical, keeping only ALPHA")
            moc_b = None

        nmo = moc.shape[0]

        basis_transform = ElectronicBasisTransform(
            ElectronicBasis.AO, ElectronicBasis.MO, moc, moc_b
        )
        driver_result.add_property(basis_transform)

        # particle number
        num_alpha = (mel.ne + mel.multip - 1) // 2
        num_beta = (mel.ne - mel.multip + 1) // 2

        driver_result.add_property(
            ParticleNumber(num_spin_orbitals=nmo * 2, num_particles=(num_alpha, num_beta))
        )

        # electronic energy
        hcore = GaussianDriver._get_matrix(mel, "CORE HAMILTONIAN ALPHA")
        logger.debug("CORE HAMILTONIAN ALPHA %s", hcore.shape)
        hcore_b = GaussianDriver._get_matrix(mel, "CORE HAMILTONIAN BETA")
        if np.array_equal(hcore, hcore_b):
            # From Gaussian interfacing documentation: "The two core Hamiltonians are identical
            # unless a Fermi contact perturbation has been applied."
            logger.debug("CORE HAMILTONIAN ALPHA and BETA identical, keeping only ALPHA")
            hcore_b = None
        logger.debug(
            "CORE HAMILTONIAN BETA %s",
            "- Not present" if hcore_b is None else hcore_b.shape,
        )
        one_body_ao = OneBodyElectronicIntegrals(ElectronicBasis.AO, (hcore, hcore_b))
        one_body_mo = one_body_ao.transform_basis(basis_transform)

        eri = GaussianDriver._get_matrix(mel, "REGULAR 2E INTEGRALS")
        logger.debug("REGULAR 2E INTEGRALS %s", eri.shape)
        if moc_b is None and mel.matlist.get("BB MO 2E INTEGRALS") is not None:
            # It seems that when using ROHF, where alpha and beta coeffs are
            # the same, that integrals
            # for BB and BA are included in the output, as well as just AA
            # that would have been expected
            # Using these fails to give the right answer (is ok for UHF).
            # So in this case we revert to
            # using 2 electron ints in atomic basis from the output and
            # converting them ourselves.
            useao2e = True
            logger.info(
                "Identical A and B coeffs but BB ints are present - using regular 2E ints instead"
            )
        two_body_ao = TwoBodyElectronicIntegrals(ElectronicBasis.AO, (eri, None, None, None))
        two_body_mo: TwoBodyElectronicIntegrals
        if useao2e:
            # eri are 2-body in AO. We can convert to MO via the ElectronicBasisTransform but using
            # ints in MO already, as in the else here, is better
            two_body_mo = two_body_ao.transform_basis(basis_transform)
        else:
            # These are in MO basis but by default will be reduced in size by frozen core default so
            # to use them we need to add Window=Full above when we augment the config
            mohijkl = GaussianDriver._get_matrix(mel, "AA MO 2E INTEGRALS")
            logger.debug("AA MO 2E INTEGRALS %s", mohijkl.shape)
            mohijkl_bb = GaussianDriver._get_matrix(mel, "BB MO 2E INTEGRALS")
            logger.debug(
                "BB MO 2E INTEGRALS %s",
                "- Not present" if mohijkl_bb is None else mohijkl_bb.shape,
            )
            mohijkl_ba = GaussianDriver._get_matrix(mel, "BA MO 2E INTEGRALS")
            logger.debug(
                "BA MO 2E INTEGRALS %s",
                "- Not present" if mohijkl_ba is None else mohijkl_ba.shape,
            )
            two_body_mo = TwoBodyElectronicIntegrals(
                ElectronicBasis.MO, (mohijkl, mohijkl_ba, mohijkl_bb, None)
            )

        electronic_energy = ElectronicEnergy(
            [one_body_ao, two_body_ao, one_body_mo, two_body_mo],
            nuclear_repulsion_energy=mel.scalar("ENUCREP"),
            reference_energy=mel.scalar("ETOTAL"),
        )

        kinetic = GaussianDriver._get_matrix(mel, "KINETIC ENERGY")
        logger.debug("KINETIC ENERGY %s", kinetic.shape)
        electronic_energy.kinetic = OneBodyElectronicIntegrals(ElectronicBasis.AO, (kinetic, None))

        overlap = GaussianDriver._get_matrix(mel, "OVERLAP")
        logger.debug("OVERLAP %s", overlap.shape)
        electronic_energy.overlap = OneBodyElectronicIntegrals(ElectronicBasis.AO, (overlap, None))

        orbs_energy = GaussianDriver._get_matrix(mel, "ALPHA ORBITAL ENERGIES")
        logger.debug("ORBITAL ENERGIES %s", overlap.shape)
        orbs_energy_b = GaussianDriver._get_matrix(mel, "BETA ORBITAL ENERGIES")
        logger.debug("BETA ORBITAL ENERGIES %s", overlap.shape)
        orbital_energies = (orbs_energy, orbs_energy_b) if moc_b is not None else orbs_energy
        electronic_energy.orbital_energies = np.asarray(orbital_energies)

        driver_result.add_property(electronic_energy)

        # dipole moment
        dipints = GaussianDriver._get_matrix(mel, "DIPOLE INTEGRALS")
        dipints = np.einsum("ijk->kji", dipints)

        x_dip_ints = OneBodyElectronicIntegrals(ElectronicBasis.AO, (dipints[0], None))
        y_dip_ints = OneBodyElectronicIntegrals(ElectronicBasis.AO, (dipints[1], None))
        z_dip_ints = OneBodyElectronicIntegrals(ElectronicBasis.AO, (dipints[2], None))

        x_dipole = DipoleMoment("x", [x_dip_ints, x_dip_ints.transform_basis(basis_transform)])
        y_dipole = DipoleMoment("y", [y_dip_ints, y_dip_ints.transform_basis(basis_transform)])
        z_dipole = DipoleMoment("z", [z_dip_ints, z_dip_ints.transform_basis(basis_transform)])

        nucl_dip = np.einsum("i,ix->x", mel.ian, coords)
        nucl_dip = np.round(nucl_dip, decimals=8)

        driver_result.add_property(
            ElectronicDipoleMoment(
                [x_dipole, y_dipole, z_dipole],
                nuclear_dipole_moment=nucl_dip,
                reverse_dipole_sign=True,
            )
        )

        # extra properties
        # TODO: once https://github.com/Qiskit/qiskit-nature/issues/312 is fixed we can stop adding
        # these properties by default.
        # if not settings.dict_aux_operators:
        driver_result.add_property(AngularMomentum(nmo * 2))
        driver_result.add_property(Magnetization(nmo * 2))

        return driver_result